Startseite Naturwissenschaften Effects of calcination temperature on sol-gel synthesis of porous La2Ti2O7 photocatalyst on degradation of Reactive Brilliant Red X3B
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of calcination temperature on sol-gel synthesis of porous La2Ti2O7 photocatalyst on degradation of Reactive Brilliant Red X3B

  • Dechang Han , Zheng Ma , Ling Du und Wenjie Zhang EMAIL logo
Veröffentlicht/Copyright: 21. März 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The effects of calcination temperature on properties of porous lanthanum titanate using PEG4000 template in a sol-gel route were studied. Photocatalytic degradation of Reactive Brilliant Red X3B on the materials was evaluated. Monoclinic La2Ti2O7 was synthesized in all the samples. The growing up of La2Ti2O7 crystals leads to apparent increases in crystallite size and cell volume with increasing calcination temperature. The Eg values for the samples are 3.38, 3.40, 3.33 3.36 and 3.44 eV when calcination temperature increases from 600 °C to 1,000 °C. High temperature calcination leads to apparent loss of both specific surface area and pore volume, although the average pore size is nearly unchanged. The decoloration efficiency by adsorption is in close relationship to the surface area of the materials. The sample prepared at 900 °C has the maximum photocatalytic activity on degradation of Reactive Brilliant Red X3B in aqueous solution. A continuous loss of degradation efficiency is observed after recycling of the material due to complex reasons.

Award Identifier / Grant number: 2015020186

Funding statement: This work was supported by the Natural Science Foundation of Liaoning Province (No. 2015020186) and the open research fund of Key Laboratory of Wastewater Treatment Technology of Liaoning Province (No. 4771004kfs38).

References

1 Zhang WJ, Ma Z, Li KX, Yang LL, Li H, He HB. Curr Nanosci. 2016;12:514–519.10.2174/1573413712666151223201637Suche in Google Scholar

2 Pang D, Qiu L, Wang Y, Zhu R, Ouyang F. J Environ Sci. 2015;33:169–178.10.1016/j.jes.2015.01.017Suche in Google Scholar PubMed

3 Zhang WJ, Li CG, Ma Z, Yang LL, He HB. J Adv Oxid Technol. 2016;19:119–124.Suche in Google Scholar

4 Lozano-Sánchez LM, Obregón S, Díaz-Torres LA, Lee SW, Rodríguez-González V. J Mol Catal A: Chem. 2015;410:19–25.10.1016/j.molcata.2015.09.005Suche in Google Scholar

5 Li F, Yu K, Lou LL, Su ZQ, Liu SX. Mater Sci Eng B. 2010;172:136–141.10.1016/j.mseb.2010.04.036Suche in Google Scholar

6 Chen ZW, Jiang H, Jin WL, Shi CK. Appl Catal B: Environ. 2016;180:698–706.10.1016/j.apcatb.2015.07.022Suche in Google Scholar

7 Chen J, Liu SZ, Zhang L, Chen N. Mater Lett. 2015;150:44–47.10.1016/j.matlet.2015.02.134Suche in Google Scholar

8 Hou WM, Ku Y. J Alloys Compd. 2011;509:5913–5918.10.1016/j.jallcom.2011.03.042Suche in Google Scholar

9 Ikeda S, Hara M, Kondo JN, Domen K, Takahashi H, Okubo T,et al. Chem Mater. 1998;10:72–77.10.1021/cm970221cSuche in Google Scholar

10 Li YX, Chen G, Zhang HJ, Li ZH, Sun JX. J Solid State Chem. 2008;181:2653–2659.10.1016/j.jssc.2008.05.020Suche in Google Scholar

11 Hwang DW, Kim HG, Lee JS, Kim J, Li W, Oh SH. J Phys Chem B. 2005;109:2093–2102.10.1021/jp0493226Suche in Google Scholar PubMed

12 Wang Z, Teramura K, Hosokawa S, Tanaka T. Appl Catal B: Environ. 2015;163:241–247.10.1016/j.apcatb.2014.07.052Suche in Google Scholar

13 Onozuka K, Kawakami Y, Imai H, Yokoi T, Tatsumi T, Kondo JN. J Solid State Chem. 2012;92:87–92.10.1016/j.jssc.2012.03.055Suche in Google Scholar

14 Hu SJ, Jia LC, Chi B, Pu J, Jian L. J Power Sources. 2014;266:304–312.10.1016/j.jpowsour.2014.05.054Suche in Google Scholar

15 Ma ZJ, Wu KC, Sa RJ, Li QH, He C, Yi ZG. Int J Hydrogen Energy. 2015;40:980–989.10.1016/j.ijhydene.2014.11.088Suche in Google Scholar

16 Masayoshi U, Atsuko K, Mihoko O, Kentarou H, Shinsuke Y. J Alloys Compd. 2005;400:270–275.10.1016/j.jallcom.2005.04.004Suche in Google Scholar

17 Chang H, Jo E, Jang HD, Kim T. Mater Lett. 2013;92:202–205.10.1016/j.matlet.2012.11.006Suche in Google Scholar

18 Hao R, Zhou YF, Nie WY. J Chem Eng Chin Univ. 2012;26:296–300.10.1007/s11595-011-0217-1Suche in Google Scholar

19 Yu JG, Zhao XJ, Zhao QN. J Chin Ceram Soc. 2000;28:245–250.10.1353/rah.2000.0021Suche in Google Scholar

20 Yu XB, Wang GH, Luo Y. Chin J Catal. 1999;20:613–618.10.1053/plac.1999.0144Suche in Google Scholar

21 Tauc J, Grigorovici R, Vancu A. Phys Status Solidi. 1966;15:627–637.10.1002/pssb.19660150224Suche in Google Scholar

Received: 2016-11-11
Revised: 2016-12-5
Accepted: 2016-12-21
Published Online: 2017-3-21

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Editorial
  2. Excitation Kinetics of Oxygen O(1D) State in Low-Pressure Oxygen Plasma and the Effect of Electron Energy Distribution Function
  3. Using amino-functionalized Fe3O4-WO3 nanoparticles for diazinon removal from synthetic and real water samples in presence of UV irradiation
  4. Treatment of high salinity wastewater using CWPO process for reuse
  5. Electrochemical Advanced Oxidation Processes (EAOP) to degrade per- and polyfluoroalkyl substances (PFASs)
  6. Effect of feedstock impurities on activity and selectivity of V-Mo-Nb-Te-Ox catalyst in ethane oxidative dehydrogenation
  7. Photocatalytic Degradation of Azo Dyes Over Semiconductors Supported on Polyethylene Terephthalate and Polystyrene Substrates
  8. Effects of calcination temperature on sol-gel synthesis of porous La2Ti2O7 photocatalyst on degradation of Reactive Brilliant Red X3B
  9. ClO2-oxidation-based demulsification of oil-water transition layer in oilfields: An experimental study
  10. Semi-permanent hair dyes degradation at W/WO3 photoanode under controlled current density assisted by visible light
  11. Degradation of PVA (polyvinyl alcohol) in wastewater by advanced oxidation processes
  12. Degradation of imidacloprid insecticide in a binary mixture with propylene glycol by conventional fenton process
  13. Gemini surfactant-assisted synthesis of BiOBr with superior visible light-induced photocatalytic activity towards RhB degradation
  14. Photocatalytic paraquat degradation over TiO2 modified by hydrothermal technique in alkaline solution
  15. Enhancement of Profenofos Remediation Using Stimulated Bioaugmentation Technique
  16. Mechanistic insight on the sonolytic degradation of phenol at interface and bulk using additives
  17. Biosolubilization of low-grade rock phosphate by mixed thermophilic iron-oxidizing bacteria
  18. Degradation of methyl orange using dielectric barrier discharge water falling film reactor
  19. Rapid prediction of hydrogen peroxide concentration eletrogenerated with boron doped diamond electrodes
Heruntergeladen am 29.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaots-2016-0160/pdf
Button zum nach oben scrollen