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Abstract: Adjusting for a balancing score is sufficient for bias reduction when estimating causal effects
including the average treatment effect and effect among the treated. Estimators that adjust for the
propensity score in a nonparametric way, such as matching on an estimate of the propensity score, can
be consistent when the estimated propensity score is not consistent for the true propensity score but
converges to some other balancing score. We call this property the balancing score property, and discuss
a class of estimators that have this property. We introduce a targeted minimum loss-based estimator (TMLE)
for a treatment-specific mean with the balancing score property that is additionally locally efficient and
doubly robust. We investigate the new estimator’s performance relative to other estimators, including
another TMLE, a propensity score matching estimator, an inverse probability of treatment weighted
estimator, and a regression-based estimator in simulation studies.

Keywords: balancing score, propensity score, causal inference, matching, TMLE

DOI 10.1515/jci-2012-0012

1 Introduction

Estimators based on the propensity score (PS), the probability of receiving a treatment given baseline
covariates, are popular for estimation of causal effects such as the average treatment effect (ATE), average
treatment effect among the treated (ATT), or the average outcome under treatment. Such methods can be
thought of as adjusting for the propensity score in place of baseline covariates, and generally require
consistent estimation of the propensity score if it is not known. Common propensity score methods include
stratification or subclassification [1-3], inverse probability of treatment weighting (IPTW) [4, 5], and
propensity score matching [6-8].

A “balancing score” as defined by Rosenbaum and Rubin [8] is a function of baseline covariates such
that treatment and baseline covariates are independent conditional on that function. The propensity score
is perhaps the most well-known example of a balancing score, but balancing scores are more general.
Typically, propensity score-based methods are said to be consistent when the true propensity score is
consistently estimated. Methods that adjust for the propensity score nonparametrically, such as matching or
stratification by the propensity score, actually only need that the estimated propensity score converge to
some balancing score in order for the parameter of interest to be estimated consistently. However, we are
not aware of specific claims in the literature that particular propensity score-based methods are consistent
under this weaker condition. We say that an estimator using the propensity score or other balancing score
has the balancing score property if it is consistent when the estimated propensity score converges to a
balancing score.

Though not guaranteed in general, it is possible for an estimated propensity score based on a
misspecified model to converge to a balancing score that is not equal to the true propensity score.
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Propensity score-based estimators that have the balancing score property are robust to this sort of estimator
misspecification of the PS, while other propensity score-based estimators are not. The balancing score
property is desirable because, even though most such estimators were initially developed based on the PS
specifically, they inherit this robustness for free. Estimators with the balancing score property are in general
not efficient.

An efficient estimator is one that achieves the minimum asymptotic variance of all regular estimators.
In many cases, for example when estimating the ATE, ATT, and average outcome under treatment, doubly
robust estimators can be constructed. A doubly robust estimator is one that relies on an estimate of both the
propensity score and of the outcome regression, the conditional mean of the outcome given baseline
covariates and treatment. Doubly robust estimators are consistent if either the estimated propensity
score or outcome regression is consistent. Examples include targeted minimum loss-based estimation
(TMLE) [9, 10] and augmented inverse probability of treatment weighted estimation (A-IPTW) [11, 12]. In
addition to being doubly robust, both TMLE and A-IPTW are efficient when both the propensity score and
outcome regression are consistently estimated.

In this article, we discuss a general class of estimators that have the balancing score property. We also
construct a TMLE [9, 10] with the balancing score property. This new TMLE not only has the benefit of the
robustness provided by the balancing score property, it also is a locally efficient, doubly robust plug-in
estimator. This means that our new estimator retains all of the attractive properties of a traditional TMLE
while gaining robustness that other estimators with the balancing score property enjoy when the propensity
score only converges to a balancing score.

In Section 2, we introduce notation and define the statistical parameter we wish to estimate. In Section 3
we describe a TMLE for the statistical parameter. In Section 4 we discuss the balancing score property and
describe the proposed new TMLE. In Section 5 we compare the performance of the new estimator to a
traditional TMLE as well as other common estimator and conclude with a discussion in Section 6. A list of
notation used throughout the article is provided in Appendix A. Some results and proofs not included in the
main text are in Appendix A.2 and two modifications to the TMLE algorithm are presented in Appendix A.3.
An example implementation of the proposed new TMLE in R [13] is provided in Appendix A.4.

2 Preliminaries

Consider the random variable O = (W,A,Y) where W is a real-valued vector, A is binary with values in
{0,1} and Y is univariate real number. Call the probability distribution of O Py € .# where .# is the
statistical model. Assume Py(A =1|W)>0 for almost every W. This is sometimes called a positivity
assumption. Define the parameter mapping ¥ from .# to R that maps P to Ep(Ep(Y|A =1, W)) where Ep
denotes expected value under probability distribution P € .#.

Suppose A =1 indicates some treatment of interest and A = O represents some control or reference
treatment, W represents a vector of baseline covariates measured before treatment, and Y represents some
outcome measured after treatment. Then under additional causal assumptions, W(Py) can be interpreted as
a causal quantity. In particular, we may assume that observed treatment A is independent of the counter-
factual outcome had each observation received treatment 1 given covariates W. This is known as the
randomization assumption or the “no unmeasured confounders” assumption, and the validity depends
on the particular application. Under the randomization positivity assumptions, W(Py) can be interpreted as
the average outcome had everyone in the population received treatment 1. In this paper we focus on
estimation of the statistical parameter W(Py), but other similar statistical parameters can, under assump-
tions, be interpreted as causal parameters such as the ATE or the ATT [14].

For a probability distribution P € .#, Q(a,w) = Ep(Y |A = a, W = w) is the regression of the outcome
on covariates and treatment. Let Qw(w) = P(W = w) be the distribution of baseline covariates. The condi-
tional distribution of treatment on baseline covariates is called g(a|w) = P(A = a| W = w), and define the
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propensity score as g(w) = g(1| w), the probability of treatment given covariates w. The parameter mapping
¥ depends on P only through Q = (Q,Qw), so recognizing the abuse of notation, we sometimes write
¥(P) = ¥(Q) = ¥(Q,Qw).

For a distribution P € .#, we make no assumptions on the outcome regression Q or on the distribution
Qw of W. We may put some restriction on possible functions g, for example we may know that P(A | W)
depends only on a subset of W. The model .# is therefore nonparametric or semiparametric.

Let Oy,..., 0, be a data set of n independent and identically distributed random variables drawn from
Py where O; = (W}, A;, Y;). We use the subscript 0 to denote the true probability distribution, and n to denote
an estimate based on a dataset of size n, so, for example, E, denotes expectation with respect to Py,
Qo(a,w) = Eo(Y|A =a, W = w), and Q, is an estimate of Qo. Let y, = ¥(Po).

3 Targeted minimum loss-based estimation

A plug-in estimator takes an estimate of the distribution Py, or relevant parts of Py, and plugs it into the
parameter mapping . In this case, ¥ depends on P through Q and Q. Using an estimate Q, of Qo, and
letting Qwy, be the empirical distribution of W, we can calculate the plug-in estimate as

W(Q,) = /W Qu(1, W)dQun(w)
1< -
:E;Qn(la VVI)

That is, we take the mean of Q,(1, W) with respect to the empirical distribution of W. Plug-in estimators
are desirable because they fully utilize known global constraints of Q, (by using an estimate Q, that
satisfies these constraints) and guarantee that estimates are in the parameter space, even in small
samples. Non-plug-in estimators such as IPTW can produce estimates outside of the parameter space.
For instance if our estimand is a probability, a method like IPTW could yield an estimate outside of [0, 1]
when the sample size is small.

TMLE is a general framework for constructing a plug-in estimator for y, with additional properties such
as efficiency. TMLE takes an initial estimate of the outcome regression Qp, say (_22, and, using an estimate
8n(W) of the propensity score, updates it to Q. Using the empirical distribution of W along with the
updated Q;, the final estimate is calculated as ¥(Q};,, Qux). The updated Q;; is constructed in such a way that
the final estimate is efficient or attains other properties. We now review some background and a specific
implementation of the TMLE procedure for W(Py).

An estimator that is asymptotically linear can be written as

VAl — o) = %élcwo)(of) T op(1)

for some mean zero function IC(P,) where op(1) is a term that converges in probability to 0. The function
IC(Py) is called the influence curve of the estimator at Py. For an estimator to be efficient, that is, to have
the minimum asymptotic variance among all regular estimators, it must be asymptotically linear with
influence curve equal to the so called efficient influence curve [9, 15]. The efficient influence curve for a
particular parameter mapping ¥ depends on the model. For our model, regardless of the model for gy, the
efficient influence curve at a P € .# written in terms of Q and g is

D*(Q, Qw.)(0) =ﬁ<y— Q(A, W)) + O(1, W) — ¥(Q, Qw).

A derivation of the efficient influence curve is presented in Chapter 4 van der Laan and Rose [9].
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Suppose for now Y is binary or bounded by 0 and 1. A modification to the algorithm and a different
TMLE are described in Appendix A.3 if this is not the case. The initial estimate Q0 can be obtained via a
parametric model for Eq(Y | A, W), such as a generalized linear model [16], or with a data adaptive machine
learning algorithm such as the SuperLearner algorithm [9, 17], which combines parametric and data
adaptive estimators using cross-validation.

The updating step is defined by a choice of loss function L for Q such that EoL(Q)(0O) is minimized at
Qo, and a working parametric submodel with finite dimensional real-valued parameter ¢, {Q(¢) : €} such
that Q(0) = Q. The submodel is typically chosen so that the efficient influence curve is in the linear span of

d d
the components of the “score” %L(Q(s)(o)) at e = 0. When L is the negative log likelihood, £L(Q(s)(0))

is the score in the usual sense. Starting with k=0, the empirical risk minimizer X = argmin.
S L(Q%(€))(0;) is calculated and QX is updated to Q<" = QX(k). The process is iterated until £k ~ 0,
sometimes converging in one step. Details can be found in Refs [9, 10, 18, 19].

Define the loss function L(Q)(0) = Ly(Q)(0) + Lw(Qw)(0) where

Ly(Q)(0) = —Y1og(Q(A,W)) — (1 — Y)log(1 — Q(A, W)).

and Ly (Qw)(0) = —10g(Qw(W)). When Y is binary, Ly(Q)(O) is the negative conditional log likelihood of
the Bernoulli distribution. Because Y is at least bounded by 0 and 1 if not binary, Ly(Q)(0) is a valid loss
function for the conditional mean. That is, Qo = argmingEoLy(Q)(0) [20]. The function Ly (Qw)(0) is the
negative log likelihood of the distribution of W, and its true mean is minimized by Q. Thus, the sum loss
function is a valid loss function for Qy = (Qo, Qwo)-

For a working submodel for Q, we use

A

Q()(A, W) = logit ™ |logit(Q(A, W)) + ST

indexed by . We call this a logistic working model because it is a logistic regression model with offset
logitQ(A, W) and single covariate A/g(1| W). The score of this model at £ = 0 is

gajw) AT

For Qu, we can use as working submodel

Qw(e)(W) = {1+ Q11 W) — ¥(Q)]}Qw(W)

which has score Q(1, W) — ¥(Q, Qw) at £ = 0. We can see that the efficient influence curve D*(P,) can be
written as a linear combination of the scores of these submodels when Q = Qo and g = go.

The estimate 9 can be calculated using standard logistic regression software with logit(QS(A, W)) as a
fixed offset term, and A/g,(1| W) as a covariate. By using the empirical distribution of W as an initial
estimate for QWn, and negative log likelihood loss function for Ly, the empirical risk is already minimized at

s SO 5 = 0 and no update is needed. In this case, the algorithm converges in one step, because 1‘W> is
not updated between iterations, so an additional update to Q} will yield £} = 0. The estimate Q; = Q%(9)
and the TMLE estimate of W(Py) is calculated as

¥(Q;, Qwn) = ZQ* (1, Wy).

Under regularity conditions, the TMLE is asymptotically linear and doubly robust, meaning that if the initial
estimate (_22 is consistent for Qy, or g, is consistent for g, then ‘I’(O;, Qwn) is consistent for W(Py).
Additionally, when both Q° and g, are consistent, the influence curve of the TMLE is equal to the efficient
influence curve, so the estimator achieves the semiparametric efficiency bound. Precise regularity condi-
tions for asymptotic linearity and efficiency are presented in Appendix A.2 in Theorem 3.
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4 Balancing score property and proposed estimator

A function b of W is called a balancing score if ALW | b(W) [8]. Trivially, b(W) = W is a balancing score,
and by definition of the propensity score, go(W), is a balancing score. In general, any function b(W) is a
balancing score if and only if there exists some function f such that go(W) = f(b(W)) (Theorem 2 [8]). For
example, any monotone transformation of the propensity is a balancing score. Such a function is called a
“balancing score” because, conditional on b(WW), the distribution of W between the treated and untreated
observations is equal or balanced. That is, Po(W |A =1,b(W)) = Po(W|A = 0,b(W)). Rosenbaum and
Rubin [8] show that adjusting for a balancing score yields the same estimand as adjusting for the full set
of covariates W which we state in Lemma 1 and offer a different proof in Appendix A.2.

Lemma 1 If b(W) is a balancing score under distribution P, then Ep(Ep(Y |A =1,b(W))) = ¥(P).

This result gives rise to methods for estimating W(P,) based on a balancing score and not on an estimate
of Qo. The propensity score is the balancing score most commonly used for estimating W(P,), and
frequently used estimators include propensity score matching, stratification, and IPTW. When the
propensity score is not known, these estimators rely on an estimated propensity score g,, and, under
regularity conditions, are consistent when g, is consistent for go. The IPTW estimator, in particular,
requires that g, converges to g, for consistency. However, many of these methods, such as propensity
score matching and stratification by the propensity score, can be seen as nonparametrically adjusting for
the propensity score and only rely on the propensity score being a balancing score. For these estimators,
it is sufficient for g, to converge to some balancing score under Po,. We call this property the balancing
score property.

In practice, an estimator g, can approximate a balancing score well but not converge to the true
propensity score. A parametric logistic regression estimator will estimate some function of the covariates
that is a projection of g, onto the model determined by the parametrization of the estimator. If the
parametric estimator is correctly specified, this projection will be gy. Depending on the true g, and
distribution of covariates, it is possible for this projection to be a balancing score or at least approximate
some balancing score when the estimator is not correctly specified. For example, suppose the true gy
depends on higher order interactions of covariates. Though not the case in general, in some settings a main
terms logistic regression may approximate a balancing score well. We explore such a setting via simulation
in Section 5. In another example, suppose go depends on covariates in an additive on the logit scale but not
necessarily linear or even smooth way. A logistic regression estimator with linear or possibly higher order
polynomial main terms may again approximate some balancing score.

Estimators based only on the propensity score are not doubly robust. We now construct a locally
efficient doubly robust estimator with the balancing score property. We start with initial estimators Q, for
Qo and g, for go. We then update Q, by nonparametrically regressing Y on A and g,(W) using Q,(A, W) as
an offset. Similarly to the TMLE procedure in Section 3, we use this updated estimate of Qo to estimate vy, by
plugging it in to the parameter mapping ¥ along with the empirical distribution of W.

To update Q, by further adjusting for A and g,, we specify a working model and loss function pair. The
working model and loss function pair is somewhat analogous to that in the updating step in the TMLE
procedure described in Section 3. The loss function can be the same as that in the TMLE procedure’s
updating step, but it need not be. Define Q and b to be the limits of Q, and g,, respectively, as n — oco. Let ©
be the class of all functions of A and b(W), and let # be some function in that class. Here Q is not
necessarily Qo and b is not necessarily g, or even a balancing score. For concreteness, consider two working
model and loss function pairs: a logistic working model

Q"’(A, W) = logit[logit(Q(A, W)) + 0(A, b(W))) (1)

with loss function
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L'(Q"")(0) = ~Y1og(Q"’(A, W)) — (1 - Y)log(1 - Q*“(4, W),
which is the negative log likelihood loss when Y is binary, and a linear working model
Q"(A, W) = Q(A, W) + O(A, b(W)) (2)
with loss function

L'(@)(0) = (Y - Q""(A, W))’,

the squared error loss. In both working models, we leave the function 8 unspecified. We can view a working
model used for the updating step in the TMLE procedure as a special case of the working model here by
restricting 6 to have the form

A

04, b(W)) =<

where ¢ is real, using notation b(W) in place of g(1| W) as used in Section 3.
Define

0o = argmin EoL’ (Ob’a> (0).
0O

Given Q, the limit of some estimate for Qy, one can think of 6, a function of A and b(W), as the residual

bias between Eo(Q(A, W) | A, b(W)) and Eo(Y | A, b(W)) on either the logistic or linear scale. When the initial

estimator Q, is consistent, so Q = Qo, 0o(A, b(W)) will be 0, because Q will already be fully adjusting for A

and b(W).

Suppose for now that we have an estimate of #, which we call 8,. We return to the problem of
estimating 6, later in this section. Calculate the update of Q, as Q%"ﬂ" and using this updated regression, a
final estimate of v, is calculated as ‘P((}ﬁ”'ﬂ", Qwn), which we call a doubly robust balancing score adjusted
(DR-BSA) plug-in estimator. In Theorem 1 in Appendix A.2, we show that the DR-BSA estimator doubly robust
in the sense that it is consistent when either Q = Q, or 6, consistently estimates 8, and b is a balancing score.

When initial estimator Q, does not consistently estimate Qy, consistency of the DR-BSA estimate
requires that b is a balancing score and 6, is consistently estimated. To weaken this requirement, we
now construct a TMLE with the balancing score property by using Q° = Q%% as the initial estimate in the
TMLE procedure in Section 3 and updating it to Q. The TMLE of ¥(P,) is calculated as ¥(Q};, Qw»). We call
this a balancing score adjusted TMLE (BSA-TMLE). In Theorem 2 in Appendix A.2, we show that the BSA-
TMLE is consistent if any of the three conditions hold: (1) Q = Qo, (2) b = g, or (3) b is a balancing score
and 6, consistently estimates 6y. The BSA-TMLE is therefore doubly robust in the usual sense and also has
the balancing score property. The BSA-TMLE is a TMLE as described in Section 3 where in addition to
attempting to adjust for W, the initial estimator Q0 is making an extra attempt to adjust for a balancing
score. If §y is consistently estimated, then like the standard TMLE, when both the initial estimates of Q, and
8o are consistent, the influence curve of the BSA-TMLE is the efficient influence curve. Therefore, under
regularity conditions, the BSA-TMLE is locally efficient and keeps all of the attractive properties of TMLE
while also having the balancing score property.

We now return to the problem of estimating 0,. The working model in the definition of , depends is
QY which depends on limits Q and b. To estimate 6,, we use Q5 as the working model. If gn(W) is
discrete and 6, is estimated in a saturated parametric model, ‘P(Qg;,"’e", Qwn) is exactly a TMLE as proved in
Lemma 2 in Appendix A.2. When g,(W) is not discrete, it can be discretized into k categories based on
quantiles. The parameter §, can be estimated with a saturated parametric model with standard logistic
regression software with dummy variables for each stratum and treatment combination, and logitQ,(A, W)
as an offset. When Q,(A4, W) is unadjusted for W, for example Q, is estimated in a GLM with only an
intercept and treatment as a main term, this reduces to usual propensity score stratification. In general,
when the number of categories k is fixed and does not grow with sample size, stratification is not
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consistent, though one hopes that the residual bias is small [2]. If k is too large, there is a possibility of all
observations in a particular stratum having the same value for 4, in which case 6, (A, W) is not well defined.
In many applications, the number of strata is often set based on the rule of thumb k = 5 recommended by
Rosenbaum and Rubin [3]. Though the stratification estimator of v, is not root-n consistent when k is fixed,
the BSA-TMLE removes this remaining bias if g, consistently estimates the true propensity score while
preserving the balancing score property. In practice, the number of strata k can be chosen based on cross-
validation in such a way that it can grow with sample size.

Alternatively, when g,(W) is not discrete or has many levels, 6, can be estimated in an generalized
additive model [21] with Q, as an offset. We can parameterize this model as

@' (A, W) = logit™ [logit(Qu(A, W) + A6 (8,(W)) + (1 — A)0s(8,(W))] 3)

with 6 = (61, 6,) where 6; and 0, are unspecified. Other parametric or nonparametric methods can be used
and cross-validation based SuperLearning can be used to select the best weighted combination of estima-
tors for 0y [9, 17]. When the linear model (2) is used, 0o(4, W) = Eo(Y — Q(A, W) | A, gn(1| W)). In this case,
a nearest neighbor or kernel regression can be used where residuals from the initial estimate,
Ri = Y; — Qu(4;, W;), are treated as an outcome. This is similar to the bias corrected matching estimator
presented by Abadie and Imbens [22].

5 Simulations

We demonstrate properties of the proposed BSA-TMLE in various scenarios, and compare it to other
estimators. The estimators compared in simulations include a plug-in estimator based on just the initial
estimator of Qo without balancing score adjustment, DR-BSA plug-in estimators without a TMLE update,
non-doubly robust BSA plug-in estimators, an inverse probability of treatment weighted estimator, and a
TMLE using an initial estimator for Q, not directly adjusted for a balancing score.

The plug-in estimator not adjusted for a balancing score is calculated as ¥(Q,, Qw,) with Q, as defined
in Section 4. We call this the simple plug-in estimator. The DR-BSA plug-in estimator uses the balancing
score adjusted Q° as in Section 4 and is calculated as ¥(Q2, Qwy). The non-doubly robust BSA plug-in
estimator adjusts for the balancing score, but uses as initial Q, an unadjusted estimate that is not a function
of W. The non-DR-BSA plug-in estimator can be thought of as only adjusting for g,(1| W) and not the whole
covariate vector W. The IPTW estimator is calculated as

o AY

= gn(1| W)

The estimators we compare are summarized in Table 1.

Table1 Summary of properties of compared estimators

Estimator Plug-in Consistent if Efficient if
On_’QO gn_’go gn_’BS Q,,—>Qo&§,,—>§0

Simple plug-in V4 Vv

BSA v Vv Vv

DR-BSA v J J J S

IPTW v

TMLE Vv v Vv Vv

BSA-TMLE v v Vv v v

fWe do now show formally that the DR-BSA estimator is asymptotically linear.
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In the simulation studies, we use two methods for adjusting the initial estimator with the propensity
score. All simulations were conducted in R [13]. The initial estimator Q, was adjusted with either a
generalized additive model (GAM) in eq. (3), or a nearest neighbor approach analogous to propensity
score matching. The non-DR-BSA plug-in estimator based on nearest neighbors reduces exactly to a
propensity score matching estimator. The GAM was fitted with the mgcv package [21] and the nearest
neighbor/propensity score matching type estimator was implement with the Matching package [23].

The initial estimates for Q, and g, are estimated using generalized linear models. Specifically, g is
estimated using logistic regression, and Qo is estimated with least squares when Y is continuous, and
logistic regression when Y is binary. To investigate robustness to various kinds of model misspecification,
models are either correctly specified, or some relevant covariates are excluded.

The data generating distribution in the simulations was as follows. Baseline covariates W, W, and W3
have independent uniform distributions on [0, 1]. Treatment A is Bernoulli with mean

logit™( By + Sy W1 + B, W, + B3 W5 + B, W1 W5).
Outcome Y is either Bernoulli or normal with variance 1 and mean
m(ao + o1 Wi + oo Wa + as W5 + a44),

where m is logit™! if Y is Bernoulli, or the identity if Y is normal. All estimators were evaluated on 1,000
datasets of size n = 100 and n = 1,000. Bias, variance, and mean squared error (MSE) are calculated for
each estimator.

In the first scenario, which we call distribution one, a = (ag,01,02,0a3,04) = (—3,2,2,0.5) and
B = (PBo,b1:BasB3.84) = (—3,1,1,0,5) so W; and W, are confounders, and the propensity score depends
on the product W;Ws. The true parameter y, ~ 0.0985 and the variance bound is approximately 1.5691/n.
The variance bound of a parameter in a semiparametric model is the minimum asymptotic variance that a
regular estimator can achieve, and depends on the parameter mapping ¥ and the true distribution P, [15].
This is analogous with the Cramér-Rao bound in a parametric model. An estimator that asymptotically
achieves the variance bound is called efficient.

The first set of results in Table 2 demonstrate the balancing score property. The initial estimate Q, is
unadjusted. A correct logistic regression model is specified for go, but predictions are transformed by the
Beta cumulative distribution function with both shape parameters equal to 2. Although artificial, this means
that g, converges to a monotone transformation of gy, which is a balancing score, but does not converge to
the true go. We can see that the TMLE not adjusted for the propensity score and the IPTW estimators are not
consistent as the bias is not decrease substantially when sample size increase. Conversely, methods where
the initially estimate Q, is adjusted with the propensity score, are consistent, as bias is decreasing quickly
with sample size.

Table 2 Simulation results for distribution one with Q, unadjusted and g, correctly specified but transformed
with Beta CDF

Estimator n = 100 n = 1,000

Bias Variance MSE Bias Variance MSE
BSA, NN 0.0276 0.0180 0.0188 0.0026 0.0018 0.0018
BSA, GAM 0.0075 0.0163 0.0163 0.0041 0.0015 0.0015
IPTW -0.0249 0.0087 0.0093 -0.0246 0.0010 0.0016
TMLE 0.1063 0.0111 0.0224 0.1082 0.0010 0.0127
BSA-TMLE, NN 0.0276 0.0180 0.0188 0.0026 0.0018 0.0018
BSA-TMLE, GAM 0.0070 0.0164 0.0165 0.0037 0.0015 0.0015

Table 3 shows similar performance in a more realistic scenario. In this setting, the initial estimator for Q, is
unadjusted, but the logistic regression model for the propensity score is misspecified by excluding the
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Table 3 Simulation results for distribution one with Q, unadjusted, and g, misspecified but close to a
balancing score

Estimator n = 100 n = 1,000

Bias Variance MSE Bias Variance MSE
BSA, NN 0.0311 0.0166 0.0176 0.0027 0.0016 0.0016
BSA, GAM 0.0147 0.0159 0.0161 0.0033 0.0014 0.0014
IPTW 0.0390 0.0410 0.0425 0.0357 0.0025 0.0037
TMLE 0.0096 0.0172 0.0173 0.0098 0.0016 0.0017
BSA-TMLE, NN 0.0311 0.0166 0.0176 0.0027 0.0016 0.0016
BSA-TMLE, GAM 0.0101 0.0189 0.0190 -0.0042 0.0015 0.0016

interaction term W;W,. Here predictions are not transformed. Here g, is close to but not exactly a balancing
score, but it is close enough that the bias in estimators that nonparametrically adjust for g, is small. The
IPTW estimator, however, is still biased at large n because g, is not converging to go. In this case TMLE
performs well even with an unadjusted initial estimator but this is not guaranteed when g, is misspecified.

Table 4 examines the performance of estimators when the model for g, is misspecified (only including
W; in the logistic regression model,) but the initial estimate Q, is a correctly specified model. Here we see
that estimates that rely only on estimated propensity score (the non-doubly robust BSA estimators and
IPTW,) fail to be consistent, but estimates that use the correctly specified initial estimate of Qo, are
consistent. Importantly, even when the initial estimate is adjusted with the completely misspecified g,
final estimates are still consistent when the initial Q, is correctly specified.

Table 4 Simulation results for distribution one with Q, correctly specified and g, misspecified

Estimator n = 100 n = 1,000

Bias Variance MSE Bias Variance MSE
Simple plug-in 0.0071 0.0120 0.0120 0.0011 0.0013 0.0013
BSA, NN 0.1190 0.0126 0.0268 0.1064 0.0014 0.0128
DR-BSA, NN 0.0064 0.0139 0.0140 0.0003 0.0015 0.0015
BSA, GAM 0.1139 0.0116 0.0246 0.1096 0.0012 0.0133
DR-BSA, GAM 0.0152 0.0129 0.0132 0.0015 0.0013 0.0013
IPTW 0.1061 0.0115 0.0228 0.1035 0.0012 0.0119
TMLE 0.0076 0.0129 0.0130 0.0009 0.0013 0.0013
BSA-TMLE, NN 0.0064 0.0139 0.0140 0.0003 0.0015 0.0015
BSA-TMLE, GAM 0.0154 0.0133 0.0136 0.0014 0.0013 0.0013

In a second scenario, called distribution two, Y is conditionally normal with « = (0,10,8,0,2) and
p=(-1,0,0,3,0). Here Y depends on W; and W, but A does not, so they are not confounders.
Additionally, A depends on W3, but Y does not, so W5 is an instrumental variable. In this setting, because
none of the baseline covariates are confounders, an unadjusted estimator of y, will be consistent but not
efficient, because it will fail to take into account the relationship with the non-confounding baseline
covariates W; and W5. Here, the true y is 2 and the variance bound is approximately 5.1979/n.

Table 5 shows results from distribution two where the initial estimate for Q, is the least squares
estimate from a linear regression model with A, W;, W,, and W5 are main terms, and the initial estimate
for the propensity score is the MLE from a logistic regression model with main terms W;, W5, and W3. Here
we see that, although all estimators have low bias, those that only adjust for g,, (the non-doubly robust BSA
estimators and IPTW,) have much higher variance than those with a correctly specified initial estimate. This
demonstrates the importance in terms of efficiency of attempting to estimate Q, well with the initial
estimate even when confounding is not a concern.
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Table 5 Simulation results from distribution two with Q, correctly specified and g, correctly specified and
includes an instrumental variable

Estimator n = 100 n = 1,000

Bias Variance MSE Bias Variance MSE
Simple plug-in -0.0112 0.0505 0.0506 0.0007 0.0048 0.0048
BSA, NN 0.0080 0.1815 0.1815 0.0020 0.0185 0.0185
DR-BSA, NN -0.0108 0.0578 0.0579 0.0024 0.0059 0.0060
BSA, GAM -0.0061 0.3207 0.3208 -0.0008 0.0097 0.0097
DR-BSA, GAM -0.0112 0.0565 0.0566 0.0010 0.0051 0.0051
IPTW -0.0072 0.7559 0.7560 -0.0021 0.0231 0.0231
TMLE -0.0182 0.0575 0.0578 0.0009 0.0052 0.0052
BSA-TMLE, NN -0.0108 0.0578 0.0579 0.0024 0.0059 0.0060
BSA-TMLE, GAM -0.0181 0.0587 0.0590 0.0009 0.0053 0.0053

6 Discussion

In this paper, we discuss the balancing score property of estimators that nonparametrically adjust for the
propensity score. We see in simulations that, even when the propensity score estimator is not consistent,
Y(Py) can be estimated with low bias if the estimate of the propensity score approximates a balancing score
well enough. Additionally, we introduce a balancing score adjusted TMLE which has the balancing score
property and is also doubly robust and locally efficient, and provide regularity conditions for asymptotic
linearity in Appendix A.2.

In order for an estimator to have the balancing score property, we need to estimate some balancing
score. We acknowledge that in practice, one does not expect an estimate of the propensity score to converge
exactly to a balancing score that is not g, in general. However, because the propensity score is a single
element of the large class of balancing scores, the condition that an estimated propensity score g,
converges to some balancing score is strictly weaker than requiring g, to converge to go. When g, fails to
converge to go, we may still have a chance at approximating a balancing score, and the proposed BSA-
TMLE can still reduce bias relative to an estimator that requires that g, converges to g, without sacrificing
double robustness or efficiency.

We now discuss some possible generalizations to the work in this paper and areas for further research.
The estimators present in this paper are for the statistical parameter Ey[Eo(Y |A =1, W)], which, under
assumptions, can be interpreted as the population mean of a variable Y when Y is subject to missingness
[24]. The results and similar estimators are immediately applicable to other interesting statistical parameters
such as

EO[EO(Y|A =1, W) 7E0(Y‘A =0, W)]
and
EolEo(Y|A = 1,W) — Eo(Y| A = 0,W) A = 1

which, under non-testable causal assumptions, can be interpreted as causal parameters called the ATE or
ATT, respectively [9, 14]. Additionally, the results are immediately generalizable to the estimation of
parameters in marginal structural models [25, 26].

Propensity score-based methods are most often applied in settings where the treatment variable is
binary. In settings where the treatment variable is not binary, Imai and Van Dyk [27] generalize the notion
of the propensity score to the propensity function, the conditional probability of observed treatment given
covariates. Imai and Van Dyk [27] show that the propensity function is a balancing score. When the
propensity function can be characterized by a finite dimensional parameter, one can estimate parameters
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of the distribution of counterfactuals by adjusting for the dimensional characterization of the propensity
function in place of all covariates. Using the approach of Imai and Van Dyk [27], the methods in this paper
may be extended to develop estimators that are doubly robust and efficient with the balancing score
property for more general situations where treatment is categorical or potentially even continuous.

Traditionally, propensity score-based estimators estimate the propensity score based on how well g,
approximates the true g. Collaborative targeted minimum loss-based estimation (CTMLE) is a method that
chooses an estimator for the propensity score based on how well it helps reduce bias in the estimation of
W¥(Py) in collaboration with an initial estimate of Qo using cross-validation [9, 28]. In doing so, CTMLE
attempts to adjust the propensity score for the most important confounders first and avoid adjustment for
instrumental variables. This can lead to improvements in efficiency and robustness to violations of the
assumption Po(A = a| W)>0. Applying an analogous techniques of estimator selection for balancing score
adjusted estimators is an area of further research.
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Appendix

A.1 Notation

- 0= (W,A,Y): observed data structure

- W: vector of covariates

— A: treatment indicator, O or 1

Y: univariate outcome

: a distribution of O
— . statistical model, set of possible probability distributions P
—  Ep(-): expectation under distribution P
- Q=1(0,Qw)
Q(a,w) =Ep(Y|A=a, W =w)
- Qww)=P(W=w)
glalw)=PA=a|lW=w)
- g(w)=g(1| W), also called the propensity score when.

Y. statistical parameter mapping from .# to R.

— In particular, ¥(P) = Ep[Ep(Y |A =1, W)]

- Also written as ¥(Q)
- w=Y(P)
- Subscript 0: indicates the truth, e.g. y, = W(Po) is the true parameter value
—  Subscript n: indicates an estimate based on n observations, e.g. Q, is an estimate of Q
- @0 an initial estimate of Qo
—  L: loss function
—  Ly: loss function for Q
—  Ly: loss function for Qy
- Q(e) a working submodel through Q
— IC: an influence curve
—  D*: the efficient influence curve

|
U
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- Q; a TMLE updated estimate of some initial Q2

- b(w): some function of w that is a potential balancing score
- 0: some function of a and b(w)

- Q"Y: a working submodel through Q for a particular b and
- L’aloss function for Q%¢, used in Section 4

A.2 Some results and proofs

Proof of Lemma~1. In this proof, E means expectation with respect to P. First note that
E(Y|A=1,W,b(W)) =E(Y|A=1,W) because b is a function of only W. Next,

E[E(Y|A=1,W)|A=1b(W)] =E[EY|A=1W)|bW)

because the inner conditional expectation is a function of only W and W_LA |b(W) when b is a balancing
score. Thus,

E[E(Y|A=1,b(W))| = E{E[E(Y |A =1,W,b(W))|A = 1,b(W)]}
= E{E[E(Y|A=1,W)|A=1,bW)]}
= E{E[E(Y|A =1, W)|b(W)]}
— E[E(Y|A=1,W)]
= ¥(P).

Theorem 1 Assume

W((Q5, Qun)) — Y((Q*%, Qwo)) — 0, asn — oo.

In addition, assume that either g is a balancing score or Q = Qo. Then W((Q%"”", Qun)) is consistent for .

Proof. By definition of 9y, we have
Eol[h(A,b(W))(Y — Q"% (4, W))] = 0

for all functions h of A and b(W). Theorem 2 Rosenbaum and Rubin [8] show that b is a balancing score if
and only if there exists a function f so that go(w) = f(b(w)) a.e., so we can select the function

A A
MAPWD) = o)~ gow)

In addition, we also have that E,Q>% (1, W) — ¥((Q>”, Qo)) = 0. This proves that
POD*(QbﬂOa QW,O7g0) = Oa

where D* is the efficient influence curve of ¥ at P, and notation

Py~ [ 4(0)aP(o)
for some function ¢ of O and distribution P. Since PoD*(Q, Qw,80) = wo — Y(Q), this shows

¥((Q"%, Qo)) = ¥((Qo, Qwo))

This proves that under the stated consistency condition, we indeed have that ‘I’((Oﬁ"’(’", Qwn)) is consistent
for y,. This proves the consistency under the condition that b is a balancing score.

Consider now the case that Q = Qo. Then 6, = 0 and thus Q% = Q. Thus, the limit ¥((Q>%, Quo)) =
W¥((Qo, Qwo)), which proves the second claim of the theorem. O
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Theorem 2 Assume
P((Q5 " (en), Qwn)) — ¥((Q"™(20), Qwo)) — 0, asn — oo,

where o = argmin.PoL(Q>% (¢)). 7
In addition, assume that b is a balancing score, or Q = Qo. Then £, = 0 and W((Q5"™ (cn), Qun)) is
consistent for y,.

Proof. Firstly, assume b is a balancing score so by Theorem 2 Rosenbaum and Rubin [8] there exists a
mapping f so that go(w) = f(b(w)) a.e.. In the proof of the previous theorem we showed that

A A
b(W) o(W)

The left-hand side equals %POL(Ob’H"(s)) | .—o and this score equation in ¢ is solved by ¢o. This proves
that £o = 0 under the assumption that this score equation PoL(Q""(¢)) = 0 has a unique solution. The
latter follows from the fact that the submodel with single parameter ¢ has an expected loss that is
strictly convex.

This now proves that the limit W((Q*% (£o), Qwo)) = ¥((Q"%, Qw,)) so that we can apply the previous
theorem which shows that the latter limit equals . This proves the consistency of the TMLE when b is a
balancing score.

Consider now the case that Q = Qo. Then #, = 0 and thus Q?% = Q. Thus, the limit ¥((Q>%, Quo)) =
‘I’((QO, Qwo)), which proves the consistency under the condition that Q = Qo. In the latter case, it also
follows that £g = 0. O

Eo 7 (Y — Q®% (A, W)) = Eo (Y - Q"% (A,W)) =

Lemma 2 If g, takes only discrete values with support G, then ‘I’((Qg“ " Qwn)) is a TMLE if 6, is estimated as
6, using MLE in a saturated parametric model

logitQs"’(a, w) = logit(Qn(4, W)) + Z Oucl(A=a,g,(W) =c) (4)
ac{0,1}
ceG

where Q, is some initial estimator for Qo and I is the indicator function.

Proof of Lemma~2. The MLE 6, (or empirical risk minimizer for the negative quasi-binomial log likelihood, if
Y is not binary), solves the score equations for each parameter 0, .:

0= Zf i = a,8n(Wi) = ¢)(Y — Q5™ (Ai, W)

Additionally, any function h of A and g,(W) is in the linear span of basis functions I(A = a,8,(W) = c) for
all a € {0,1}, c € G, so

0= Zh i» 8n(W)) (Y O (Ai, WY)).

In particular, the above equation is solved when h(a,w) = ( , which is the score from the parametric

submodel in eq. (4). Thus if the TMLE update is applied to the initial estimate Q0 = Q3 On en =0, and
Q: = Q° so ¥((Q&", Qun)) is a TMLE. O

Theorem 3 Define @;(Q) = POQg 20 gnd ,(g) = Po(Q — Q) 2 g . Assume D*(Q}, gn) falls in a Py-Donsker class
with probability tending to 1; Po{D*(Qf,,gn) D*(Q,g)}* — 0 in probability as n — oc;

Po(Qo — Q;)(80 *gn)% = op(1//n);

n
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Po(Q, — Q)(8x —8)/8 = op(1/Vn);

Po(Q—Qo)(8 — 80)/8 =0;

®@,(Q;) and @,(g,) are asymptotically linear estimators of @;(Q) and ®,(g) with influence curves IC; and
IC,, respectively.
Then ¥(Q;,) is asymptotically linear with influence curve D*(Q, g) + IC, + IC,.

Proof. Since PoD*(Q, g) = wo — ¥(Q) + Po(Qo — Q)(80 — 8)/8 (e.g., Zheng and Laan [29]); Zheng and van der
Laan [30]), where we use the notation Q(W) = Q(1, W), this results in the identity:

¥(Qy) — wo = (Pn — Po)D*(Q;,8n) + Po(Qo — @;)(80 — 8n)/8n.
The first term equals (P, — Py)D*(Q,g) + 0p(1//n) if D*(Q;,, g») falls in a Po-Donsker class with probability
tending to 1, and Po{D*(Q},gx) — D*(Q,8)}* — 0 in probability as n — oo [31, 32]. We write

Po(Qo — 03)(0 — &n)/8n = Po(Qo — Q2)(& — &)/ + Po(Qo — Q7)o — &) & ggg") |

Assume that the last term is op(1/y/n). We now write
Po(Qo —~ 0;)(80 ~ 81)/8 = Po(Q, —Q+ @~ Qo) (8, ~ & +& ~ %) /8
0(Q; —Q)(8, — 8)/8 +Po(Q;, —Q)(g - 80)/8

Po(Q — Qo)(8, — 8)/8 +Po(Q - Qo)(g 50)/8
—Po(Q Q)( )/g+<D1(Q*) (Q)
+®,(8,) — ()+Po(Q Qo)(g —80)/8.

where @;(Q) = Poég%g'o and @,(g) = Po(Q — Qo) gg;O. We assume that the first term is op(1//n), the last term
equals zero (i.e., either g = g5 or Q = Qo), and @;(Q;;) and ®,(g,) are asymptotically linear estimators with
influence curves IC; and IC,, respectively. This proves W(Q}) is asymptotically linear with influence curve
D*(Q,g) + IC; + 1C,. O

A.3 TMLE when Y is not bounded by 0 and 1

If Y is not bounded by 0 and 1, but we can assume Y is bounded by [ and u with —co<I<u< oo, Y can be
transformed to YT = Z—:l’ Similarly Q° can be transformed to Q) = %. The procedure described in Section 3
can be applied to the data structure (W, A, Y) using Q7' as initial estimator, and the final estimate can be
transformed back to the original scale as ¥((Q;, Qwn)) * (u — ) + . When [ and u are not known, they can

be set to the minimum and maximum of the observed Y as described in [20].
For completeness we can define an alternative TMLE using a linear working model where

NO _ NO c
QA W) = QA W) + =

with loss function

Ly(Q)(0) = (Y — Q(4,W))*

the squared error loss. Here, ¢o = argmin.EoLy(Q)(0) can be estimated by standard least squares regres-
sion software, with Q%(A, W) as an offset.

Asymptotically, a TMLE using a linear working model (or linear fluctuation) is the equivalent to a TMLE
with a logistic working model, but in practice can perform poorly. This is because if g,(1| W;) is very small
for some observations, which is more likely in small samples, 2 can be large in absolute value, having a
large effect on O; with a linear fluctuation, which is unbounded. Because of this, if it is reasonable to
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bound Y by some [ and u, it the logistic working model is recommended because Q;, always respects these
bounds, even if 52 is large.

A.4 Example implementation of a BSA-TMLE estimator in R

bsatmle <- function (QnAl, QnAO, gnl, A, Y, family = “binomial”) {
# computes estimates of E(E(Y|A=1, W)) (called eyl in the
# output), E(E(Y|A=0, W)) (called ey0), and
#E(E(Y|A=1, W)) - E(E(Y|A=1, W)) (called ate)

#

# Inputs:

# OnAl, QnA0: vectors, initial estimates of \bar{Q} n(1, W)
# and \bar{Q} n(0o, W)

# gnl: vector, estimates of g n(1|W)

# A: vector, indicator of treatment

# Y: vector, outcome

# family: “binomial” for logistic fluctuation, “gaussian”

# for linear fluctuation.
# if “binomial”, Y should be binary or bounded
# by 0 and 1

if (!require (mgcv)) stop (“mgcv package is required”)
if (family=="‘binomial”) {
#fluse quasibinomial to suppress error messages about
#non-integer Y
family <- “quasibinomial”
link <- glogis
} else {
link <- identity
}

QOnAA <- ifelse (A==1, QnAl, OnA0)

# Use a generalized additive model to estimate theta 0

# using the initial estimate of \bar{Q}

gamfit <- gam(Y factor (A) + s (gnl, by=factor (A)) + offset (off),
family, data=data.frame (A=A, gnl=gnl, off=1ink (Qnaa)))

#Get predictions from gam fit

QnAl.gam <- predict (gamfit, type=“response”,
newdata=data.frame (A=1, gnl=gnl, off=1ink (QnAl)))

QnAQ.gam <- predict (gamfit, type=“response”,
newdata=data.frame (A=0, gnl=gnl, off=1ink (QnA0)))

QnAA.gam <- ifelse (A==1, QnAl.gam, QnA0O.gam)

# compute a/g n(1|W)

hAl <- 1/gnl

hAOQ <- -1/ (1 - gnl)

hAA <- ifelse (A==1, hAl, hAO)

#using glm, fluctuate the gam-updated initial fit of \bar{Q}
glmfit <- glm(Y -1+h + offset(off), family,
data=data. frame (h=hAA, off=1ink (QnAA.gam)))
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QnAl.star <- predict(glmfit, type=“response”,
newdata=data.frame (h=hAl, off=1ink (QnAl.gam)))

QnAO.star <- predict(glmfit, type=“response”,
newdata=data.frame (h=hA0, off=1ink (QnAO.gam)))

#compute the final estimates
eyl <- mean (QnAl.star)
ey0 <- mean (QnA0.star)

ate <- eyl-ey0

list (eyl=eyl, ey0=ey0, ate=ate)
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