Startseite Antioxidant activity of crude ethanolic extract and fractions of Ziziphus mauritiana Lam. (Rhamnaceae) leaves from Burkina Faso
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Antioxidant activity of crude ethanolic extract and fractions of Ziziphus mauritiana Lam. (Rhamnaceae) leaves from Burkina Faso

  • Estelle N.H. Youl EMAIL logo , Cyrille A.P. Ouédraogo , Moustapha Gambo , Moussa Ouédraogo , Martin Kiendrebéogo , Aristide Traoré und Innocent Pierre Guissou
Veröffentlicht/Copyright: 4. Mai 2019

Abstract

Background

Ziziphus mauritiana Lam. is a plant used in traditional medicine in Burkina Faso in the treatment of several diseases, of which diabetes is characterized by oxidative stress. The aim of this study was to evaluate the in vitro antioxidant potential of the extracts of leaves of this plant.

Methods

The crude hydroethanolic extract (HEE) of the leaves of Z. mauritiana and their partitionates in n-hexane, dichloromethane, and ethyl acetate, and in the residual aqueous solution (the F1, F2, F3, and F4 fractions, respectively) were first prepared. The content of polyphenols was determined and the antioxidant effects of the extracts were evaluated by their 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, inhibition of lipid peroxidation (TBARS), and the ferric reducing antioxidant power (FRAP).

Results

The HEE as well as the F3 and F4 fractions were rich in polyphenols with contents between 58 and 84 mg equivalent gallic acid per 100 mg. The flavonoid content was 4 mg quercetin equivalents in the HEE and the F4 fraction. Except for the F1 fraction, the HEE and the other fractions showed significant DPPH scavenging activity (IC50 between 8 and 12 μg/mL). The IC50 of TBARS by different extracts was in the range 1–5 μg/mL, and the FRAP activity was 7–85 mg ascorbic acid equivalent per 100 mg. Total polyphenol content was highly correlated with the antioxidant activities.

Conclusions

The HEE, F3, and F4 fractions were found to be the richest in polyphenols and had the best antioxidant activity. The antioxidant activity of the extracts of the leaves of Z. mauritiana is due to these polyphenolic compounds.

Acknowledgments

The authors sincerely thank Prof. Amadé Ouédraogo for the authentication of the plant, the laboratory of Food Biochemistry of the University Ouaga I for the supply of reagents and animals, and the Research Institute for Health Sciences for technical support.

  1. Authors’ conflict of interest disclosure: The authors declare no conflicts of interest regarding the publication of this article.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

References

[1] Pincemail J, Bonjean K, Cayeux K, Defraigne JO. Mécanismes physiologiques de la défense antioxydante. Nutr Clin Metab 2002;16:233–9.10.1016/S0985-0562(02)00166-8Suche in Google Scholar

[2] Newsholme P, Rebelato E, Abdulkader F, Krause M, Carpinelli A, Curi R. Reactive oxygen and nitrogen species generation, antioxidant defenses, and β-cell function: a critical role for amino acids. J Endocrinol 2012;214:11–20.10.1530/JOE-12-0072Suche in Google Scholar PubMed

[3] Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44–84.10.1016/j.biocel.2006.07.001Suche in Google Scholar PubMed

[4] Ahmad W, Ijaz B, Shabbiri K, Ahmed F, Rehman S. Oxidative toxicity in diabetes and Alzheimer’s disease: mechanisms behind ROS/RNS generation. J Biomed Sci 2017;24:76.10.1186/s12929-017-0379-zSuche in Google Scholar PubMed PubMed Central

[5] Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 2003;52:1–8.10.2337/diabetes.52.1.1Suche in Google Scholar PubMed

[6] Kaneto H, Matsuoka TA, Nakatani Y, Kawamori D, Matsuhisa M, Yamasaki Y. Oxidative stress and the JNK pathway in diabetes. Curr Diabetes Rev 2005;1:65–72.10.2174/1573399052952613Suche in Google Scholar PubMed

[7] Kaneto H, Nakatani Y, Kawamori D, Miyatsuka T, Matsuoka TA, Matsuhisa M, et al. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic beta-cell dysfunction and insulin resistance. Int J Biochem Cell Biol 2005;37:1595–608.10.1016/j.biocel.2005.04.003Suche in Google Scholar PubMed

[8] Lenzen S. Oxidative stress: the vulnerable beta-cell. Biochem Soc Trans 2008;36:343–7.10.1042/BST0360343Suche in Google Scholar PubMed

[9] Li N, Frigerio F, Maechler P. The sensitivity of pancreatic beta-cells to mitochondrial injuries triggered by lipotoxicity and oxidative stress. Biochem Soc Trans 2008;36:930–4.10.1042/BST0360930Suche in Google Scholar PubMed

[10] Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 2008;29:351–66.10.1210/er.2007-0023Suche in Google Scholar PubMed PubMed Central

[11] Mizukami H, Takahashi K, Inaba W, Tsuboi K, Osonoi S, Yoshida T, et al. Involvement of oxidative stress–induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of β-cell mass in Japanese type 2 diabetic patients. Diabetes Care 2014;37:1966–74.10.2337/dc13-2018Suche in Google Scholar

[12] Udayakumar K, Keun-Gyu P. A systematic review of oxidative stress and safety of antioxidants in diabetes: focus on islets and their defense. Diabetes Metab 2013;37:106–12.10.4093/dmj.2013.37.2.106Suche in Google Scholar

[13] Youl E, Bardy G, Magous R, Cros G, Sejalon F, Virsolvy A, et al. Quercetin potentiates insulin secretion and protects INS-1 pancreatic b-cells against oxidative damage via the ERK1/2 pathway. Br J Clin Pharmacol 2010;161:799–81.10.1111/j.1476-5381.2010.00910.xSuche in Google Scholar

[14] Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 1996;20:463–6.10.1016/0891-5849(96)02051-5Suche in Google Scholar

[15] Uttara S, Sadhana S, Anita K. Therapeutic potential of antidiabetic nutraceuticals. Phytopharmacology 2012;2:144–69.Suche in Google Scholar

[16] Niamat R, Khan MA, Khan KY, Ahmed M, Mazari P, Ali B, et al. A review on Zizyphus as antidiabetic. J Appl Pharm Sci 2012;02:177–9.Suche in Google Scholar

[17] Dénou A, Sawadogo Y, Haïdara M, Togola A, Sanogo R, Diallo D, et al. Activité antidiabétique des racines de Zizyphus mauritiana Lam (Rhamnaceae) et des feuilles de Zizyphus mucronata Willd (Rhamnaceae) chez le lapin. Int J Multidiscip Res Dev 2016;3:24–6.10.31730/osf.io/zrnv2Suche in Google Scholar

[18] Lamien-Meda A, Lamien CE, Compaoré MM, Meda RN, Kiendrebeogo M, Zeba B, et al. Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules 2008;13:581–94.10.3390/molecules13030581Suche in Google Scholar

[19] Singleton LV, Orthofer R, Lamuela-Raventos RR. Analysis of total phenol and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 1999;299:152–78.10.1016/S0076-6879(99)99017-1Suche in Google Scholar

[20] Arvouet-Grand A, Vennat B, Pourrat A, Legret P. Standardisation d’un extrait de propolis et identification des principaux constituants. J Pharm Belg 1994;49:462–8.Suche in Google Scholar

[21] Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958;181:1199–200.10.1038/1811199a0Suche in Google Scholar

[22] Hinneburg I, Dorman HJ, Hiltunen R. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem 2006;97:122–9.10.1016/j.foodchem.2005.03.028Suche in Google Scholar

[23] Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 2017;38:592–607.10.1016/j.tips.2017.04.005Suche in Google Scholar PubMed

[24] Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40:405–12.10.2337/diab.40.4.405Suche in Google Scholar PubMed

[25] Saso L, Firuzi O. Pharmacological applications of antioxidants: lights and shadows. Curr Drug Targets 2014;15:1177–99.10.2174/1389450115666141024113925Suche in Google Scholar PubMed

[26] Ravipati AS, Zhang L, Koyyalamudi SR, Jeong SC, Reddy N, Bartlett J, et al. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement Altern Med 2012;12:173–86.10.1186/1472-6882-12-173Suche in Google Scholar PubMed PubMed Central

[27] Gulcin I, Huyut Z, Elmastas M, Aboul-Enein HY. Radical scavenging and antioxidant activity of tannic acid. Arab J Chem 2010;3:43–53.10.1016/j.arabjc.2009.12.008Suche in Google Scholar

[28] Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J 2013;2013:1–16.10.1155/2013/162750Suche in Google Scholar PubMed PubMed Central

[29] Lahouel M, Amedah S, Zellagui A, Touil A, Rhouati S, Benyache F, et al. The interaction of new plant flavonoids with rat liver mitochondria: relation between the anti- and pro-oxidant effect and flavonoids concentration. Therapie 2006;61:347–55.10.2515/therapie:2006025Suche in Google Scholar

[30] Ketron AC, Gordon ON, Schneider C, Osheroff N. Oxidative metabolites of curcumin poison human type II topoisomerases. Biochemistry 2013;52:221–7.10.1021/bi3014455Suche in Google Scholar PubMed PubMed Central

[31] Rice-Evans C. Plant polyphenols: free radical scavengers or chain breaking antioxidants? Biochem Soc Symp 1995;61:103–16.10.1042/bss0610103Suche in Google Scholar PubMed

[32] Liyana-Pathirana CM, Shahidi F. Antioxidant properties of commercial soft and hard winter wheats (Triticum aestivum L.) and their milling fractions. J Sci Food Agric 2006;86:477–85.10.1002/jsfa.2374Suche in Google Scholar

[33] Molyneux P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol 2004;2:211–9.Suche in Google Scholar

[34] Abalaka ME, Mann A, Adeyemo SO. Study on in vitro antioxidant and free radical scavenging potential and phytochemical screening of leaves of Ziziphus mauritiana L. and Ziziphus spinachristie L. compared with ascorbic acid. J Med Genet Genomics 2011;32:28–34.Suche in Google Scholar

[35] Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 2003;78:517–20.10.1093/ajcn/78.3.517SSuche in Google Scholar PubMed

[36] Diallo D, Sanogo R, Yasambou H, Traoré A, Coulibaly K, Maïga A. Etude des constituants des feuilles de Ziziphus mauritiana Lam. (Rhamnaceae) utilisées traditionnellement dans le traitement du diabète au Mali. C R Chim 2003;7:1073–80.10.1016/j.crci.2003.12.035Suche in Google Scholar

[37] Karou D, Dicko MH, Simporé J, Yaméogo S, Sanou S, Traoré AS. Activités antioxydante et antibactérienne de polyphénols extraits de plantes médicinales de la pharmacopée du Burkina Faso. Univ Univ Ouaga de l’Université de Ouagadougou (Burkina Faso). Available at: http://www.univ-ouaga.bf, 2005. 30 Apr 2016.Suche in Google Scholar

[38] Blazovics A, Lugasi A, Sentmihalyi K, Kery A. Reducing power of the natural polyphenols of Sempervinum tectorum in vitro and in vivo. Acta Biol Szeged 2003;47:99–102.Suche in Google Scholar

[39] Gulcin I, Gungor SI, Beydemir S, Elmatas M. Comparison of antioxidant activity of clove (Egenia caryphylata thumb) buds and lavendes (Lavanda Stoechas L.). Food Chem 2004;87:393–400.10.1016/j.foodchem.2003.12.008Suche in Google Scholar

[40] Srinivasan R, Chandrasekar MJ, Nanjan MJ, Suresh B. Antioxidant activity of Caesalpinia digyna root. J Ethnopharmacol 2007;113:284–91.10.1016/j.jep.2007.06.006Suche in Google Scholar

[41] Lopez-Alarcon C, Denicola A. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Anal Chim Acta 2013;763:1–10.10.1016/j.aca.2012.11.051Suche in Google Scholar

[42] Valenzuela A. The biological significance of malondialdehyde determination in the assessment of tissue oxidative stress. Life Sci 1991;48:301–9.10.1016/0024-3205(91)90550-USuche in Google Scholar

[43] Sinha M, Manna P, Sil PC. Protective effect of arjunolic acid against arsenic induced oxidative stress in mouse brain. J Biochem Mol Toxicol 2008;22:15–26.10.1002/jbt.20209Suche in Google Scholar PubMed

[44] Lankin V, Konovalova G, Tikhaze A, Shumaev K, Kumskova E, Viigimaa M. The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes. Mol Cell Biochem 2014;395:241–52.10.1007/s11010-014-2131-2Suche in Google Scholar PubMed

[45] Jomova K, Valko M. Importance of iron chelation in free radical-induced oxidative stress and human disease. Curr Pharm Des 2011;17:3460–73.10.2174/138161211798072463Suche in Google Scholar PubMed

[46] Palejkar CJ, Palejkar JH, Patel AJ, Patel MA. A plant review on Ziziphus mauritiana. Int J Univers Pharm Life Sci 2012;2:202–11.Suche in Google Scholar

Received: 2017-10-14
Accepted: 2019-01-29
Published Online: 2019-05-04

©2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Minireview
  2. Clinical assessment of arthritic knee pain by infrared thermography
  3. Original Articles
  4. Methanol stem bark extract of Adansonia digitata ameliorates chronic unpredictable mild stress-induced depression-like behavior: Involvement of the HPA axis, BDNF, and stress biomarkers pathways
  5. The protective effect of aqueous extract of Typha capensis rhizomes on cadmium-induced infertility in rats
  6. The aqueous and methanol extracts of Bambusa vulgaris (Poaceae) improve calcium and phosphorus levels, and bone microstructure in ovariectomized model of osteoporosis
  7. Assessment of epigenetic changes and oxidative DNA damage in rat pups exposed to polychlorinated biphenyls and the protective effect of curcumin in the prenatal period
  8. Assessment of heart rate variability for different somatotype category among adolescents
  9. Neuroprotective role of 6-Gingerol-rich fraction of Zingiber officinale (Ginger) against acrylonitrile-induced neurotoxicity in male Wistar rats
  10. Antioxidant activity of crude ethanolic extract and fractions of Ziziphus mauritiana Lam. (Rhamnaceae) leaves from Burkina Faso
  11. In vitro modulation of cytochrome P450 isozymes and pharmacokinetics of caffeine by extracts of Hibiscus sabdariffa Linn calyx
  12. Experimental hypogonadism: insulin resistance, biochemical changes and effect of testosterone substitution
  13. Accelerated wound healing process in rat by probiotic Lactobacillus reuteri derived ointment
  14. Evaluation of inductive effects of different concentrations of cyclosporine A on MMP-1, MMP-2, MMP-3, TIMP-1, and TIMP-2 in fetal and adult human gingival fibroblasts
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jbcpp-2017-0176/html
Button zum nach oben scrollen