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Abstract: A new first-order integer-valued autoregressive process (INAR(1)) with
extended Poisson innovations is introduced based on a signed version of the thinning
operator, called relative binomial thinning operator, which can be considered as an
extension of standard binomial thinning operator introduced by Steutel, F.W. and
van Harn, K. (1979. Discrete analogues of self-decomposability and stability. Ann.
Probab. 7: 893–899). It is appropriate for modeling Z-valued time series and either
positive or negative correlations. Some properties of the process are established.
Conditional least squares, Yule–Walker and conditional maximum likelihood
methods are considered for the parameter estimation of the model. Moreover,
simulation experiments are carried out to attest to the performance of the estimation
methods. The applicability of the proposed model is investigated through a practical
data set of the Saudi stock market.

Keywords: time series, signed thinning operator, extended Poisson distribution,
simulation, Pearson residuals

JEL Classification: C13, C15, C22, C53

1 Introduction

Discrete variable time series data are fairly common in practice, which has attracted
the attention of many researchers. The early studies about modeling this type of
data have been conducted by McKenzie (1985) and Al-Osh and Alzaid (1987), who
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suggested the first-order integer-valued autoregressive (INAR(1)) models based
on the binomial thinning operator introduced by Steutel and van Harn (1979). Af-
terward, the researchers have introduced alternative INAR(1) process with different
marginal and innovation distributions based on this operator. Moreover, various
modification of the binomial thinning operator have been proposed for modeling
count time series. A good review on INAR models can be found in Weiß (2008) and
Scotto et al. (2015).

All the above models mainly are applicable to analyze a time series with
non-negative integer-valued, but in practice, one can encounter also integer-valued
time series data that include negative values. For example, in stock market, we
analyze intra-daily stock prices the changes belongs on a discrete valued set, which
can be represented by Z, known also as ticks (the price can go up or down on certain
predefined ranges of value). In image analysis, wemodel the distribution of intensity
differences between two neighborhood pixels. Thus, since intensities are discrete
actually, we have the difference of two discrete variables. In football, the results of a
match can be expressed in Z as the difference in the number of goals, a value often
used in sport betting. In medicine, for some diseases we care about the difference in
some count variables, such as number of pimples, before and after some treatment
is applied. Moreover, in some fields, e.g. meteorology, by sake of simplicity and to
facilitate the reading and interpret, data recorded are rounded, which lead to data
with Z as support. Furthermore, when we analyze a non-stationary integer-valued
time series with non-negative values, we use the differencing operator to achieve
stationary. Therefore, we may obtain a time series on Z.

To the best of our knowledge, limited studies have been conducted on modeling
time series data defined on the setZ, with an autoregressive structure. Kim and Park
(2008) have proposed an integer-valued autoregressive process of order p ≥ 1
with signed binomial thinning operator. Kachour and Yao (2009) have introduced the
first-order rounded integer-valued autoregressive process, based on the rounding
operator. A more general setup has been introduced since then by Kachour (2014).
Recently, Liu et al. (2021) have proposed a semiparametric autoregressivemodelwith
a log-concave innovation, based on the model proposed by Kachour (2014). Zhang
et al. (2010) have presented an integer-valued autoregressive processes of order p ≥ 1
with signed generalized power series thinning operator. Kachour and Truquet (2011)
have proposed an extension of INAR models using a modified version of the
generalized thinning operator, which is different from that has been introduced by
Kim and Park (2008). Zhang et al. (2012) have introduced a random coefficient process
called generalized random coefficient first-order integer-valued autoregressive
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process with signed thinning operator. In literature, there exists a family of models
defined on Z that arise as the difference between two discrete distributions. For
example, Freeland (2010) has defined the true integer-valued autoregressive process
of order one as the difference of two Poisson INAR(1) processes, Barreto-Souza and
Bourguignon (2015) have proposed the skew INAR(1) process, which is defined as the
difference of two INAR(1) process with geometric marginal distribution, Bourgui-
gnon and Vasconcellos (2016) have defined the new skew integer-valued process as
the difference between a Poisson INAR(1) process and a geometric INAR(1) process,
and Taveira da Cunha et al. (2018) have proposed a new integer-valued autore-
gressive process with generalized Poisson difference marginal distributions based
on difference of two quasi-binomial thinning operators. It is also important to
mention the existence of certain studies that deal with the multivariate Z-valued
autoregressive models. For example, Bulla et al. (2011) have introduced the bivariate
autoregressive integer-valued time-series models, based on the signed thinning
operator. More recently, Chen et al. (2023) have proposed a new bivariate Z-valued
autoregressive model, based on the bivariate Skellam distribution.

In this paper we introduce a new integer-valued process, denoted by
EP-RBINAR(1), by considering a parametric assumption on the common distribution
of the counting sequence of the signed integer-valued autoregressive process
proposed by Kachour and Truquet (2011). Thus, the EP-RBINAR(1) can fit integer-
valued times series with possible negative values. Moreover, similar to an AR(1)
process, the autocorrelation function of EP-RBINAR(1) can also have negative values.
Indeed, unlikemodels that arise as the difference between two discrete distributions,
EP-RBINAR(1) process can fit Z-valued time series without take into account this
specific construction. Moreover, in comparisonwith themodel proposed by Kachour
and Yao (2009), the EP-RBINAR(1) doesn’t have the issue related to small lack of
identifiability on the parameter. Note that, the thinning part of the new process can
be considered as the sum of a “discrete random walk”, where one can go a one step
forward, or one step back, or keep still. Furthermore, innovations of EP-RBINAR(1)
process follow the extended Poisson distribution introduced by Bakouch et al. (2016).
This distribution is defined on Z, having a dispersion flexibility, and under some
assumptions, it can be approximated by the Gaussian distribution.

The paper is structured as follows. EP-RBINAR(1) process is formally defined in
Section 2 and some of its properties are outlined. In Section 3, estimationmethods for
the process parameters are proposed. Section 4 discusses some simulation results
for the estimation methods. Moreover, the EP-RBINAR(1) model is applied to a
practical data set of the Saudi stockmarket. Finally, the proofs of all propositions and
theorems are contained in the appendix.
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2 The EP-RBINAR(1) Process

2.1 Definition

In this section, we first consider a special version of the signed thinning operator,
originally proposed by Latour and Truquet (2008). It is referred to “relative binomial
thinning operator” and is an extension of the classical Steutel and van Harn operator
to Z-valued random variables. Then, we propose a new signed integer-valued
autoregressive process based on this operator with extended Poisson innovations.

Definition 1. (Relative binomial thinning operator) Let {Yi}i∈N be a sequence of
independent identically distributed (i.i.d) integer-valued random variables with the
common distribution F, and independent of an integer-valued random variable X.
The relative binomial thinning operator, denoted by F∘, is defined as

F ∘ X = sign(X)∑|X|
i=1Yi, if X ≠ 0

0 otherwise
{ (1)

where for any integer x ≠ 0, sign(x) = 1 if x > 0 and −1 if x < 0, and F is defined as follow

P(Yi = y) =
α2, if y = 1
2α(1 − α), if y = 0
(1 − α)2, if y = −1

⎧⎪⎨⎪⎩ (2)

with 0 ≤ α ≤ 1 (F is called a relative Bernoulli distribution).

Remark 1. For classical Steutel and van Harn operator, X is positive and {Yi}i∈N is
a sequence of Bernoulli variables (i.e. Yi Ω( ) = {0, 1}), where “Yi = 1” represents
“success” (survival) and “Yi = 0” represents “failure” (death). However, for the
relative binomial thinning operator, Yi can be seen as a “discrete random walk”,
where “Yi = 1” can be interpreted as a one step forward, “Yi =−1” as one step back, and
“Yi = 0” as keep still.

Remark 2. Note that originally Chesneau and Kachour (2012) introduced the relative
binomial distribution, without giving it this name. Moreover, one can see that
Yi=d Zi − 1 where Zi ∼ B(2, α) with E(Yi) = 2α − 1 andV(Yi) = 2α(1 − α). Moreover,
let l be a positive integer, such that l > 2. Thus, one can deduce that

α2 + −1( )l 1 − α( )2 = E Yl( ) < +∞
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In the following lemma, some useful basic properties of the relative binomial thin-
ning operator are presented.

Lemma 1. Let x ∈ Z \ {0}, and set F∘X|(X = x) = F∘x, then the relative binomial thinning
operator in Definition 1 has the following properties:
(i) ∀y ∈ Z,

P(F ∘ x = y) = 2|x|
|x| + sign(x)y( )α|x|+sign(x)y(1 − α)|x|−sign(x)yIA(y),

where IA(y) denotes the indicator function, which has the value 1 when y takes
values in A and has the value 0, otherwise and A = { − |x|, …, 0, …, |x|}.
(ii) E(F ∘ x) = (2α − 1)x,
(iii) V(F ∘ x) = 2α(1 − α)|x|,
(iv) E(sF∘x) = s−x(1 − α + αssign(x))2|x|,
(v) max((2α − 1)|x|, 0) ≤ E(|F ∘ x|) ≤ |x|(2α + 1).

Using the relative binomial thinning operator in Definition 1, we now introduce a
new process to be used for modeling Z-valued time series.

Definition 2. A sequence {Xt}t∈Z is said to be a EP-RBINAR(1) (first-order Extended-
Poisson Relative Binomial Intergred-valued Autoregressive) process if it has the
following representation:

Xt = F ∘ Xt−1 + ϵt, t ∈ Z (3)

where F is defined in (2) and {ϵt}t∈Z is a sequence of i.i.d random variables, called
innovations, following an extended Poisson distribution introduced by Bakouch et al.
(2016). It is denoted by ϵt ∼ E-Po(p, λ) and defined by the following probability mass
function (pmf):

P(ϵt = k) =

e−λ if k = 0

pe−λ
λk

k!
if k = 1, 2,…

(1 − p)e−λλ
|k|

|k|! if k = …,−2,−1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(4)

where λ > 0 and 0 ≤ p ≤ 1. All {Yi}i∈N in counting sequence are independent of ϵt.
Moreover, ϵt and the sigma-algebra σ(Xt−1, Xt−2, …) are supposed to be mutually
independent.
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Remark 3. Given that innovations (i.e. {ϵt}t∈Z) have a known distribution, our model
defined in (3), can be considered as a special case of P-SINAR(1) process introduced
by Chesneau and Kachour (2012), which is a particular case of SINAR(1) process
presented by Kachour and Truquet (2011).

Remark 4. The use of E-Po(p, λ) distribution guarantees innovations with possible
negative values and having more dispersion flexibility (i.e. the dispersion of
E-Po(p, λ) distribution depends on the value of p).

Remark 5. From Bakouch et al. (2016), the corresponding formulas for mean,
variance and probability generating function (pgf) of E-Po(p, λ) distribution with the
pmf (4) are:

E(ϵt) = (2p − 1)λ

V(ϵt) = λ + 4p(1 − p)λ2

Φϵt(s) = e−λ pesλ + (1 − p)eλs[ ]. (5)

Obviously, if ϵt ∼ E-Po(p, λ), then |ϵt|∼ Po(λ). As a result, we have

E |ϵt|( ) = V |ϵt|( ) = λ.

Moreover, for any positive integer l > 2, we have

E |ϵt|( )l( ) ≤ λle
l2
2λ < +∞.

Remark 6. Under the previous parametric assumptions, the EP-RBINAR(1) process
can be seen as an extension on Z of the Poisson INAR(1) process, originally proposed
Al-Osh and Alzaid (1987).

Remark 7. Based on its construction, one can deduce that, under specific parameters
values, the EP-RBINAR(1) process can provide zero-inflated integer (positive and
negative) observations. For example, suppose that (by sake of simplicity) that the
innovation distribution is symmetric (i.e. p = 0.5) and concentrated on zero (i.e. λ < 1),
and α is chosen so that zero be the mode of distribution F. Thus, in this case, it is very
likely that zero is the most represented value of the process. Figure 1 shows plot and
distribution of n = 1000 observations simulated from EP-RBINAR(1) process, where
actual values are α = 0.45, p = 0.5, and λ = 0.3. One can see that the empirical frequency
associated with zero equals 60 % and there is an almost balance between the
distribution of positive and negative values.
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2.2 Properties

The stationarity of the proposed EP-RBINAR(1) process is established in the following
theorem.

Theorem 1. Suppose that α ∈ 0, 1] [ \ {12} and 0 < p < 1. Hence, one can deduce that the
process Xt defined in (3) has a unique stationary solution. Moreover, for any positive
integer l > 2, we have

E |X0|l( ) < +∞.

In the sequel, under stationary conditions and using Lemma 1, we derive some
properties of the EP-RBINAR(1) process.

Proposition 1. Let Fj represent the filtration σ(Xj−i|i ∈N). Under stationary
conditions presented in Theorem 1, one can deduce that
(i) E(Xt|Ft−1) = 2α − 1( )Xt−1 + 2p − 1( )λ.
(ii) V(Xt|Ft−1) = 2α 1 − α( )|Xt−1| + λ + 4p(1 − p)λ2( ).
(iii) E(Xt) = (2p−1)λ

2(1−α) ,
(iv) V(Xt) = 2α(1−α)E(|Xt |)+λ(1+4p(1−p)λ)

1−(2α−1)2 ,
(v) The probability generating function of the stationary EP-RBINAR(1) process is

obtained as

Figure 1: From left to right: plot and distribution of n = 1000 observations simulated from
EP-RBINAR(1) process, where actual values are α = 0.45, p = 0.5, and λ = 0.3.
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ΦXt(s) = E sF∘Xt−1( )Φϵt(s) (6)

where

E sF∘Xt−1( ) = P(Xt = 0) + ∑
−1

x=−∞
s|x| 1 − α + α

s( )2|x|P(Xt = x)

+ ∑
∞

x=1
1
s( )x(1 − α + αs)2xP(Xt = x)

and Φϵt(s) is the pgf of {ϵt} given in (5).
(vi) ρ(1) = corr(Xt, Xt−1) = 2α − 1

Remark 8. The stationary conditions associated with the EP-RBINAR(1) process are
similar to that of a classical AR(1) process. Indeed, one can see that

Xt = (2α − 1)Xt−1 + ξ t,

where ξt is a stationary process defined by

ξt = ϵt + F ∘ Xt−1 − (2α − 1)Xt−1.

Moreover, one can see, based on properties of signed thinning operator that ξ = (ξt) is
an uncorrelated process. Thus, the EP-RBINAR(1) process has the same autocorre-
lation structure as a classic AR(1) process. In other words, the autocorrelation
function of the EP-RBINAR(1) process is obtained as

ρ(k) = corr(Xt,Xt+k) = (2α − 1)k ∀ k ≥ 1, with α ∈ 0, 1] [ \ {1
2
}.

Therefore, the spectral density function of the model, forω ∈ −π,+π( ); is obtained as

fx, x ω( ) = 1
2π

∑
+∞

k=−∞
cov Xt,Xt−k( )e−iωk ,

= V Xt( )
2π

∑
+∞

k=−∞
2α − 1( )ke−iωk ,

= V Xt( )
2π

1
1 + 2α − 1( )2 − 2 2α − 1( )cos(ω)( ).

Under stationary conditions, the marginal probability function of the EP-RBINAR(1)
process is given in the following proposition.

Proposition 2. Let {Xt} be an EP-RBINAR(1) process, with 0 < α < 1, α ≠ 1
2, and 0 < p < 1.

Thus, for all a ∈ Z, we have
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P(Xt = a) = ∑
i∈Z*

∑
|j|

i=−|j|

2|j|
|j| + sign(j)i( )α|j|+sign(j)i(1 − α)|j|−sign(j)i

×P(Xt−1 = j)P(ϵt = a − i) + P(Xt = 0)P(ϵt = a),
where

P(ϵt = a − i) =

e−λ if a = i

pe−λ
λa−i

(a − i)! if i < a

(1 − p)e−λ λ|a−i|

|a − i|! if i > a .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
The EP-RBINAR(1) process’s one-step transition probability, denoted by
Pi, j = P(Xt+1 = j|Xt = i), is derived as

P0, j = P(ϵt = j) (7)

and for i ≠ 0

Pi, j = ∑
|i|

k=−|i|

2|i|
|i| + sign(i)k( )αsign(i)(i+k)(1 − α)sign(i)(i−k)P(ϵt = j − k), (8)

where P(ϵt = j) is the pmf of {ϵt} defined by (4).
Moreover, using the first-order dependence of the process, the joint probability

can be obtained as

P(X1 = i1,X2 = i2,…,Xm = im) = P(X1 = i1)P(X2 = i2|X1 = i1)
×P(Xm = im|Xm−1 = im−1)

= P(X1 = i1) ∏
m−1

s=1
Pis , is+1.

(9)

The k step-ahead conditional mean (usually used for time series forecast issues) of
the process is derived in the following proposition.

Proposition 3. Let {Xt} be an EP-RBINAR(1) process with 0 < α < 1, α ≠ 1
2, and 0 < p < 1.

Thus, the k step-ahead conditional mean is given by

E(Xt+k|Xt) = (2α − 1)kXt + (2p − 1)λ 1 − (2α − 1)k
2(1 − α)( ). (10)

Remark 9. Using Equation (10), we find that

New Model for ℤ-Valued Time Series 133



lim
k/∞

E(Xt+k |Xt) = (2p − 1)λ
2(1 − α) ,

which is the unconditional mean of the EP-RBINAR(1) process.

3 Parameters Estimation

Let (X1,…,Xm)t be a vector of observations from our model defined in (3), and
θ ∈ {(α, p, λ)t ; 0 < α < 1, α ≠ 1

2, 0 < p < 1, λ > 0} denote the unknown parameter vector.
In order to estimate θ, we propose three estimation methods, namely, Yule–Walker
(YW), conditional least square (CLS), and conditional maximum likelihood (CML).

3.1 Yule–Walker Estimation

Let X = 1
m∑

m
i=1Xi, |X| = 1

m∑
m
i=1|Xi| and

ρ̂(1) = γ̂(1)
γ̂(0) =

∑m−1
k=1 (Xt − X)(Xt+1 − X)

∑m
k=1 (Xt − X)2 .

In order to obtain estimations in this method, we solve a set of equations that are
resulted from equating the theoretical and empirical aspects at the same time. Thus,
the YW estimation of α is obtained by

α̂YW = ρ̂(1) + 1
2

, (11)

and the YW estimation of p and λ are obtained by solving the following equations

γ̂(0)(1− ρ̂2(1)) = 2α̂YW(1− α̂YW )|X| +λ(1+4p(1−p)λ),
2X(1− α̂YW ) = λ(2p− 1).

⎧⎨⎩ (12)

Remark 10. A special case of our model, when we suppose that α = p. In this case, the
YW estimation of α (and p) is

α̂YW = ρ̂(1) + 1
2

,

and the YW estimation of λ is given by
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λ̂YW = 2(1 − α̂YW )
2α̂YW − 1

X = ( 1
ρ̂(1) − 1)X.

3.2 Conditional Least Square Estimation

Let γ = 2α − 1 and μ = (2p − 1)λ, then the CLS estimator of θ* = (γ, μ) is defined by

θ̂
*
m = arg min

θ*∈Θ
Sm(θ*), (13)

where θ̂*m = (γ̂m, μ̂m) and

Sm(θ*) = 1
m

∑
m

t=2
(Xt − E(Xt|Ft−1))2 = 1

m
∑
m

t=2
(Xt − γXt−1 − μ)2.

Remark 11. Based on Theorem 1, we have E X2
0( ) < ∞ and E |X0|3( ) < ∞. Thus, based on

Theorem 2 of Kachour and Truquet (2011), one can deduce that
– θ̂

*
m is strongly consistent (i.e. lim

m/∞
θ̂
*
m = θ* a.s.)

– The CLS estimation is asymptotically normal.

Remark 12. A special case of the proposedmodel, when we suppose that α = p. In this
case, the CLS estimation of α (and p) is given as

α̂CLS = γ̂m + 1
2

,

and the CLS estimation of λ is given by

λ̂CLS = μ̂m

2α̂m − 1
= μ̂m

γ̂m
.

3.3 Conditional Maximum Likelihood Estimation

From the joint probability function (9), the conditional log-likelihood function for the
EP-RBINAR(1) model can be written as
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lm(θ|X1) = ∑
m−1

s=1
log P(ϵt = Xs+1)I{0}(Xs) + IZ*(Xs)[

× ∑
|Xs |

k=−|Xs |

2|Xs|
|Xs| + sign(Xs)k( )αsign(Xs)(Xs+k)

×(1 − α)sign(Xs)(Xs−k)P(ϵt = Xs+1 − k)],
(14)

where P(ϵt = j) is the pmf of {ϵt} defined by (4) and IA(Xs) denotes the indicator
function, which has the value 1 when Xs takes values in A and has the value 0,
otherwise.

The conditional maximum likelihood (CML) estimator θ̂CML = (α̂CML, p̂CML, λ̂CML)′ of
θ = (α, p, λ)′ is defined as the value of θ that maximize the conditional log-likelihood
function in (14). Since equating the first-order conditional log-likelihood derivatives to
zero leads us to a complicated systemof equations, theCMLestimates are achievedusing
numerical methods.

4 Empirical Study

This section includes two subsections. In thefirst part, the performance of estimation
methods that we used for parameters of the proposed process is compared through a
simulation study. To ensure the applicability of the proposed model, the second part
is devoted to analyzing a practical data set of the Saudi stock market.

4.1 Simulation

4.1.1 The Case When α = p

In this section, we aim to test the efficiency of the parameter’s estimation discussed in
the previous section. For the sake of simplicity, we suppose that α = p. Thus, we
simulate (using the R programming language) 1000 paths of length 100, 500, 1000 and
10,000. These paths are simulated using Equation (3) with three sets of parameters:
(a) α = p = 0.1 and λ = 1; (b) α = p = 0.6 and λ = 2; (c) α = p = 0.9 and λ = 3. Mean values of
YW, CLS, and CML estimates for each set of parameters are given in Table 1. The
standards deviations of the estimates are stated in brackets under the estimated
values.

Remark 13. In the case when α = p, one can use results presented in Remarks 10 and 12
to calculate YW and CLS estimates. However, CML estimates are calculate by using
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numerical methods. Explicitly, we use the nlm function (Non-Linear Minimization,
from package “stats”, software R), to find values that maximize the conditional
log-likelihood function, denoted by (14) (wherewe consider that α = p in this equation).

In general way, from the obtained results, one can deduce that YW, CLS and CML
methods provide estimates that are quite close to the actual values. Moreover, the
performances of YW and CLS methods are very similar. For these methods, one can

Table : Estimated parameters and the corresponding standard errors (in brackets) stated under the
estimates for YW, CLS and CML methods (when α = p).

Size bαYW bλYW bαCLS bλCLS bαCML bλCML

a) α = p = . and λ = 

n =  . . . . . .
(.) (.) (.) (.) (.) (.)

n =  . . . . . .
(.) (.) (.) (.) (.) (.)

n =  . . . . . .
(.) (.) (.) (.) (.) (.)

n = , . . . . . .

(.) (.) (.) (.) (.) (.)

b) α = p = . and λ = 

n =  . . . . . .
(.) (.) (.) (.) (.) (.)

n =  . . . . . .
(.) (.) (.) (.) (.) (.)

n =  . . . . . .
(.) (.) (.) (.) (.) (.)

n = , . . . . . .

(.) (.) (.) (.) (.) (.)

c) α = p = . and λ = 

n =  . . . . . .
(.) (.) (.) (.) (.) (.)

n =  . . . . . .
(.) (.) (.) (.) (.) (.)

n =  . . . . . .
(.) (.) (.) (.) (.) (.)

n = , . . . . . .
(.) (.) (.) (.) (.) (.)
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see that when the length of series is over 500, they converge quickly to the actual
parameter values. However, results of CML method are more efficient even for a
small length of series. For all the proposed methods, we can notice that the standard
deviation of the estimates decreases as the length series increases. Furthermore, in
most of studied cases, the CLM method provides the lower standard deviation of
estimates.

However, for YW and CLSmethods, it is important to point the convergence rate
is less quickly for λ. Indeed, this can be explained by the fact that, for both methods,
the estimate of λ depends on the estimated value of α. Thus, for these methods, we
find that a large current value of λ implies the standard deviation of the estimates is
high, especially when the size of the series is small. This remark is illustrated thanks
to the simulation results obtained for parameters set (c) (for details, see Table 1). The
boxplots for the parameter set (c) are given in Figures 2–4 for CLS, YW and CML

Figure 2: The boxplot for CLS estimates for parameters set (c), where actual values are α = p = 0.9
and λ = 3.

Figure 3: The boxplot for YW estimates for parameters set (c), where actual values are α = p = 0.9
and λ = 3.
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methods, respectively. One can see that, contrary to the othermethods, the estimates
from the CML method have few or no outliers.

On the other hand, one can see, based on the simulation results of YW and CLS
methods, obtained for parameter set (b)when n = 100, that the standard deviation of λ
estimates is very high for both methods (see Table 1). In fact, these results are not
surprising cause that α (= p) actual value is close to 0.5 (which is an excluded value of
the parameter). So, with a small size of series the estimate value of αmay be close to
0.5, which can “explode” the estimate value of λ. However, this issue is not present
when we use the CML method (in this case, even with a small length series, the
standard deviation is weak, see Table 1). Finally, fitting to the Gaussian distribution is
illustrated in Figures 5 and 6 for YW, CLS and CML estimators (with the parameter

Figure 5: Normal Q-Q plots for errors (α̂YW − 0.9), (α̂CLS − 0.9) and (α̂CML − 0.9), when n = 10,000. The
horizontal axis indicates theoretical quantiles and the vertical axis indicates sample quantiles.

Figure 4: The boxplot for CML estimates for parameters set (c), where actual values are α = p = 0.9 and
λ = 3.
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set (c) and n = 10,000). These figures show numerically the normal asymptotical
distribution of the proposed estimators.

4.1.2 The Case When α ≠ p

As we mentioned in the previous section, the performance of the YW and CLS
methods are quite close. Moreover, we have also seen that if α ≠ p, then the estimates
of these methods do not have an explicit form. Thus, in this section, we will compare
the performances resulting from the YW and CML methods based on one set of
parameters: α = 0.75, p = 0.4, and λ = 2. We simulate (using the R programming
language) 10,000 paths of length 100, 250, and 1000. These paths are simulated using
Equation (3) with the above set of parameters. To calculate the CML estimates we use
the nlm function (Non-LinearMinimization, from package “stats”, software R) to find
values that maximize the conditional log-likelihood function, denoted by (14). On the
other hand, the YW estimates of α is given by (11). Once we estimate the value of
parameter α (based on (11)) and substitute this value into Equation (12), we get the
system of two equations with two unknown variables λ and p. To find YW estimates
of these parameters, this system has to be solved numerically. Thus, the numerical
procedure will be conducted in programming language R, where we will use the BB
package. Mean values of YW and CML estimates for each parameters are given in
Table 2. The standards deviations of the estimates are stated in brackets under
the estimated values. Once again, we can see that the precision of these estimates
(from both methods) increases when the size n increases.

Figure 6: Normal Q-Q plots for errors (λ̂YW − 3), (λ̂CLS − 3) and (λ̂CML − 3), when n = 10,000. The
horizontal axis indicates theoretical quantiles and the vertical axis indicates sample quantiles.

140 M. Kachour et al.



Remark 14. In order to study the compatibility of the proposed model and the
estimation results, we generated, based on Equation (1), n = 1000 observations of the
EP-RBINAR(1) process, with α = 0.75, p = 0.4, and λ = 2. Basic descriptive statistics
associated with the simulated data are represented in the following table:

Indicator Mean Variance First
autocorrelation

Second
autocorrelation

Third
autocorrelation

Empirical
value

−. . . . .

Using the simulated data and the procedure presented in the above section, we
compute the CML estimates of the process parameters: α̂ = 0.7431100, p̂ = 0.3854399
and λ̂ = 1.9496662. Now, using these estimates and based on the properties of the
EP-RBINAR(1) process (see Proposition 1 and Remark 8), we calculate the indicators
presented in the above table

Indicator Mean Variance First
autocorrelation

Second
autocorrelation

Third
autocorrelation

Estimate
value

−. . . . .

Thus, one can see that empirical values of these indicators are very close to that
of estimate values (calculated based on estimate parameters and properties of the
process).

Table : Estimated parameters and the corresponding standard errors stated (in brackets) under the
estimates for YW and CML methods (when α ≠ p).

α = ., λ = , and p = .

Size bαYW bλYW bpYW bαCML bλCML bPCML

n =  . . . . . .
(.) (.) (.) (.) (.) (.)

n =  . . . . . .
(.) (.) (.) (.) (.) (.)

n =  . . . . . .
(.) (.) (.) (.) (.) (.)
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4.2 A Practical Data Example

Here, we present an application of the model EP-RBINAR(1) based on real-world
data from Saudi stock market. In 2007, the minimum amount of change was 0.25 SR
(Saudi Riyal) for all stocks. The daily close price as number of ticks (ticks = close
price × 4) in 2007 for Saudi Telecommunication Company (STC) stock is considered.
Note that these data were originally introduced by Alzaid and Omair (2014) as an
application of a new integer-valued model with a Poisson difference marginal
distribution. This model can be used as a tool to model non-stationary count data.
Basic descriptive statistics concerning these data are presented in Table 3.

After, examination of the time series plot of the data, authors (Alzaid and Omair
(2014)) notice a non-stationarity in the mean (this issue was confirmed based on a
sustained large autocorrelation function (ACF) and exceptionally large first lag
partial autocorrelation function (PACF)). Thus, authors considered that differencing
is needed. Explicitly, if {Xt} is the process behind the above data, then authors
propose to study the lag one differenced process, denoted by {Yt}, where Yt =Xt− Xt−1.
Indeed, one can consider that data observed from process {Yt} as the difference
between two consecutive daily ticks (associated with the close price). Thus, a data
with negative values represents the number of ticks “lost” at the close between two
consecutive days (i.e. a drop in price), while a positive value reveals the number of
ticks “gained” at the close between two consecutive days (i.e. a price increase).
Finally, if the observed data is zero, thismeans that the number of ticks at closing has
remained “stable” between two consecutive days (i.e. the price has not changed).

The time series plot of the differenced stock is illustrated in Figure 7 and basic
descriptive statistics concerning the differenced data are presented in Table 4.
Thus, Figure 7 shows the stationarity in the mean is now verified. The ACF and PACF
for differenced stock are shown in Figure 8. These figures show that the lag one
correlation is positive and significant, which implies that the differenced process
have the same autocorrelation structure of an AR(1) process. Moreover, after the lag
one differenced stage, the data is integer with negative values.

Remark 15. Bourguignon and Vasconcellos (2016) have used data, dating from 2012,
providing also from Saudi Telekom. The choice of these data is consistent with the

Table : Basic descriptive statistics for the STC stock data set.

Length Mean Minimum Maximum First
quartile

Median Third
quartile

Standard
deviation

 .      .
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model proposed by the authors (where they introduced a new process (defined onZ)
constructed as being the difference between a Poisson INAR(1) process and a
geometric INAR(1) process). At the first glance, it is quite possible to consider the
model proposed by Bourguignon and Vasconcellos (2016) to fit the differenced data
of our application. However, we cannot say that the differenced data used in our

Figure 7: The time series plot of the differenced STC stock data set.

Figure 8: The ACF and PACF of the differenced STC stock data set.

Table : Basic descriptive statistics for the differenced STC data set.

Length Mean Minimum Maximum First
quartile

Median Third
quartile

Standard
deviation

 . −  −   .
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application comes from the difference between two sets of independent positive
integer-valued data and therefore it goes against the philosophy of the model
proposed by Bourguignon and Vasconcellos (2016). However, since our model
belongs to SINAR(1) process family, it can be considered to fit data used by
Bourguignon and Vasconcellos (2016) without take into account how data have been
constructed.

To fit the differenced data, we propose our EP-RBINAR(1) process. Explicitly, we
consider that

Yt = F ∘ Yt−1 + ϵt,

where F is as defined in (2) and ϵt follows an E-Po(p, λ), where 0 < p < 1, λ > 0 and
α ∈ 0, 12] [ ∪ 1

2, 1] [. The estimated values of unknown parameters are obtained by using
the CML method. Thus, we obtain α̂CML = 0.6448645, p̂CML = 0.5345621 and
λ̂CML = 3.402455.

Remark 16. Based on properties of the process and using the estimates of the
unknown parameters, one can deduce that the mean is equal to 0.3311299 (which is
not close enough to 0.004048583 (mean of the data) however, one can consider
that both values are near to zero), the standard deviation equals 4.246681 (which is
close to 4.715049, the standard deviation calculated from the data), and the lag-1
autocorrelation is equal to 0.289729 (which is close to 0.2194211, lag-1 autocorrelation
calculated from the data). These first results support our choice of the EP-RBINAR(1)
model to fit the data.

Moreover, based on the conditional one-step ahead mean, the estimated residuals
are computed as

êt = yt − ŷt

= yt − (2α̂CML − 1)yt−1 + λ̂CML(2p̂CML − 1))(
Remark 17. In general, ŷt are real-valued, a mapping into the discrete support of the
series is obtained by rounding to the nearest integer.

To verify the adequacy of the considered model, the ACF and the PACF of the
estimated residuals are plotted in Figure 9. Clearly, this graph shows that the
residuals can be considered as observations from a white noise. Moreover, in
Figure 10, we make a comparison between the empirical frequencies of êt and their
associated theoretical probabilities resulting from E-Po(0.5345621, 3.402455). This
comparison shows that the frequencies and probabilities associated with the
observedmodalities are relatively close. This is one of reasons to justify our choice to
use the EP-RBINAR(1) model to fit the data.
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Remark 18. Based on the conditional one-step ahead standard deviation, the esti-
mated standardized Pearson residuals are computed as

k̂t = yt−((2α̂CML−1)yt−1+ λ̂CML(2p̂CML−1))̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2α̂CML(1− α̂CML)|yt−1|+ λ̂CML+4p̂CML(1− p̂CML) λ̂CML( )2( )√ .

For details concerning the standardized Pearson residuals and its role to checkmodel
adequacy for count time series, see Weiß et al. (2019). Note that the empirical mean,
median, and standard deviation, of the estimated standardized Pearson residuals,
are, respectively, equals: −0.05694, 0, and 1.127245. Thus, one can see that the
empirical mean is very close to zero and empirical standard deviation is close to one.

Figure 9: The ACF and PACF of the estimated residuals of the differenced STC stock data set.

Figure 10: Comparison between the empirical frequencies of estimated residuals and their associated
theoretical probabilities resulting from E-Po(0.5345621, 3.402455).
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Moreover, theACF, the PACF, and thefitting to the Gaussian distribution (Normal Q-Q
plot) of the estimated standardized Pearson residuals are plotted in Figure 11. These
results can be considered as additional arguments whose objective is to check the
model adequacy to fit the data.

Remark 19. As mentioned before, the data processed in this section have been
studied by Alzaid and Omair (2014). Indeed, authors proposed their model, called
PDINAR(1) process, tofit the data. However, this process has two variants, denoted by
PDINAR+ (1) and PDINAR− (1), depending on the sign of the correlation. In practice, to
fix which variant should be used to fit the data, it is necessary to have a preliminary
idea of the sign of ρ̂(1). Thus, since the empirical first-order autocorrelation is
positive, Alzaid and Omair (2014) considered the PDINAR+ (1) to study the data.
However, for the use of our model, we don’t need to know the sign of ρ̂(1). On the
other hand, Alzaid and Omair (2014) show the that one-step ahead least squares
predictions can be calculated by

ỹt = 0.2201yt−1 + 10.4088 − 10.3953.

These predicted values need also to by rounding to the nearest integer to be adequate
with the discrete support of the data. From Figure 12, one can deduce that the
predictions (based on conditional one-step ahead mean) results provided from
PDINAR+ (1) process and those from the EP-RBINAR(1) process, are very similar. This
implies that bothmodels have a prediction performances very close. Indeed, the Root
Mean Squared Error (RMSE) equals 4.604699 (resp. 4.590552), for forecasting values
(based on conditional mean) provided from PDINAR+ (1) (resp. EP-RBINAR(1))

Figure 11: From top to bottom: ACF, PACF, and normal Q-Q plot of estimated standardized Pearson
residuals of the differenced STC stock data set.
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process. However, one can see also that for bothmodels there is a rather discrepancy
between the forecast and the actual data.

Remark 20. As mentioned above, conditional one-step ahead mean leads to real-
valued forecasts, which is incoherent with the support of the integer-valued time
series. Recently, coherent techniques have been introduced in order to provide
integer-valued forecasts. One of the most used technique is the conditional median
(for details, see Homburg et al. (2019)), which is obtained by calculating the condi-
tional probability of each possible integer value, then selecting a forecast value with
a cumulative conditional probability greater than 0.5. From Figure 13, one can see
that discrepancy between conditional median forecasts and actual data have been

Figure 13: Comparison between conditional mean predictions results of PDINAR(1) and conditional
median predictions of EP-RBINAR(1).

Figure 12: Comparison of conditional mean predictions results from PDINAR(1) and EP-RBINAR(1).
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reduced, specially for high positive values. Moreover, one can find that the Mean
Absolute Error (MAE) (based on the conditional median forecasts) equals 3.768293
and Median Absolute Error (MedAE) equals 3.

5 Concluding Remarks

In this paper, we introduce a new stationary first-order integer-valued autore-
gressive process, denoted by EP-RBINAR(1), where the thinning part of the process
can be considered as the sum of a random walk. The new model has several
advantages: possible negative values for time series, possible negative values for
autocorrelation, and an innovation structure that can be interpreted as an extension
on Z of the Poisson distribution. Moreover, under specific parameters values,
EP-RBINAR(1) can provide zero-inflated integer (positive and negative) observations.
The main properties of the model are derived. Then we considered the problem of
parameter estimation and derived properties of the Yule–Walker, conditional least
square, and conditional maximum likelihood estimators. An example of application
to a real-world data set, based on number of ticks (associated with close price) for
Saudi Telecommunication Company (STC) stock (in 2007), illustrates the importance
and potentiality of the new model. We are convinced that this new process may
attract many other wider applications in time series analysis. As part of future
research, it would be of interest to extend the proposed process, studying the process
of order p.

Appendix

Proof of Lemma . In proving all cases, we use this fact that Yi=d Zi − 1 where Zi ∼
B(2, α).

(i) For any y ∈ Z, we get

P(F ∘ x = y) = P sign(x)∑
|x|

i=1
Yi = y( ) = P ∑

|x|

i=1
Zi = |x| + sign(x)y( ),

where ∑|x|
i=1Zi has a binomial distribution with parameters 2|x| and α, B(2|x|, α). This

completes the proof.
(ii)

E(F ∘ x) = ∑
y∈Z

yP(F ∘ x = y) = ∑
2|x|

z=0
sign(x)(z − |x|)P(Z = z),

where Z ∼ B(2|x|, α) and sign(x)|x| = x. So, we have
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E(F ∘ x) = sign(x)(E(Z) − |x|) = sign(x)(2α|x| − |x|) = (2α − 1)x.
(iii)

V(F ∘ x) = E((F ∘ x)2) − (E(F ∘ x))2 = ∑
y∈Z

y2P(F ∘ x = y) − (2α − 1)2x2

= E(Z2) − 2|x|E(Z) + |x|2 − (2α − 1)2x2
= 2α(1 − α)|x|.

(iv)
E(sF∘x) = ∑

y∈Z
syP(F ∘ x = y)

= ∑
2|x|

z=0
ssign(x)(z−|x|)P(Z = z)

= s−x(1 − α + αssign(x))2|x|.
(v) First note that

E(|F ∘ x|) = ∑
y∈Z

|y|P(F ∘ x = y)

= ∑
2|x|

z=0
|sign(x)(z − x)|P(Z = z) = E(|Z − x|).

By utilizing the fact that max(|a| − |b|, 0) ≤ |a − b| ≤ |a| + |b|, we obtain

max(E(Z) − |x|, 0) ≤ E(|Z − x|) ≤ E(Z) + |x|,
the proof is completed by substituting E(Z) = 2|x|α. □

Proof of Theorem . Under the assumptions of Theorem 1, one can deduce that

(A1) F{0} = P(Yi = 0) > 0,
(A2) ∀a ∈ Z; P(ϵ0 = a) > 0,
(A3) The root of the polynomial function

P(z) = 1 − (2α − 1)z
is outside the unit disc (i.e. 1

2α−1 > 1).
Consequently, assumptions of Theorem 1 of Kachour and Truquet (2011) are

verified. Thus, one can confirm that the process Xt defined in (3) has a unique
stationary solution. In other hand, from Remarks 2 and 5, for all positive integer l > 2,
we have that
– The lth moment of F is finite,
– E |ϵt|( ) < +∞.
Once again, based on Theorem 1 of Kachour and Truquet (2011), one can deduce that
E |X0|l( ) < +∞. □
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Proof of Proposition . Let Fj represent the filtration σ(Xj−i|i ∈N). Thus, based on
Lemma 1, we have

(i)
E(Xt|Ft−1) = E(F ∘ Xt−1|Ft−1) + E(ϵt)

= 2α − 1( )Xt−1 + 2p − 1( )λ.
(ii)

V(Xt|Ft−1) = V(F ∘ Xt−1|Ft−1) +V(ϵt)
= 2α 1 − α( )|Xt−1| + λ + 4p(1 − p)λ2( ).

(iii)
E(Xt) = E(F ∘ Xt−1) + E(ϵt) = E(E(F ∘ Xt−1|Ft−1)) + (2p − 1)λ

= (2α − 1)E(Xt) + (2p − 1)λ.
(iv)

V(Xt) = V(F ∘ Xt−1) +V(ϵt)
= V(E(F ∘ Xt−1|Ft−1)) + E(V(F ∘ Xt−1)|Ft−1) +V(ϵt)
= (2α − 1)2V(Xt) + 2α(1 − α)E(|Xt|) + λ(1 + 4p(1 − p)λ).

(v)
E sF∘Xt−1( ) = E E sF∘Xt−1 |Ft−1( )( )

= s0P Xt = 0( ) + ∑
x∈Z

E sF∘x( )P Xt = x( ).

(vi) cov(Xt,Xt−1) = cov(F ∘ Xt−1,Xt−1)
= E(E((F ∘ Xt−1)Xt−1|Ft−1)) − (2α − 1)E2(Xt−1)
= E(Xt−1E(F ∘ Xt−1|Ft−1)) − (2α − 1)E2(Xt−1)
= (2α − 1)E X2

t−1( ) − (2α − 1)E2(Xt−1).
□

Proof of Proposition .Note that, for all a ∈ Z, themarginal probability function ofXt
can be calculated as

P(Xt = a) = ∑
i∈Z
P(F ∘ Xt−1 = i)P(ϵt = a − i), (15)

where

P(F ∘ Xt−1 = i) = ∑
j∈Z
P(F ∘ Xt−1 = i,Xt−1 = j)

= ∑
j∈Z*

P(F ∘ Xt−1 = i|Xt−1 = j)P(Xt−1 = j)
+P(F ∘ Xt−1 = i|Xt−1 = 0)P(Xt−1 = 0).

(16)

Now, by substituting (16) into (15), we have
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P(Xt = a) = ∑
i∈Z

∑
j∈Z*

P(F ∘ j = i)P(Xt−1 = j)P(ϵt = a − i)
+∑
i∈Z
P(F ∘ Xt−1 = i|Xt−1 = 0)P(Xt−1 = 0)P(ϵt = a − i), (17)

where

P(F ∘ Xt−1 = i|Xt−1 = 0) = 1 if i = 0,
0 otherwise.{ (18)

The proof is completed. □

Proof of Proposition . Using Proposition 1, the one step-ahead conditional mean
equals

E(Xt+1|Xt) = E(F ∘ Xt + ϵt|Xt) = (2α − 1)Xt + (2p − 1)λ.
Based on the above equation, we have

E(Xt+2|Xt) = E(E(Xt+2|Xt+1)|Xt)
= E((2α − 1)Xt+1 + (2p − 1)λ|Xt)
= (2α − 1)2Xt + (2p − 1)λ 1 + (2α − 1)[ ],

and in the same manner, one can see that

E(Xt+3|Xt) = E(E(Xt+3|Xt+1)|Xt)
= E((2α − 1)2Xt+1 + (2p − 1)λ 1 + (2α − 1)[ ]|Xt)
= (2α − 1)2 (2α − 1)Xt + (2p − 1)λ[ ] + (2p − 1)λ 1 + (2α − 1)[ ]
= (2α − 1)3Xt + (2p − 1)λ 1 + (2α − 1) + (2α − 1)2[ ].

Hence by induction, one can conclude that

E(Xt+k|Xt) = (2α − 1)kXt + (2p − 1)λ 1 + (2α − 1) +⋯ + (2α − 1)k−1[ ]
= (2α − 1)k + (2p − 1)λ 1 − (2α − 1)k

2(1 − α)( ).
□
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