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Abstract: Adjusting for a balancing score is sufficient for bias reduction when estimating causal effects
including the average treatment effect and effect among the treated. Estimators that adjust for the
propensity score in a nonparametric way, such as matching on an estimate of the propensity score, can
be consistent when the estimated propensity score is not consistent for the true propensity score but
converges to some other balancing score. We call this property the balancing score property, and discuss
a class of estimators that have this property. We introduce a targeted minimum loss-based estimator (TMLE)
for a treatment-specific mean with the balancing score property that is additionally locally efficient and
doubly robust. We investigate the new estimator’s performance relative to other estimators, including
another TMLE, a propensity score matching estimator, an inverse probability of treatment weighted
estimator, and a regression-based estimator in simulation studies.
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1 Introduction

Estimators based on the propensity score (PS), the probability of receiving a treatment given baseline
covariates, are popular for estimation of causal effects such as the average treatment effect (ATE), average
treatment effect among the treated (ATT), or the average outcome under treatment. Such methods can be
thought of as adjusting for the propensity score in place of baseline covariates, and generally require
consistent estimation of the propensity score if it is not known. Common propensity score methods include
stratification or subclassification [1–3], inverse probability of treatment weighting (IPTW) [4, 5], and
propensity score matching [6–8].

A “balancing score” as defined by Rosenbaum and Rubin [8] is a function of baseline covariates such
that treatment and baseline covariates are independent conditional on that function. The propensity score
is perhaps the most well-known example of a balancing score, but balancing scores are more general.
Typically, propensity score-based methods are said to be consistent when the true propensity score is
consistently estimated. Methods that adjust for the propensity score nonparametrically, such as matching or
stratification by the propensity score, actually only need that the estimated propensity score converge to
some balancing score in order for the parameter of interest to be estimated consistently. However, we are
not aware of specific claims in the literature that particular propensity score-based methods are consistent
under this weaker condition. We say that an estimator using the propensity score or other balancing score
has the balancing score property if it is consistent when the estimated propensity score converges to a
balancing score.

Though not guaranteed in general, it is possible for an estimated propensity score based on a
misspecified model to converge to a balancing score that is not equal to the true propensity score.
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Propensity score-based estimators that have the balancing score property are robust to this sort of estimator
misspecification of the PS, while other propensity score-based estimators are not. The balancing score
property is desirable because, even though most such estimators were initially developed based on the PS
specifically, they inherit this robustness for free. Estimators with the balancing score property are in general
not efficient.

An efficient estimator is one that achieves the minimum asymptotic variance of all regular estimators.
In many cases, for example when estimating the ATE, ATT, and average outcome under treatment, doubly
robust estimators can be constructed. A doubly robust estimator is one that relies on an estimate of both the
propensity score and of the outcome regression, the conditional mean of the outcome given baseline
covariates and treatment. Doubly robust estimators are consistent if either the estimated propensity
score or outcome regression is consistent. Examples include targeted minimum loss-based estimation
(TMLE) [9, 10] and augmented inverse probability of treatment weighted estimation (A-IPTW) [11, 12]. In
addition to being doubly robust, both TMLE and A-IPTW are efficient when both the propensity score and
outcome regression are consistently estimated.

In this article, we discuss a general class of estimators that have the balancing score property. We also
construct a TMLE [9, 10] with the balancing score property. This new TMLE not only has the benefit of the
robustness provided by the balancing score property, it also is a locally efficient, doubly robust plug-in
estimator. This means that our new estimator retains all of the attractive properties of a traditional TMLE
while gaining robustness that other estimators with the balancing score property enjoy when the propensity
score only converges to a balancing score.

In Section 2, we introduce notation and define the statistical parameter we wish to estimate. In Section 3
we describe a TMLE for the statistical parameter. In Section 4 we discuss the balancing score property and
describe the proposed new TMLE. In Section 5 we compare the performance of the new estimator to a
traditional TMLE as well as other common estimator and conclude with a discussion in Section 6. A list of
notation used throughout the article is provided in Appendix A. Some results and proofs not included in the
main text are in Appendix A.2 and two modifications to the TMLE algorithm are presented in Appendix A.3.
An example implementation of the proposed new TMLE in R [13] is provided in Appendix A.4.

2 Preliminaries

Consider the random variable O ¼ ðW;A;YÞ where W is a real-valued vector, A is binary with values in
f0; 1g and Y is univariate real number. Call the probability distribution of O P0 2 m where m is the
statistical model. Assume P0ðA ¼ 1 jWÞ>0 for almost every W. This is sometimes called a positivity
assumption. Define the parameter mapping Ψ from m to R that maps P to EPðEPðY jA ¼ 1;WÞÞ where EP

denotes expected value under probability distribution P 2 m.
Suppose A ¼ 1 indicates some treatment of interest and A ¼ 0 represents some control or reference

treatment, W represents a vector of baseline covariates measured before treatment, and Y represents some
outcome measured after treatment. Then under additional causal assumptions, ΨðP0Þ can be interpreted as
a causal quantity. In particular, we may assume that observed treatment A is independent of the counter-
factual outcome had each observation received treatment 1 given covariates W. This is known as the
randomization assumption or the “no unmeasured confounders” assumption, and the validity depends
on the particular application. Under the randomization positivity assumptions, ΨðP0Þ can be interpreted as
the average outcome had everyone in the population received treatment 1. In this paper we focus on
estimation of the statistical parameter ΨðP0Þ, but other similar statistical parameters can, under assump-
tions, be interpreted as causal parameters such as the ATE or the ATT [14].

For a probability distribution P 2 m, �Qða;wÞ ¼ EPðY jA ¼ a;W ¼ wÞ is the regression of the outcome
on covariates and treatment. Let QWðwÞ ¼ PðW ¼ wÞ be the distribution of baseline covariates. The condi-
tional distribution of treatment on baseline covariates is called gða jwÞ ¼ PðA ¼ a jW ¼ wÞ, and define the
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propensity score as �gðwÞ ¼ gð1 jwÞ, the probability of treatment given covariates w. The parameter mapping
Ψ depends on P only through Q ¼ ð�Q;QWÞ, so recognizing the abuse of notation, we sometimes write
ΨðPÞ ¼ ΨðQÞ ¼ Ψð�Q;QWÞ.

For a distribution P 2 m, we make no assumptions on the outcome regression �Q or on the distribution
QW of W. We may put some restriction on possible functions g, for example we may know that PðA jWÞ
depends only on a subset of W. The model m is therefore nonparametric or semiparametric.

Let O1; . . . ;On be a data set of n independent and identically distributed random variables drawn from
P0 where Oi ¼ ðWi;Ai;YiÞ. We use the subscript 0 to denote the true probability distribution, and n to denote
an estimate based on a dataset of size n, so, for example, E0 denotes expectation with respect to P0,
�Q0ða;wÞ ¼ E0ðY jA ¼ a;W ¼ wÞ, and �Qn is an estimate of �Q0. Let ψ0 ¼ ΨðP0Þ.

3 Targeted minimum loss-based estimation

A plug-in estimator takes an estimate of the distribution P0, or relevant parts of P0, and plugs it into the
parameter mapping Ψ. In this case, Ψ depends on P through �Q and QW . Using an estimate �Qn of �Q0, and
letting QWn be the empirical distribution of W, we can calculate the plug-in estimate as

ΨðQnÞ ¼
Z
w

�Qnð1;WÞdQWnðwÞ

¼ 1
n

Xn
i¼1

�Qnð1;WiÞ:

That is, we take the mean of �Qnð1;WÞ with respect to the empirical distribution of W. Plug-in estimators
are desirable because they fully utilize known global constraints of Q0 (by using an estimate Qn that
satisfies these constraints) and guarantee that estimates are in the parameter space, even in small
samples. Non-plug-in estimators such as IPTW can produce estimates outside of the parameter space.
For instance if our estimand is a probability, a method like IPTW could yield an estimate outside of ½0; 1�
when the sample size is small.

TMLE is a general framework for constructing a plug-in estimator for ψ0 with additional properties such
as efficiency. TMLE takes an initial estimate of the outcome regression �Q0, say �Q0

n, and, using an estimate
�gnðWÞ of the propensity score, updates it to �Q�

n. Using the empirical distribution of W along with the
updated �Q�

n, the final estimate is calculated as Ψð�Q�
n;QWnÞ. The updated �Q�

n is constructed in such a way that
the final estimate is efficient or attains other properties. We now review some background and a specific
implementation of the TMLE procedure for ΨðP0Þ.

An estimator that is asymptotically linear can be written as

ffiffiffi
n

p ðψn � ψ0Þ ¼
1ffiffiffi
n

p
Xn
i¼1

ICðP0ÞðOiÞ þ oPð1Þ

for some mean zero function ICðP0Þ where oPð1Þ is a term that converges in probability to 0. The function
ICðP0Þ is called the influence curve of the estimator at P0. For an estimator to be efficient, that is, to have
the minimum asymptotic variance among all regular estimators, it must be asymptotically linear with
influence curve equal to the so called efficient influence curve [9, 15]. The efficient influence curve for a
particular parameter mapping Ψ depends on the model. For our model, regardless of the model for g0, the
efficient influence curve at a P 2 m written in terms of Q and g is

D�ð�Q;QW ; gÞðOÞ ¼ A
gð1 jWÞ ðY � �QðA;WÞÞ þ �Qð1;WÞ �Ψð�Q;QWÞ:

A derivation of the efficient influence curve is presented in Chapter 4 van der Laan and Rose [9].
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Suppose for now Y is binary or bounded by 0 and 1. A modification to the algorithm and a different
TMLE are described in Appendix A.3 if this is not the case. The initial estimate �Q0

n can be obtained via a
parametric model for E0ðY jA;WÞ, such as a generalized linear model [16], or with a data adaptive machine
learning algorithm such as the SuperLearner algorithm [9, 17], which combines parametric and data
adaptive estimators using cross-validation.

The updating step is defined by a choice of loss function L for Q such that E0LðQÞðOÞ is minimized at
Q0, and a working parametric submodel with finite dimensional real-valued parameter ", fQð"Þ : "g such
that Qð0Þ ¼ Q. The submodel is typically chosen so that the efficient influence curve is in the linear span of

the components of the “score”
d
d"

LðQð"ÞðOÞÞ at " ¼ 0. When L is the negative log likelihood,
d
d"

LðQð"ÞðOÞÞ
is the score in the usual sense. Starting with k ¼ 0, the empirical risk minimizer "kn ¼ argmin"Pn

i¼1 LðQk
nð"ÞÞðOiÞ is calculated and Qk

n is updated to Qkþ1
n ¼ Qk

nð"knÞ. The process is iterated until "k � 0,
sometimes converging in one step. Details can be found in Refs [9, 10, 18, 19].

Define the loss function LðQÞðOÞ ¼ LYð�QÞðOÞ þ LWðQWÞðOÞ where
LYð�QÞðOÞ ¼ �Y logð�QðA;WÞÞ � ð1� YÞlogð1� �QðA;WÞÞ:

and LWðQWÞðOÞ ¼ �logðQWðWÞÞ. When Y is binary, LYð�QÞðOÞ is the negative conditional log likelihood of
the Bernoulli distribution. Because Y is at least bounded by 0 and 1 if not binary, LYð�QÞðOÞ is a valid loss
function for the conditional mean. That is, �Q0 ¼ argmin�QE0LYð�QÞðOÞ [20]. The function LWðQWÞðOÞ is the
negative log likelihood of the distribution of W, and its true mean is minimized by QW0. Thus, the sum loss
function is a valid loss function for Q0 ¼ ð�Q0;QW0Þ.

For a working submodel for �Q, we use

�Qð"ÞðA;WÞ ¼ logit�1 logitð�QðA;WÞÞ þ "
A

gð1 jWÞ
� �

indexed by ". We call this a logistic working model because it is a logistic regression model with offset
logit�QðA;WÞ and single covariate A=gð1 jWÞ. The score of this model at " ¼ 0 is

A
gð1 jWÞ ðY � �QðA;WÞÞ:

For QW , we can use as working submodel

QWð"0ÞðWÞ ¼ f1þ "0½�Qð1;WÞ �ΨðQÞ�gQWðWÞ
which has score �Qð1;WÞ �Ψð�Q;QWÞ at "0 ¼ 0. We can see that the efficient influence curve D�ðP0Þ can be
written as a linear combination of the scores of these submodels when Q ¼ Q0 and g ¼ g0.

The estimate "0n can be calculated using standard logistic regression software with logitð�Q0
nðA;WÞÞ as a

fixed offset term, and A=gnð1 jWÞ as a covariate. By using the empirical distribution of W as an initial

estimate for Q0
Wn, and negative log likelihood loss function for LW , the empirical risk is already minimized at

Q0
Wn, so "

00
n ¼ 0 and no update is needed. In this case, the algorithm converges in one step, because A

gnð1 jWÞ is

not updated between iterations, so an additional update to �Q1
n will yield "1n ¼ 0. The estimate �Q�

n ¼ �Q0
nð"0nÞ

and the TMLE estimate of ΨðP0Þ is calculated as

Ψð�Q�
n;QWnÞ ¼ 1

n

Xn
i¼1

�Q�
nð1;WiÞ:

Under regularity conditions, the TMLE is asymptotically linear and doubly robust, meaning that if the initial
estimate �Q0

n is consistent for �Q0, or �gn is consistent for �g0, then Ψð�Q�
n;QWnÞ is consistent for ΨðP0Þ.

Additionally, when both �Q0
n and gn are consistent, the influence curve of the TMLE is equal to the efficient

influence curve, so the estimator achieves the semiparametric efficiency bound. Precise regularity condi-
tions for asymptotic linearity and efficiency are presented in Appendix A.2 in Theorem 3.
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4 Balancing score property and proposed estimator

A function b of W is called a balancing score if A?W j bðWÞ [8]. Trivially, bðWÞ ¼ W is a balancing score,
and by definition of the propensity score, �g0ðWÞ, is a balancing score. In general, any function bðWÞ is a
balancing score if and only if there exists some function f such that �g0ðWÞ ¼ f ðbðWÞÞ (Theorem 2 [8]). For
example, any monotone transformation of the propensity is a balancing score. Such a function is called a
“balancing score” because, conditional on bðWÞ, the distribution of W between the treated and untreated
observations is equal or balanced. That is, P0ðW jA ¼ 1; bðWÞÞ ¼ P0ðW jA ¼ 0; bðWÞÞ. Rosenbaum and
Rubin [8] show that adjusting for a balancing score yields the same estimand as adjusting for the full set
of covariates W which we state in Lemma 1 and offer a different proof in Appendix A.2.

Lemma 1 If bðWÞ is a balancing score under distribution P, then EPðEPðY jA ¼ 1; bðWÞÞÞ ¼ ΨðPÞ.

This result gives rise to methods for estimating ΨðP0Þ based on a balancing score and not on an estimate
of �Q0. The propensity score is the balancing score most commonly used for estimating ΨðP0Þ, and
frequently used estimators include propensity score matching, stratification, and IPTW. When the
propensity score is not known, these estimators rely on an estimated propensity score �gn, and, under
regularity conditions, are consistent when �gn is consistent for �g0. The IPTW estimator, in particular,
requires that �gn converges to �g0 for consistency. However, many of these methods, such as propensity
score matching and stratification by the propensity score, can be seen as nonparametrically adjusting for
the propensity score and only rely on the propensity score being a balancing score. For these estimators,
it is sufficient for �gn to converge to some balancing score under P0. We call this property the balancing
score property.

In practice, an estimator �gn can approximate a balancing score well but not converge to the true
propensity score. A parametric logistic regression estimator will estimate some function of the covariates
that is a projection of �g0 onto the model determined by the parametrization of the estimator. If the
parametric estimator is correctly specified, this projection will be �g0. Depending on the true �g0 and
distribution of covariates, it is possible for this projection to be a balancing score or at least approximate
some balancing score when the estimator is not correctly specified. For example, suppose the true �g0
depends on higher order interactions of covariates. Though not the case in general, in some settings a main
terms logistic regression may approximate a balancing score well. We explore such a setting via simulation
in Section 5. In another example, suppose �g0 depends on covariates in an additive on the logit scale but not
necessarily linear or even smooth way. A logistic regression estimator with linear or possibly higher order
polynomial main terms may again approximate some balancing score.

Estimators based only on the propensity score are not doubly robust. We now construct a locally
efficient doubly robust estimator with the balancing score property. We start with initial estimators �Qn for
�Q0 and �gn for �g0. We then update �Qn by nonparametrically regressing Y on A and �gnðWÞ using �QnðA;WÞ as
an offset. Similarly to the TMLE procedure in Section 3, we use this updated estimate of �Q0 to estimate ψ0 by
plugging it in to the parameter mapping Ψ along with the empirical distribution of W.

To update �Qn by further adjusting for A and �gn, we specify a working model and loss function pair. The
working model and loss function pair is somewhat analogous to that in the updating step in the TMLE
procedure described in Section 3. The loss function can be the same as that in the TMLE procedure’s
updating step, but it need not be. Define �Q and b to be the limits of �Qn and �gn, respectively, as n ! 1. Let Θ
be the class of all functions of A and bðWÞ, and let θ be some function in that class. Here �Q is not
necessarily �Q0 and b is not necessarily �g0 or even a balancing score. For concreteness, consider two working
model and loss function pairs: a logistic working model

�Qb;θðA;WÞ ¼ logit�1½logitð�QðA;WÞÞ þ θðA; bðWÞÞ� ð1Þ
with loss function
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L0ð�Qb;θÞðOÞ ¼ �Y logð�Qb;θðA;WÞÞ � ð1� YÞlogð1� �Qb;θðA;WÞÞ;
which is the negative log likelihood loss when Y is binary, and a linear working model

�Qb;θðA;WÞ ¼ �QðA;WÞ þ θðA; bðWÞÞ ð2Þ
with loss function

L0ð�Qb;θÞðOÞ ¼ ðY � �Qb;θðA;WÞÞ2;
the squared error loss. In both working models, we leave the function θ unspecified. We can view a working
model used for the updating step in the TMLE procedure as a special case of the working model here by
restricting θ to have the form

θðA; bðWÞÞ ¼ "
A

bðWÞ
where " is real, using notation bðWÞ in place of gð1 jWÞ as used in Section 3.

Define

θ0 ¼ argmin
θ2Θ

E0L0 �Q
b;θ

� �
Oð Þ:

Given �Q, the limit of some estimate for �Q0, one can think of θ0, a function of A and bðWÞ, as the residual
bias between E0ð�QðA;WÞ jA; bðWÞÞ and E0ðY jA; bðWÞÞ on either the logistic or linear scale. When the initial
estimator �Qn is consistent, so �Q ¼ �Q0, θ0ðA; bðWÞÞ will be 0, because �Q will already be fully adjusting for A
and bðWÞ.

Suppose for now that we have an estimate of θ0 which we call θn. We return to the problem of
estimating θ0 later in this section. Calculate the update of �Qn as �Q�gn;θn

n and using this updated regression, a
final estimate of ψ0 is calculated as Ψð�Q�gn;θn

n ;QWnÞ, which we call a doubly robust balancing score adjusted
(DR-BSA) plug-in estimator. In Theorem 1 in Appendix A.2, we show that the DR-BSA estimator doubly robust
in the sense that it is consistent when either �Q ¼ �Q0 or θn consistently estimates θ0 and b is a balancing score.

When initial estimator �Qn does not consistently estimate �Q0, consistency of the DR-BSA estimate
requires that b is a balancing score and θ0 is consistently estimated. To weaken this requirement, we
now construct a TMLE with the balancing score property by using �Q0

n ¼ �Qgn;θn
n as the initial estimate in the

TMLE procedure in Section 3 and updating it to �Q�
n. The TMLE of ΨðP0Þ is calculated as Ψð�Q�

n;QWnÞ. We call
this a balancing score adjusted TMLE (BSA-TMLE). In Theorem 2 in Appendix A.2, we show that the BSA-
TMLE is consistent if any of the three conditions hold: (1) �Q ¼ �Q0, (2) b ¼ �g0, or (3) b is a balancing score
and θn consistently estimates θ0. The BSA-TMLE is therefore doubly robust in the usual sense and also has
the balancing score property. The BSA-TMLE is a TMLE as described in Section 3 where in addition to
attempting to adjust for W, the initial estimator �Q0

n is making an extra attempt to adjust for a balancing
score. If θ0 is consistently estimated, then like the standard TMLE, when both the initial estimates of �Q0 and
g0 are consistent, the influence curve of the BSA-TMLE is the efficient influence curve. Therefore, under
regularity conditions, the BSA-TMLE is locally efficient and keeps all of the attractive properties of TMLE
while also having the balancing score property.

We now return to the problem of estimating θ0. The working model in the definition of θ0 depends is
�Qb;θ which depends on limits �Q and b. To estimate θn, we use �Q�gn;θ

n as the working model. If �gnðWÞ is
discrete and θ0 is estimated in a saturated parametric model, Ψð�Q�gn;θn

n ;QWnÞ is exactly a TMLE as proved in
Lemma 2 in Appendix A.2. When �gnðWÞ is not discrete, it can be discretized into k categories based on
quantiles. The parameter θ0 can be estimated with a saturated parametric model with standard logistic
regression software with dummy variables for each stratum and treatment combination, and logit�QnðA;WÞ
as an offset. When �QnðA;WÞ is unadjusted for W, for example �Qn is estimated in a GLM with only an
intercept and treatment as a main term, this reduces to usual propensity score stratification. In general,
when the number of categories k is fixed and does not grow with sample size, stratification is not
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consistent, though one hopes that the residual bias is small [2]. If k is too large, there is a possibility of all
observations in a particular stratum having the same value for A, in which case θnðA;WÞ is not well defined.
In many applications, the number of strata is often set based on the rule of thumb k ¼ 5 recommended by
Rosenbaum and Rubin [3]. Though the stratification estimator of ψ0 is not root-n consistent when k is fixed,
the BSA-TMLE removes this remaining bias if gn consistently estimates the true propensity score while
preserving the balancing score property. In practice, the number of strata k can be chosen based on cross-
validation in such a way that it can grow with sample size.

Alternatively, when �gnðWÞ is not discrete or has many levels, θ0 can be estimated in an generalized
additive model [21] with �Qn as an offset. We can parameterize this model as

Q
gn;θ
n A;Wð Þ ¼ log it�1 log it Qn A;Wð Þ� �þ Aθ1 gn Wð Þð Þ þ 1� Að Þθ2 gn Wð Þð Þ	 
 ð3Þ

with θ ¼ ðθ1; θ2Þ where θ1 and θ2 are unspecified. Other parametric or nonparametric methods can be used
and cross-validation based SuperLearning can be used to select the best weighted combination of estima-
tors for θ0 [9, 17]. When the linear model (2) is used, θ0ðA;WÞ ¼ E0ðY � �QðA;WÞ jA; gnð1 jWÞÞ. In this case,
a nearest neighbor or kernel regression can be used where residuals from the initial estimate,
Ri ¼ Yi � �QnðAi;WiÞ, are treated as an outcome. This is similar to the bias corrected matching estimator
presented by Abadie and Imbens [22].

5 Simulations

We demonstrate properties of the proposed BSA-TMLE in various scenarios, and compare it to other
estimators. The estimators compared in simulations include a plug-in estimator based on just the initial
estimator of �Q0 without balancing score adjustment, DR-BSA plug-in estimators without a TMLE update,
non-doubly robust BSA plug-in estimators, an inverse probability of treatment weighted estimator, and a
TMLE using an initial estimator for �Q0 not directly adjusted for a balancing score.

The plug-in estimator not adjusted for a balancing score is calculated as Ψð�Qn;QWnÞ with �Qn as defined
in Section 4. We call this the simple plug-in estimator. The DR-BSA plug-in estimator uses the balancing
score adjusted �Q0

n as in Section 4 and is calculated as Ψð�Q0
n;QWnÞ. The non-doubly robust BSA plug-in

estimator adjusts for the balancing score, but uses as initial �Qn an unadjusted estimate that is not a function
of W. The non-DR-BSA plug-in estimator can be thought of as only adjusting for gnð1 jWÞ and not the whole
covariate vector W. The IPTW estimator is calculated as

n�1
Xn
i¼1

AiYi

gnð1 jWiÞ :

The estimators we compare are summarized in Table 1.

Table 1 Summary of properties of compared estimators

Estimator Plug-in Consistent if Efficient if

�Qn ! �Q0 �gn ! �g0 �gn ! BS �Qn ! �Q0 & �gn ! �g0

Simple plug-in
p p

BSA
p p p

DR-BSA
p p p p py

IPTW
p

TMLE
p p p p

BSA-TMLE
p p p p p

yWe do now show formally that the DR-BSA estimator is asymptotically linear.
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In the simulation studies, we use two methods for adjusting the initial estimator with the propensity
score. All simulations were conducted in R [13]. The initial estimator �Qn was adjusted with either a
generalized additive model (GAM) in eq. (3), or a nearest neighbor approach analogous to propensity
score matching. The non-DR-BSA plug-in estimator based on nearest neighbors reduces exactly to a
propensity score matching estimator. The GAM was fitted with the mgcv package [21] and the nearest
neighbor/propensity score matching type estimator was implement with the Matching package [23].

The initial estimates for �Q0 and �g0 are estimated using generalized linear models. Specifically, �g0 is
estimated using logistic regression, and �Q0 is estimated with least squares when Y is continuous, and
logistic regression when Y is binary. To investigate robustness to various kinds of model misspecification,
models are either correctly specified, or some relevant covariates are excluded.

The data generating distribution in the simulations was as follows. Baseline covariates W1, W2 and W3

have independent uniform distributions on ½0; 1�. Treatment A is Bernoulli with mean

logit�1ð β0 þ β1W1 þ β2W2 þ β3W3 þ β4W1W2Þ:
Outcome Y is either Bernoulli or normal with variance 1 and mean

mðα0 þ α1W1 þ α2W2 þ α3W3 þ α4AÞ;
where m is logit�1 if Y is Bernoulli, or the identity if Y is normal. All estimators were evaluated on 1,000
datasets of size n ¼ 100 and n ¼ 1;000. Bias, variance, and mean squared error (MSE) are calculated for
each estimator.

In the first scenario, which we call distribution one, α ¼ ðα0; α1; α2; α3; α4Þ ¼ ð�3; 2; 2;0:5Þ and
β ¼ ð β0; β1; β2; β3; β4Þ ¼ ð�3; 1; 1;0; 5Þ so W1 and W2 are confounders, and the propensity score depends
on the product W1W2. The true parameter ψ0 � 0:0985 and the variance bound is approximately 1:5691=n.
The variance bound of a parameter in a semiparametric model is the minimum asymptotic variance that a
regular estimator can achieve, and depends on the parameter mapping Ψ and the true distribution P0 [15].
This is analogous with the Cramér-Rao bound in a parametric model. An estimator that asymptotically
achieves the variance bound is called efficient.

The first set of results in Table 2 demonstrate the balancing score property. The initial estimate �Qn is
unadjusted. A correct logistic regression model is specified for �g0, but predictions are transformed by the
Beta cumulative distribution function with both shape parameters equal to 2. Although artificial, this means
that �gn converges to a monotone transformation of �g0, which is a balancing score, but does not converge to
the true �g0. We can see that the TMLE not adjusted for the propensity score and the IPTW estimators are not
consistent as the bias is not decrease substantially when sample size increase. Conversely, methods where
the initially estimate �Qn is adjusted with the propensity score, are consistent, as bias is decreasing quickly
with sample size.

Table 3 shows similar performance in a more realistic scenario. In this setting, the initial estimator for �Qn is
unadjusted, but the logistic regression model for the propensity score is misspecified by excluding the

Table 2 Simulation results for distribution one with �Qn unadjusted and �gn correctly specified but transformed
with Beta CDF

Estimator n ¼ 100 n ¼ 1,000

Bias Variance MSE Bias Variance MSE

BSA, NN 0.0276 0.0180 0.0188 0.0026 0.0018 0.0018
BSA, GAM 0.0075 0.0163 0.0163 0.0041 0.0015 0.0015
IPTW –0.0249 0.0087 0.0093 –0.0246 0.0010 0.0016
TMLE 0.1063 0.0111 0.0224 0.1082 0.0010 0.0127
BSA-TMLE, NN 0.0276 0.0180 0.0188 0.0026 0.0018 0.0018
BSA-TMLE, GAM 0.0070 0.0164 0.0165 0.0037 0.0015 0.0015
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interaction term W1W2. Here predictions are not transformed. Here �gn is close to but not exactly a balancing
score, but it is close enough that the bias in estimators that nonparametrically adjust for �gn is small. The
IPTW estimator, however, is still biased at large n because �gn is not converging to �g0. In this case TMLE
performs well even with an unadjusted initial estimator but this is not guaranteed when �gn is misspecified.

Table 4 examines the performance of estimators when the model for �g0 is misspecified (only including
W1 in the logistic regression model,) but the initial estimate �Qn is a correctly specified model. Here we see
that estimates that rely only on estimated propensity score (the non-doubly robust BSA estimators and
IPTW,) fail to be consistent, but estimates that use the correctly specified initial estimate of �Q0, are
consistent. Importantly, even when the initial estimate is adjusted with the completely misspecified �gn,
final estimates are still consistent when the initial �Qn is correctly specified.

In a second scenario, called distribution two, Y is conditionally normal with α ¼ ð0; 10; 8;0; 2Þ and
β ¼ ð�1;0;0; 3;0Þ. Here Y depends on W1 and W2 but A does not, so they are not confounders.
Additionally, A depends on W3, but Y does not, so W3 is an instrumental variable. In this setting, because
none of the baseline covariates are confounders, an unadjusted estimator of ψ0 will be consistent but not
efficient, because it will fail to take into account the relationship with the non-confounding baseline
covariates W1 and W2. Here, the true ψ0 is 2 and the variance bound is approximately 5:1979=n.

Table 5 shows results from distribution two where the initial estimate for �Q0 is the least squares
estimate from a linear regression model with A, W1, W2, and W3 are main terms, and the initial estimate
for the propensity score is the MLE from a logistic regression model with main terms W1, W2, and W3. Here
we see that, although all estimators have low bias, those that only adjust for �gn, (the non-doubly robust BSA
estimators and IPTW,) have much higher variance than those with a correctly specified initial estimate. This
demonstrates the importance in terms of efficiency of attempting to estimate �Q0 well with the initial
estimate even when confounding is not a concern.

Table 3 Simulation results for distribution one with �Qn unadjusted, and �gn misspecified but close to a
balancing score

Estimator n ¼ 100 n ¼ 1,000

Bias Variance MSE Bias Variance MSE

BSA, NN 0.0311 0.0166 0.0176 0.0027 0.0016 0.0016
BSA, GAM 0.0147 0.0159 0.0161 0.0033 0.0014 0.0014
IPTW 0.0390 0.0410 0.0425 0.0357 0.0025 0.0037
TMLE 0.0096 0.0172 0.0173 0.0098 0.0016 0.0017
BSA-TMLE, NN 0.0311 0.0166 0.0176 0.0027 0.0016 0.0016
BSA-TMLE, GAM 0.0101 0.0189 0.0190 –0.0042 0.0015 0.0016

Table 4 Simulation results for distribution one with �Qn correctly specified and �gn misspecified

Estimator n ¼ 100 n ¼ 1,000

Bias Variance MSE Bias Variance MSE

Simple plug-in 0.0071 0.0120 0.0120 0.0011 0.0013 0.0013
BSA, NN 0.1190 0.0126 0.0268 0.1064 0.0014 0.0128
DR-BSA, NN 0.0064 0.0139 0.0140 0.0003 0.0015 0.0015
BSA, GAM 0.1139 0.0116 0.0246 0.1096 0.0012 0.0133
DR-BSA, GAM 0.0152 0.0129 0.0132 0.0015 0.0013 0.0013
IPTW 0.1061 0.0115 0.0228 0.1035 0.0012 0.0119
TMLE 0.0076 0.0129 0.0130 0.0009 0.0013 0.0013
BSA-TMLE, NN 0.0064 0.0139 0.0140 0.0003 0.0015 0.0015
BSA-TMLE, GAM 0.0154 0.0133 0.0136 0.0014 0.0013 0.0013
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6 Discussion

In this paper, we discuss the balancing score property of estimators that nonparametrically adjust for the
propensity score. We see in simulations that, even when the propensity score estimator is not consistent,
ΨðP0Þ can be estimated with low bias if the estimate of the propensity score approximates a balancing score
well enough. Additionally, we introduce a balancing score adjusted TMLE which has the balancing score
property and is also doubly robust and locally efficient, and provide regularity conditions for asymptotic
linearity in Appendix A.2.

In order for an estimator to have the balancing score property, we need to estimate some balancing
score. We acknowledge that in practice, one does not expect an estimate of the propensity score to converge
exactly to a balancing score that is not g0 in general. However, because the propensity score is a single
element of the large class of balancing scores, the condition that an estimated propensity score gn
converges to some balancing score is strictly weaker than requiring gn to converge to g0. When gn fails to
converge to g0, we may still have a chance at approximating a balancing score, and the proposed BSA-
TMLE can still reduce bias relative to an estimator that requires that gn converges to g0 without sacrificing
double robustness or efficiency.

We now discuss some possible generalizations to the work in this paper and areas for further research.
The estimators present in this paper are for the statistical parameter E0½E0ðY jA ¼ 1;WÞ�, which, under
assumptions, can be interpreted as the population mean of a variable Y when Y is subject to missingness
[24]. The results and similar estimators are immediately applicable to other interesting statistical parameters
such as

E0½E0ðY jA ¼ 1;WÞ � E0ðY jA ¼ 0;WÞ�
and

E0½E0ðY jA ¼ 1;WÞ � E0ðY jA ¼ 0;WÞ jA ¼ 1�
which, under non-testable causal assumptions, can be interpreted as causal parameters called the ATE or
ATT, respectively [9, 14]. Additionally, the results are immediately generalizable to the estimation of
parameters in marginal structural models [25, 26].

Propensity score-based methods are most often applied in settings where the treatment variable is
binary. In settings where the treatment variable is not binary, Imai and Van Dyk [27] generalize the notion
of the propensity score to the propensity function, the conditional probability of observed treatment given
covariates. Imai and Van Dyk [27] show that the propensity function is a balancing score. When the
propensity function can be characterized by a finite dimensional parameter, one can estimate parameters

Table 5 Simulation results from distribution two with �Qn correctly specified and �gn correctly specified and
includes an instrumental variable

Estimator n ¼ 100 n ¼ 1,000

Bias Variance MSE Bias Variance MSE

Simple plug-in –0.0112 0.0505 0.0506 0.0007 0.0048 0.0048
BSA, NN 0.0080 0.1815 0.1815 0.0020 0.0185 0.0185
DR-BSA, NN –0.0108 0.0578 0.0579 0.0024 0.0059 0.0060
BSA, GAM –0.0061 0.3207 0.3208 –0.0008 0.0097 0.0097
DR-BSA, GAM –0.0112 0.0565 0.0566 0.0010 0.0051 0.0051
IPTW –0.0072 0.7559 0.7560 –0.0021 0.0231 0.0231
TMLE –0.0182 0.0575 0.0578 0.0009 0.0052 0.0052
BSA-TMLE, NN –0.0108 0.0578 0.0579 0.0024 0.0059 0.0060
BSA-TMLE, GAM –0.0181 0.0587 0.0590 0.0009 0.0053 0.0053
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of the distribution of counterfactuals by adjusting for the dimensional characterization of the propensity
function in place of all covariates. Using the approach of Imai and Van Dyk [27], the methods in this paper
may be extended to develop estimators that are doubly robust and efficient with the balancing score
property for more general situations where treatment is categorical or potentially even continuous.

Traditionally, propensity score-based estimators estimate the propensity score based on how well �gn
approximates the true �g0. Collaborative targeted minimum loss-based estimation (CTMLE) is a method that
chooses an estimator for the propensity score based on how well it helps reduce bias in the estimation of
ΨðP0Þ in collaboration with an initial estimate of �Q0 using cross-validation [9, 28]. In doing so, CTMLE
attempts to adjust the propensity score for the most important confounders first and avoid adjustment for
instrumental variables. This can lead to improvements in efficiency and robustness to violations of the
assumption P0ðA ¼ a jWÞ>0. Applying an analogous techniques of estimator selection for balancing score
adjusted estimators is an area of further research.
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improve the quality of the paper.
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Appendix

A.1 Notation

– O ¼ ðW;A;YÞ: observed data structure
– W: vector of covariates
– A: treatment indicator, 0 or 1
– Y: univariate outcome

– P: a distribution of O
– m: statistical model, set of possible probability distributions P
– Epð�Þ: expectation under distribution P
– Q ¼ ð�Q;QWÞ

– �Qða;wÞ ¼ EPðY jA ¼ a;W ¼ wÞ
– QWðwÞ ¼ PðW ¼ wÞ

– gða jwÞ ¼ PðA ¼ a jW ¼ wÞ
– �gðwÞ ¼ gð1 jWÞ, also called the propensity score when.
– Ψ: statistical parameter mapping from m to R .

– In particular, ΨðPÞ ¼ EP½EPðY jA ¼ 1;WÞ�
– Also written as ΨðQÞ

– ψ ¼ ΨðPÞ
– Subscript 0: indicates the truth, e.g. ψ0 ¼ ΨðP0Þ is the true parameter value
– Subscript n: indicates an estimate based on n observations, e.g. �Qn is an estimate of �Q0

– �Q0
n an initial estimate of �Q0

– L: loss function
– LY : loss function for �Q
– LW : loss function for QW

– Qð"Þ a working submodel through Q
– IC: an influence curve
– D�: the efficient influence curve
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– �Q�
n a TMLE updated estimate of some initial �Q0

n

– bðwÞ: some function of w that is a potential balancing score
– θ: some function of a and bðwÞ
– �Qb;θ: a working submodel through �Q for a particular b and θ
– L0a loss function for �Qb;θ, used in Section 4

A.2 Some results and proofs

Proof of Lemma~1. In this proof, E means expectation with respect to P. First note that
EðY jA ¼ 1;W ; bðWÞÞ ¼ EðY jA ¼ 1;WÞ because b is a function of only W. Next,

E½EðY jA ¼ 1;WÞ jA ¼ 1; bðWÞ� ¼ E½EðY jA ¼ 1;WÞ j bðWÞ�
because the inner conditional expectation is a function of only W and W?A j bðWÞ when b is a balancing
score. Thus,

E½EðY jA ¼ 1; bðWÞÞ� ¼ EfE½EðY jA ¼ 1;W ; bðWÞÞ jA ¼ 1; bðWÞ�g
¼ EfE½EðY jA ¼ 1;WÞ jA ¼ 1; bðWÞ�g
¼ EfE½EðY jA ¼ 1;WÞ j bðWÞ�g
¼ E½EðY jA ¼ 1;WÞ�
¼ ΨðPÞ:

□

Theorem 1 Assume

Ψðð�Qgn;θn
n ;QWnÞÞ �Ψðð�Qb;θ0 ;QW0ÞÞ ! 0; as n ! 1:

In addition, assume that either �g is a balancing score or �Q ¼ �Q0. Then Ψðð�Qgn;θn
n ;QWnÞÞ is consistent for ψ0.

Proof. By definition of θ0, we have

E0½hðA; bðWÞÞðY � �Qb;θ0ðA;WÞÞ� ¼ 0

for all functions h of A and bðWÞ. Theorem 2 Rosenbaum and Rubin [8] show that b is a balancing score if
and only if there exists a function f so that �g0ðwÞ ¼ f ðbðwÞÞ a.e., so we can select the function

hðA; bðWÞÞ ¼ A
f ðbðWÞÞ ¼

A
�g0ðWÞ :

In addition, we also have that E0
�Qb;θ0ð1;WÞ �Ψðð�Qb;θ0 ;QW ;0ÞÞ ¼ 0. This proves that

P0D�ð�Qb;θ0 ;QW ;0; g0Þ ¼ 0;

where D� is the efficient influence curve of Ψ at P, and notation

Pf ¼
Z

fðoÞdPðoÞ

for some function f of O and distribution P. Since P0D�ð�Q;QW ; g0Þ ¼ ψ0 �ΨðQÞ, this shows

Ψðð�Qb;θ0 ;QW0ÞÞ ¼ Ψðð�Q0;QW0ÞÞ
This proves that under the stated consistency condition, we indeed have that Ψðð�Qgn;θn

n ;QWnÞÞ is consistent
for ψ0. This proves the consistency under the condition that b is a balancing score.

Consider now the case that �Q ¼ �Q0. Then θ0 ¼ 0 and thus �Qb;θ0 ¼ �Q0. Thus, the limit Ψðð�Qb;θ0 ;QW0ÞÞ ¼
Ψðð�Q0;QW0ÞÞ, which proves the second claim of the theorem. □
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Theorem 2 Assume

Ψðð�Qgn;θn
n ð"nÞ;QWnÞÞ �Ψðð�Qb;θ0ð"0Þ;QW0ÞÞ ! 0; as n ! 1;

where "0 ¼ argmin"P0Lð�Qb;θ0ð"ÞÞ.
In addition, assume that b is a balancing score, or �Q ¼ �Q0. Then "0 ¼ 0 and Ψðð�Q�gn;θn

n ð"nÞ;QWnÞÞ is
consistent for ψ0.

Proof. Firstly, assume b is a balancing score so by Theorem 2 Rosenbaum and Rubin [8] there exists a
mapping f so that g0ðwÞ ¼ f ðbðwÞÞ a.e.. In the proof of the previous theorem we showed that

E0
A

bðWÞ ðY � �Qb;θ0ðA;WÞÞ ¼ E0
A

g0ðWÞ ðY � �Qb;θ0ðA;WÞÞ ¼ 0:

The left-hand side equals d
d" P0Lð�Q

b;θ0ð"ÞÞ j "¼0 and this score equation in " is solved by "0. This proves
that "0 ¼ 0 under the assumption that this score equation P0Lð�Qb;θ0ð"ÞÞ ¼ 0 has a unique solution. The
latter follows from the fact that the submodel with single parameter " has an expected loss that is
strictly convex.

This now proves that the limit Ψðð�Qb;θ0ð"0Þ;QW0ÞÞ ¼ Ψðð�Qb;θ0 ;QW ;0ÞÞ so that we can apply the previous
theorem which shows that the latter limit equals ψ0. This proves the consistency of the TMLE when b is a
balancing score.

Consider now the case that �Q ¼ �Q0. Then θ0 ¼ 0 and thus �Qb;θ0 ¼ �Q0. Thus, the limit Ψðð�Qb;θ0 ;QW0ÞÞ ¼
Ψðð�Q0;QW0ÞÞ, which proves the consistency under the condition that �Q ¼ �Q0. In the latter case, it also
follows that "0 ¼ 0. □

Lemma 2 If �gn takes only discrete values with support G, then Ψðð�Q�gn;θn
n ;QWnÞÞ is a TMLE if θ0 is estimated as

θn using MLE in a saturated parametric model

logit�Qgn;θ
n ða;wÞ ¼ logitð�QnðA;WÞÞ þ

X
a2f0;1g
c2G

θa;cIðA ¼ a; �gnðWÞ ¼ cÞ ð4Þ

where �Qn is some initial estimator for �Q0 and I is the indicator function.

Proof of Lemma~2. The MLE θn (or empirical risk minimizer for the negative quasi-binomial log likelihood, if
Y is not binary), solves the score equations for each parameter θa;c:

0 ¼
Xn
i¼1

IðAi ¼ a; �gnðWiÞ ¼ cÞðY � �Qgn;θn
n ðAi;WiÞÞ:

Additionally, any function h of A and �gnðWÞ is in the linear span of basis functions IðA ¼ a; �gnðWÞ ¼ cÞ for
all a 2 f0; 1g, c 2 G, so

0 ¼
Xn
i¼1

hðAi; �gnðWiÞÞðY � �Qgn;θn
n ðAi;WiÞÞ:

In particular, the above equation is solved when hða;wÞ ¼ a
�gnðwÞ, which is the score from the parametric

submodel in eq. (4). Thus if the TMLE update is applied to the initial estimate �Q0
n ¼ �Q�gn;θn

n , "n ¼ 0, and
�Q�
n ¼ �Q0

n so Ψðð�Q�gn;θn
n ;QWnÞÞ is a TMLE. □

Theorem 3 Define Φ1ðQÞ ¼ P0
�Q �g��g0

�g and Φ2ðgÞ ¼ P0ð�Q� �Q0Þ �g
�g0
. Assume D�ðQ�

n; gnÞ falls in a P0-Donsker class
with probability tending to 1; P0fD�ðQ�

n; gnÞ � D�ðQ; gÞg2 ! 0 in probability as n ! 1;

P0ð�Q0 � �Q�
nÞð�g0 � �gnÞ ð

�g � �gnÞ
�g�gn

¼ oPð1=
ffiffiffi
n

p Þ;
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P0ð�Q�
n � �QÞð�gn � �gÞ=�g ¼ oPð1=

ffiffiffi
n

p Þ;

P0ð�Q� �Q0Þð�g � �g0Þ=�g ¼ 0;

Φ1ð�Q�
nÞ and Φ2ð�gnÞ are asymptotically linear estimators of Φ1ð�QÞ and Φ2ð�gÞ with influence curves IC1 and

IC2, respectively.
Then ΨðQ�

nÞ is asymptotically linear with influence curve D�ðQ; gÞ þ IC1 þ IC2.

Proof. Since P0D�ðQ; gÞ ¼ ψ0 �ΨðQÞ þ P0ð�Q0 � �QÞð�g0 � �gÞ=�g (e.g., Zheng and Laan [29]); Zheng and van der
Laan [30]), where we use the notation �QðWÞ ¼ �Qð1;WÞ, this results in the identity:

ΨðQ�
nÞ � ψ0 ¼ ðPn � P0ÞD�ðQ�

n; gnÞ þ P0ð�Q0 � �Q�
nÞð�g0 � �gnÞ=�gn:

The first term equals ðPn � P0ÞD�ðQ; gÞ þ oPð1=
ffiffiffi
n

p Þ if D�ðQ�
n; gnÞ falls in a P0-Donsker class with probability

tending to 1, and P0fD�ðQ�
n; gnÞ � D�ðQ; gÞg2 ! 0 in probability as n ! 1 [31, 32]. We write

P0ð�Q0 � �Q�
nÞð�g0 � �gnÞ=�gn ¼ P0ð�Q0 � �Q�

nÞð�g0 � �gnÞ=�g þ P0ð�Q0 � �Q�
nÞð�g0 � �gnÞ ð

�g � �gnÞ
�g�gn

:

Assume that the last term is oPð1=
ffiffiffi
n

p Þ. We now write

P0ð�Q0 � �Q�
nÞð�g0 � �gnÞ=�g ¼ P0ð�Q�

n � �Qþ �Q� �Q0Þð�gn � �g þ �g � �g0Þ=�g
¼ P0ð�Q�

n � �QÞð�gn � �gÞ=�g þ P0ð�Q�
n � �QÞð�g � �g0Þ=�g

þP0ð�Q� �Q0Þð�gn � �gÞ=�g þ P0ð�Q� �Q0Þð�g � �g0Þ=�g
;P0ð�Q�

n � �QÞð�gn � �gÞ=�g þΦ1ð�Q�
nÞ �Φ1ð�QÞ

þΦ2ð�gnÞ �Φ2ð�gÞ þ P0ð�Q� �Q0Þð�g � �g0Þ=�g;
where Φ1ðQÞ ¼ P0

�Q �g��g0
�g and Φ2ðgÞ ¼ P0ð�Q� �Q0Þ �g

�g0
. We assume that the first term is oPð1=

ffiffiffi
n

p Þ, the last term
equals zero (i.e., either g ¼ g0 or �Q ¼ �Q0), and Φ1ð�Q�

nÞ and Φ2ð�gnÞ are asymptotically linear estimators with
influence curves IC1 and IC2, respectively. This proves ΨðQ�

nÞ is asymptotically linear with influence curve
D�ðQ; gÞ þ IC1 þ IC2. □

A.3 TMLE when Y is not bounded by 0 and 1

If Y is not bounded by 0 and 1, but we can assume Y is bounded by l and u with �1< l< u<1, Y can be

transformed to Yy ¼ Y�l
u�l. Similarly �Q0

n can be transformed to �Q0y
n ¼ �Q0

n�l
u�l . The procedure described in Section 3

can be applied to the data structure ðW ;A;YyÞ using �Q0y
n as initial estimator, and the final estimate can be

transformed back to the original scale as Ψðð�Q�
n;QWnÞÞ � ðu� lÞ þ l. When l and u are not known, they can

be set to the minimum and maximum of the observed Y as described in [20].
For completeness we can define an alternative TMLE using a linear working model where

�Q0
nð"ÞðA;WÞ ¼ �Q0

nðA;WÞ þ "
A

gnð1 jWÞ
with loss function

LYð�QÞðOÞ ¼ ðY � �QðA;WÞÞ2

the squared error loss. Here, "0 ¼ argmin"E0LYð�QÞðOÞ can be estimated by standard least squares regres-
sion software, with �Q0

nðA;WÞ as an offset.
Asymptotically, a TMLE using a linear working model (or linear fluctuation) is the equivalent to a TMLE

with a logistic working model, but in practice can perform poorly. This is because if gnð1 jWiÞ is very small
for some observations, which is more likely in small samples, "0n can be large in absolute value, having a
large effect on �Q�

n with a linear fluctuation, which is unbounded. Because of this, if it is reasonable to

152 S. D. Lendle et al.: Balancing Score Adjusted TMLE



bound Y by some l and u, it the logistic working model is recommended because �Q�
n always respects these

bounds, even if "0n is large.

A.4 Example implementation of a BSA-TMLE estimator in R

bsatmle <- function(QnA1, QnA0, gn1, A, Y, family ¼ “binomial”) {

# computes estimates of E(E(Y|A¼1, W)) (called ey1 in the

# output), E(E(Y|A¼0, W)) (called ey0), and

# E(E(Y|A¼1, W)) – E(E(Y|A¼1, W)) (called ate)

#

# Inputs:

# QnA1, QnA0: vectors, initial estimates of \bar{Q}_n(1, W)

# and \bar{Q}_n(O, W)

# gn1: vector, estimates of g_n(1|W)

# A: vector, indicator of treatment

# Y: vector, outcome

# family: “binomial” for logistic fluctuation, “gaussian”

# for linear fluctuation.
# if “binomial”, Y should be binary or bounded

# by 0 and 1

if (!require(mgcv)) stop(“mgcv package is required”)

if (family¼¼“binomial”) {

#use quasibinomial to suppress error messages about

#non-integer Y

family <- “quasibinomial”

link <- qlogis

} else {

link <- identity

}

QnAA <- ifelse(A¼¼1, QnA1, QnA0)

# Use a generalized additive model to estimate theta_0

# using the initial estimate of \bar{Q}

gamfit <- gam(Y factor(A)þs(gn1, by¼factor(A))þoffset(off),

family, data¼data.frame(A¼A, gn1¼gn1, off¼link(QnAA)))

#Get predictions from gam fit

QnA1.gam <- predict(gamfit, type¼“response”,

newdata¼data.frame(A¼1, gn1¼gn1, off¼link(QnA1)))

QnA0.gam <- predict(gamfit, type¼“response”,

newdata¼data.frame(A¼0, gn1¼gn1, off¼link(QnA0)))

QnAA.gam <- ifelse(A¼¼1, QnA1.gam, QnA0.gam)

# compute a/g_n(1|W)

hA1 <- 1/gn1

hA0 <- –1/(1 – gn1)

hAA <- ifelse(A¼¼1, hA1, hA0)

#using glm, fluctuate the gam-updated initial fit of \bar{Q}

glmfit <- glm(Y -1þh þ offset(off), family,

data¼data.frame(h¼hAA, off¼link(QnAA.gam)))
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QnA1.star <- predict(glmfit, type¼“response”,

newdata¼data.frame(h¼hA1, off¼link(QnA1.gam)))

QnA0.star <- predict(glmfit, type¼“response”,

newdata¼data.frame(h¼hA0, off¼link(QnA0.gam)))

#compute the final estimates

ey1 <- mean(QnA1.star)

ey0 <- mean(QnA0.star)

ate <- ey1-ey0

list(ey1¼ey1, ey0¼ey0, ate¼ate)

}
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