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Abstract: In recent years, the usage of point cloud data

for various mapping and other civil engineering tasks has

become increasingly popular. The detailed acquisition of

the environment forms a great advantage compared to

point-wise methods using e.g. total station measurements.

The major drawback is, that the uncertainty analysis of

the measured points and accordingly the derived parame-

ters is not straightforward. A variance propagation of the

observations would not lead to plausible results, since the

stochastic model is unknown in most of the cases. In this

work, we present an empirical way to determine uncer-

tainty information of the point cloud data captured by a

mobile mapping system (MMS) related to height differences

by using mainly the road surface, where the system drives

on. Height differences between objects are often considered

in the context of monitoring of land subsidence and engi-

neering structures or mapping tasks. For the evaluation,

height differences between points are analyzed, which dif-

fer in three major aspects from each other: the distances

between the height observations, the environmental con-

ditions, and the locations in the measurement volume of

the system. Repeated measurements of the road surface

and artificial targets are used to evaluate the precision of

the height differences. Using reference values enables an

analysis of the full uncertainty information. The results

from two data sets show, that the environmental conditions

severely influence the GNSS quality and consequently the

precision of height differences decreases. Due to positive

correlations between neighboring points, which are caused

by the trajectory information, the height difference uncer-

tainty increases concerning the traveled distance between

the points. Because of remaining calibration errors, the loca-

tion of the objects within the measurement volume of the

profile laser scanner also influences the uncertainty of the

height values and thereby also of height differences.
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1 Introduction

1.1 Motivation

In recent years the usage of 3D point clouds captured

by mobile mapping systems (MMS) or other sources has

become more popular due to technological advances and

the related increase in interest from different fields of

applications [1]. The main advantages of MMS are their

efficient data acquisition and versatile applicability, as dif-

ferent platforms exist for different application areas on

land, water, and in the air. Compared to terrestrial laser

scanning (TLS) point clouds, the uncertainty is assumed to

be higher because the system’s pose has to be known for

every timestamp to geo-reference every measured point.

Deviations from the pose estimation coming from the used

navigation sensors like global navigation satellite systems

(GNSS) or inertial measurement units (IMUs) influence the

uncertainty of the point cloud.

For many applications, the uncertainty of the extracted

parameters from the point cloud data has to be known since

this is essential information for the customer to interpret

them. For example in the case of deformationmonitoring of

retaining walls [2], the uncertainty of the points on the wall

has to be known in order to interpret the computeddisplace-

ments from MMS measurements correctly. Parameters that

are often wanted are, for example, the position and orienta-

tion of objects or their geometrical properties, like shape or

size. However, to derive the uncertainty of these parameters

is a difficult task formobilemapping systems, sincemultiple

error sources influence the quality of the point cloud like the

previously mentioned navigation sensors.

To estimate the uncertainty of the extracted parame-

ters, two different approaches can be considered. The first

one is called forwardmodeling. Bymodeling theuncertainty

of every used sensor of the system and their functional

relation on the point cloud or the parameter, the uncer-

tainty of the latter can be derived. This can be achieved for

example by variance propagation [3, 4] or Monte Carlo sim-

ulation [5–8] as suggested in the Guide to the Expression of

Uncertainty in Measurements (GUM) [9]. In [10], a forward
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modeling approach is performed and the resulting theoret-

ical position uncertainties are compared with an empirical

plane-based approach. The authors showed, that the posi-

tion uncertainty derived empirically and theoretically are

similar in their test environments. The main assumptions

are, that no remaining systematic errors from the compo-

nents of the system and no GNSSmultipath or signal loss are

present. This assumption does not hold especially in urban

areas.

The major drawback of these approaches is, that the

uncertainty distribution of the used sensors is unknown. In

many cases, especially for commercial systems, this prior

knowledge is unavailable. Furthermore, the sensor fusion

for the pose estimation and the point cloud generation is

often performed within commercial software, where the

exact functional relationship is not accessible. Additionally,

the correlations are often neglected in these approaches,

since the computational effort would be enormous to com-

pute and store a covariancematrix of thewhole point cloud.

The size of this matrix would be 3npts × 3npts, where npts
represents the number of points in the point cloud. How-

ever, the information about the correlations between points

is necessary for a correct estimation of the uncertainty of

the derived parameters. In [10] the authors only derive

the position uncertainty but ignore correlations between

neighboring points. For the evaluation of the uncertainty of

relative parameters like height differences, this information

is missing.

The second approach is called backward model-

ing. Unlike the first approach, the uncertainty of the

extracted parameters is derived empirically without model-

ing any input uncertainties. Therefore these parameters are

extracted from captured point cloud data and are compared

against reference data. The also called ground truth data

should be at least one magnitude more accurate than the

expected uncertainty of the system [11]. In this work, we

follow the backward modeling approach.

The considered parameters in recent works using

empirical approaches are evaluated using different features

or methods. The absolute position or height uncertainty is

evaluated using distinct points. These points are realized

by artificial targets [12–15] or point features like building

corners or centers of poles [13]. Additionally, point-to-plane

distances to reference planes are used to evaluate the abso-

lute position of planar objects [10, 16]. By using the distances

coming from cloud comparisons, the position of objects

can be evaluated, that are not planar. One frequently used

method is the Multiscale Model to Model Cloud Comparison

(M3C2) [17]. The idea is to compare the captured point cloud

with a reference point cloud without a parameterization of

the scanned object. The main advantage is, that no assump-

tions about the geometric properties of the objects have

to be made. Furthermore, the comparison provides dense

information on the deviations between both point clouds

over the scanned area. In [18] a kinematic laser scanning

system is evaluated by comparing themeasured point cloud

with a reference captured with a laser tracker. The aim was

to evaluate the performance of the pose estimation of the

system. Themain disadvantage of cloud comparisons is, that

in-plane displacements can not be detected [19].

Besides the position, distances between objects are also

evaluated. In [20] the performance of an indoormobilemap-

ping system is evaluated by analyzing the distances between

targets with different distances and angles. Others evaluate

the uncertainty of the extracted geometric properties, like

the radius of a cylindric object [4].

The previous works mainly focus on the uncertainty of

the absolute position of objects as a parameter to describe

the uncertainty of the point cloud data. For many applica-

tions, however, this parameter is not important. The evalua-

tion of MMS point cloud data should be linked to the actual

application fields, where the system can be used.

Since, to the best of our knowledge, only the absolute

height uncertaintywas considered, in this paperwe analyze

the uncertainty of height differences in point clouds. The

relative height difference between objects is relevant in

the field of ground subsidence monitoring, where discon-

tinuities in the height situation of the surface may occur,

which can result in damage to structures [21]. Another appli-

cation field is the deformation monitoring of engineering

buildings, like bridges [22]. Potential tilts of these structures

are analyzed by computing height differences between two

points at the two sides of the bridge, which aremeasured by

leveling. By considering the distance between both points,

an inclination can be derived.

To evaluate the uncertainty of height differences prop-

erly, three key questions are tackled in this work, which

might influence the uncertainty and which can change con-

sidering the application:

– How does the uncertainty of the height difference

depend on the traveled distance between twoheight

observations?Due to the estimation of a smooth trajec-

tory and the usage of sensors like GNSS and IMUs, the

pose information is highly correlated between neigh-

boring time stamps. Because of this, we assume that

points, which are measured shortly after each other,

are also highly correlated. This causes a change in the

height difference uncertainty concerning the traveled

distance or more precisely the time gap between the

acquisition of both objects.
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– How do the environmental conditions impact the

uncertainty of height differences? The trajectory esti-

mation process usually relies on GNSS positioning,

which is influenced by the surroundings of the master

and rover antenna. Bad GNSS conditions indicated by

a small number of visible satellites or a high PDOP

(Positional Dilution of Precision) value [23] lead to inac-

curate pose estimation, which influences the height

information and consequently also the height differ-

ence information.

– How does the location of the objects relative to the

measuring system influence the uncertainty of the

height differences between them? Due to uncertain-

ties in the system calibration [12] and other factors the

point uncertainty may vary depending on the location

of the object relative to the scanning system. Conse-

quently, the uncertainty of height differences between

a pair of points will also be influenced.

For the evaluation of the height difference uncertainty the

captured road surface is used, where theMMS is driving on.

The major advantage is, that the height information of the

road surface is almost always available. Consequently, we

can easily evaluate the uncertainty of height differences for

different traveled distances and environmental conditions.

The three questions will be tackled as follows: In Section 2

the basic concept and the used data sets are presented.

Additionally, the procedure of how to derive and analyze

the height difference information from the point cloud data

will be explained in this section. In Section 3 the conducted

experiments and the results are shown and discussed. The

findings are summarized in Section 4 and used to answer

the three key questions.

2 Materials and methods

To tackle the three mentioned factors, the uncertainty of

height differences has to be evaluated at different trav-

eled distances between both height measurements, other

environmental conditions, and varying locations relative

to the measuring system. Therefore, repeated measure-

ments of the same system were taken by driving for-

ward and backward through the test site multiple times

with the same velocity. Since we assume time-dependent

correlations because of the used sensors of theMMS and the

trajectory estimation procedure, an analysis of the distance

dependency of the height difference uncertainty should be

conducted with the same velocity. The speed should be

chosen depending on the needed resolution for the extrac-

tion of the height information. By comparing forward and

backward passes, systematic errors, which depend on the

measurement configuration can be detected. This proce-

dure is performed in different environments to analyze

the impact of environmental conditions. In this work, we

use the terms “precision” and “trueness” defined in ISO

5725-1 [24] to explain the uncertainty of our parameters.

Please note, that the “trueness” is also called “accuracy” in

manypublications anddescribes the closeness of agreement

between the expectation of test results and a true value [24].

By extracting the height difference information using the

scanned road surface and artificial targets in every repeated

measurement, the precision evaluation is conducted. Addi-

tional reference data with superior uncertainty is used to

evaluate the trueness of the height difference information

of the MMS point cloud. The dependency of the computed

height difference uncertainty on the three mentioned fac-

tors is analyzed.

2.1 Data collection

In this part, the used mobile mapping system and the

two captured data sets in different environments are

presented.

2.1.1 Measurement system

The measurement system used in this work is shown in

Figure 1. For the navigation task, an inertial navigation sys-

tem iMAR iNAV-FJI-LSURV (https://www.imar-navigation.

de/en/) with fiber optic gyroscopes, servo accelerometers,

and RTK-GNSS (Real Time Kinematic) is used. The IMU has a

randomwalk error of below 0.001 deg∕
√
h and 8 μg for the

angular rate and the acceleration. According to the manu-

facturer, the trueheading information is better than0.01 deg

and the attitude is better than 0.002 deg while using RTK-

GNSS. The position uncertainty is specified as 2 cm while

using RTK-GNSS. The trajectory estimation is performed in

the software Waypoint Inertial Explorer 8.90 and 9.00 [25].

Depending on the GNSS quality, accuracies of centimeters

and a hundredth of a degree or better can be reached for

the position and orientation according to the manufacturer.

For themapping task, a 2D laser scanner Z+ F Profiler 9012A

is mounted on the system [26]. The precision is specified as

0.2–0.5 mmat a distance of 10 mdepending on the reflection

properties of the measured surface. The maximum profile

rate is 200 Hz and the maximum scan rate is 1, 016 kHz.

The external calibration is done by a plane-based approach

described in [12]. The authors showed, that the uncertainty

of the lever arm is below 0.5 mm and for the boresight

angles below 0.002 deg using all realizations from mul-

tiple measurements. The calibration measurements were

https://www.imar-navigation.de/en/


638 — M. Wagner et al.: Evaluation of height differences in MMS point clouds

Figure 1: Used mobile mapping system. Left: Z+ F Profiler 9012A profile

laser scanner; Right: iMAR iNAV-FJI-LSURV IMU and RTK GNSS antenna.

conducted in the summer of 2019. Consequently, the com-

puted calibration parameters are more than 4 years older

than the considered point cloud data in this publication.

The platform for the system is either a trolley or, in our

case, a van. A case study on a motorway showed that the

uncertainty of the absolute height is about a fewmillimeters

to one cm under good GNSS conditions [27].

2.1.2 Public road data set

The first data set was captured on a public road near

Cologne, Germany. Figure 2 shows the considered road part.

The two-lane road part is around 3 km long and has an

approximate height change of 30 m. The entire road section

leads through a forest so GNSS conditions are expected to

be bad. Figure 3 shows the environmental conditions on

the road from the cockpit of a car. The trees near the road

occlude the sky, so that the GNSS signals are blocked or

disturbed. The measurement starts at the northern town

“Bensberg” and after driving over the reference road part,

the system turns to the southern town “Forsbach” anddrives

back to “Bensberg”. This procedure was performed 5 times

so that the number of acquisitions of the road surface is

10. The average speed was around 70 km∕h for the high-

lighted road part in every pass. The elapsed time between

the first and the last pass of the road is approximately

2 h.

For the RTK-GNSS solution, we use a virtual refer-

ence station computed by SAPOS NRW. The coordinate of

the reference station is chosen in the center of the test

environment, such that the maximum baseline is under

2 km. We expect no additional errors coming from the

length of the baseline.

Figure 2: Considered public road part between Bensberg and Forsbach

(Source: www.tim-online.nrw.de/tim-online2/).

Figure 3: Environmental conditions inside the forest in the public road

data set.

2.1.3 Rural dataset

The second data set is captured in a rural area at the outdoor

laboratories of the agricultural faculty of the University

of Bonn on Campus Klein-Altendorf, Germany. The chosen

road part displayed in Figure 4 is approximately 1.8 km

long. It connects the northern and the southern parts of

the campus. In the near surroundings of the road are just

a few buildings and mostly fields, so the GNSS conditions

are assumed to be very good at every spot. Consequently,

the absolute height information is expected to be precise

http://www.tim-online.nrw.de/tim-online2/
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Figure 4: Overview of the test site and the placed artificial targets. The

bottom map shows the distribution of the target locations in the test site.

The upper figure shows the distances of the targets relative to the road

center. Negative values denote, that the target is located on the left side

of the road while driving from south to north.

within the expected margin of a few centimeters over the

whole test site. The road is measured with the MMS 14

times (seven forward and backward passes) in total within

1 h and 40 min. The driving speed was nearly constant at

approximately 30 km∕h.
Additionally, 13 artificial targets are placed along

the road at different distances to the road center (see

Figure 4) to analyze the impact of the location of the height

measurement relative to the mobile mapping system. The

distances to the road center are visualized by the upper

part of the figure. Targets with a negative distance to the

road center are located on the left while driving from south

to north. Most targets are placed directly next to the road

surface, so they have a distance of about 2.5 m. Some targets

are further away from the road center, like point B26with a

distance of about 9 m. The used planar targets have an eight-

fold pattern and are presented in [28]. The generation of

their reference heights and height differences is explained

in Section 2.1.4.

As for the public road data set, we use a virtual ref-

erence station computed by SAPOS NRW for the RTK-GNSS

solution at the center of the test environment.

2.1.4 Generation of reference data

To evaluate the trueness of height differences derived by

the mobile mapping point cloud, we need reference data

that is at least one magnitude better than the expected

uncertainty of the height difference information of the used

system [11]. For the public road data set (see Section 2.1.2),

no reference data is available. Consequently, only the pre-

cision can be analyzed. For the rural data set presented

in Section 2.1.3, the coordinates of the artificial targets use

an existing reference point network with uncertainty in

the lower mm range [12]. Targets, which are not placed on

points of the reference network are determined using a

LeicaMS60multi-station frommultiple viewpoints from the

network. The uncertainty of the height differences coming

from the network adjustment software is better than 5 mm,

which is around half a magnitude superior to the expected

uncertainty from themobilemapping system.Depending on

the distance between the targets, the uncertainty decreases

to below 1 mm. The 2D location of every target center is

given in UTM, whereas the height information represents

physical heights. Please note, that the MMS can only mea-

sure ellipsoidal heights. Physical heights and height differ-

ences are not equal to the ellipsoidal ones. To tackle this

problem, the undulation model German Combined Quasi-

geoid (GCG2016) [29] is used. The physical heights of the

target are transformed to ellipsoidal heights so that we can

evaluate the trueness of the system properly. The absolute

accuracy of the model is for this region around 1–2 cm, but

the relative accuracy is expected to be higher. Neverthe-

less, the usage of the GCG2016 can cause systematic errors

in the estimated physical height differences of the MMS

concerning the spatial distance. The reason is a deviation

regarding the undulation variation of the model at the test

area.
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Figure 5: Region of the scanned road with the Leica MS60.

Besides the reference coordinates of the artificial tar-

gets, we scanned one part of the road surface with the Leica

MS60multi-station. The area is shown in Figure 5. TheMS60

is placed on point P5 and further network points are used

to fix the orientation. The scanning function of the multi-

station is used to capture a geo-referenced point cloud of

the marked area. The scanned points are used to derive

reference cross fall information at the grid points, which

lie within the scanned region. We assume, that systematic

deviations coming from bad incident angles and the surface

properties of the road do not severely influence the uncer-

tainty of the derived cross fall. Alternatively, geometric lev-

eling in the small area could also serve as more reference

data, which is more accurate.

2.2 Extraction of height difference
information

To evaluate the height difference information, we first need

to extract height information at different locations from the

point cloud. In this work, we primarily use the scanned road

surface to obtain this information. We extract two different

parameters here, which tackle different influencing factors

of the height difference uncertainty: height information of

the road surface along the road axis and the road cross fall,

which describes the inclination of the road surface perpen-

dicular to the road axis. As seen in the motivation, height

differences are often used to describe the inclination of an

object. In this case, we use the derived cross fall uncertainty

to describe the uncertainty of height differences at a certain

distance across the road axis. We distinguish between the

two height differences because the first one describes the

distance dependency and the other evaluates the influence

of the location relative to the system. As an additional source

for both factors, we use artificial targets to evaluate height

differences at different locations.

2.2.1 Definition of the points of interest

The use of artificial targets has the advantage, that we have

signalized points, which can be identified in multiple mea-

surements. Consequently, the same target can be matched

between all these measurements. To compare the height

information of the road surface, we also need fixed loca-

tions, where the height is estimated in every measurement

pass. Furthermore, we also need locations, where we esti-

mate the cross fall of the road. To overcome this problem,we

generate n grid points Xgrid with a constant spacing 𝜀 along

the road axis, where the height information is extracted. In

this work, we chose 𝜀 = 1 m. The axisr can be taken from

external information or can be extracted from the point

cloud data itself. For example in the public road data set (see

Section 2.1.2), the road axis is received by extracting the road

markings by their intensity value. The road axis can be seen

as a series of q points, which describe the nodes of a line

string:

r =
{
P
(0)
a
, P

(1)
a
, … P

(q)
a

}
. (1)

The equidistant grid points X(i)

grid
are generated by lin-

ear interpolation between consecutive axis points P(k )
a

and

P
(k+1)
a

so that they lie on the road axis r. At these n

grid points, the road surface height and the cross fall are

extracted.

2.2.2 Estimation of heights and height differences

In this part, we present how to extract the height difference

information for all of the three used sources.

2.2.2.1 Height differences from grid points along the

road axis

The point cloud pointsXc are given in global-cartesian coor-

dinates, in this case in the coordinate frame ETRS89, since

the mobile mapping system uses GNSS observations for

positioning. To derive height information out of the point

cloud data, the points are firstly transformed to ellipsoidal

coordinates and afterward to UTM coordinates [30]. By

doing this we ensure, that ellipsoidal height is represented

by the z-axis and the x- and y-axis defining the 2D location.

The same transformation is performed for the grid points

X
(i)

grid
and the road axis points inr.
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Figure 6: Grid points X( i )

grid
along the road axis and buffer with radius r

for point extraction.

At every grid point location, the neighboring point

cloud points are extracted, by checking if the 2D distance to

the grid point location is below a radius r (see Figure 6):

√
(xc − x(i)

grid
)2 + (yc − y(i)

grid
)2 ≤ r, i = 0,… , n (2)

We set the value for r to 0.5 m for both data sets. By

doing this, we ensure, that no point in the point cloud is

used for the height determination for multiple grid points.

Additionally, enoughpoints are extracted in both data sets to

ensure a robust height estimation. Especially for the public

road data set, the velocity of 70 km∕h causes a rather low

point density with a gap of around 0.1 m between the scan-

ning profiles.

The filtered pointsX(i)

in
are reduced by its corresponding

grid point X(i)

grid
:

X
(i)

red
= X

(i)

in
− X

(i)

grid
. (3)

Figure 7: Height estimation process using plane estimation for every

grid point with points lying in the buffer with radius r.

The reduced points X(i)

red
are used to estimate a plane

(see equation (4)).

nx ⋅ x
(i)

red
+ ny ⋅ y

(i)

red
+ nz ⋅ z

(i)

red
− d = 0 (4)

The resulting plane parameters
[
nx ny nz

]T
and d

are used to determine the relative height between the road

surface and the corresponding grid point
[
x(i)
grid

y(i)
grid

]T
. To

do this, we evaluate the plane equation at x(i)
red

= y(i)
red

= 0,

which represents the 2D location of the grid point in the

reduced coordinate system. We compute the relative height

𝛿h(i) at the location of the grid point X(i)

grid
by dividing the

distance parameter d by the z-component of the normal

vector nz:

𝛿h(i) = d

nz
. (5)

The height determination is illustrated in Figure 7.

Please note, that for the absolute height information, we

have to add the initial ellipsoidal height z(i)
grid

of the grid

point since we reduced the points by its coordinates (see

equation (3)).

h(i) = z(i)
grid

+ 𝛿h(i) (6)

It should be pointed out, that the surface representa-

tion can be changed to more complex ones like B-Splines if

needed.

The height difference u(i, j) between two grid points is

obtained by subtracting the height values h(i) and h( j) from

each other.

u(i, j) = h( j) − h(i) (7)

Figure 8 visualizes the height difference between two

grid points on the road surface.



642 — M. Wagner et al.: Evaluation of height differences in MMS point clouds

Figure 8: Height profile of a road and height difference between two

grid points X(4)

grid
and X(7)

grid
lying on the road axis.

2.2.2.2 Height differences from road cross fall

Since the location of the road axis relative to the mobile

mapping systems stays nearly the same, additional informa-

tion is needed to determine the entire uncertainty of height

differences. To overcome this problem the cross fall of the

road is computed at each grid point X(i)

grid
, which describes

the inclination of the road perpendicular to the road axis at

this location. Since inclinations are also described by height

differences (see Section 1), the opposite can be performed

if a scale is given by a distance. The idea is, to use all

point cloud points lying on the considered cross-profile to

determine the inclination instead of estimating the height

value at the center and the side of the road and computing a

difference. To do this, the profile points at the grid pointX(i)

grid

have to be extracted first. Therefore, we first need to extract

the points lying on the road surface from the rest of the point

cloud. There are several methods to automatically detect

the road in point clouds [31, 32]. In this paper, we extracted

the road surface manually. To extract the cross-profile and

derive the cross fall from a 2D-line fit at the grid point X(i)

grid
,

we need to transform the points, such that the x-axis is

parallel to the road axis. Therefore we use the previously

used UTM coordinates and ellipsoidal heightsXc of the point

cloud, where the y-axis points to the north pole. First, we

extract the neighboring points using equation (2). The radius

r is chosen here to 10 m so that we guarantee, that the full

cross-profile is inside this radius. Afterwards, we reduce the

points according to equation (3) using the current grid point

X
(i)

grid
.

Then we rotate the points around the z-axis and after-

ward around the rotated y-axis (see equation (8)). By doing

this, we ensure that the cross-section lies in the YZ-plane,

which is oriented perpendicular to the road axis. The trans-

formation is visualized in Figure 9.

X
(i)
RA

= Ry

(
𝛽
)
Rz(𝛼)X

(i)

red
(8)

The angles 𝛼 and 𝛽 are computed from the transformed

road axis points PUTM(k )
a

and PUTM(k+1)
a

(see (1)).

𝛼 = arctan 2

(
xUTM(k+1)
a − xUTM(k )

a

yUTM(k+1)
a − yUTM(k )

a

)
(9)

Figure 9: Transformations into road axis frame: first step: rotation

around the z-axis with angle 𝛼 (left); second step: rotation around the

rotated y-axis (right).

𝛽 = arcsin

(
z′(k+1)a − z′(k )a

‖P′(k+1)
a

− P
′(k )
a

‖

)
(10)

The axis points P′(k )
a

are received by rotating themwith

Rz(𝛼).

Only the points lying in a buffer along the road axiswith

a certain width 𝛿 around the grid position X(i)

grid
are used for

the estimation process:

x
(i)
RA

− 𝛿

2
≤ 0 ≤ x

(i)
RA

+ 𝛿

2
. (11)

Please note that the coordinates of the points are

reduced by the values of the grid point X(i)

grid
in equation (3).

The value for 𝛿 is chosen to 0.5 m for both data sets for

the same reasons as the search radius r before. Especially

because of the point density the buffer has to have a certain

size, such that multiple profiles of the laser scanner are

extracted for the computation.We assume, that the cross fall

does not change within this buffer.

Usually, the cross fall is estimated for every road lane

independently. In both considered data sets, we distinguish

between two lanes, which we both capture in each pass.

Since the origin of the transformed coordinate system is

the road axis, which is located in the center of the road,

we can distinguish between both lanes by the sign of the

y-coordinate y(i)
RA
.

X
(i)

left
= X

(i)
RA

(
y
(i)
RA

> 0
)

(12)

X
(i)

right
= X

(i)
RA

(
y
(i)
RA

< 0
)

(13)

In the following, we name the sides of the road left and

right. As we can see in equations (12) and (13), the left side

is where the y-coordinates are positive, and the right side,

where the y-component is negative for the remaining points
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within the buffer. Since the underlying coordinate system

is defined independently from the trajectory information,

the right lane is the same side of the road for forward and

backward passes, although the vehicle changed lanes. As a

result, we only consider the same lane for the evaluation at

once and do not mix them together, because we assume that

the cross fall is not the same on both sides of the road. In

both data sets the road course goes from south to north and

the set of the road axis points start at the south. This leads to

the fact that the left side is the “western” lane and the right

side of the road the “eastern” lane respectively (see Figures 2

and 4).

The interval points for each laneX(i)

left
andX(i)

right
are used

to estimate a 2D line in the YZ-plane for each side of the road

(see equation (14)). In Figure 10 the lanes are colorized in

orange and dark red. In equation (14) we used a ( ∗ ), which

can be replaced by (left) and (right) since we do not change

the computation of the cross fall depending on the side of

the road.

mi ⋅ y
(i)

(∗) + bi − z
(i)

(∗) = 0 (14)

The resulting parameters are the slope mi and the axis

intercept bi, which are also visualized in Figure 10. The cross

fall is equal to the slopemi. Usually, the cross fall is given in

%, but for better interpretation, we chose mm

m
in this work,

since we want to link the cross fall to a height difference.

2.2.2.3 Height differences from artificial targets

In the rural data set (see Section 2.1.3), artificial targets

are additionally placed near the road. The artificial targets

are used to evaluate the height difference uncertainty with

different locations relative to the mobile mapping system.

Since we know the location of the planar targets, we can

automatically extract the points lying on them by a random

sample consensus (RANSAC) algorithm [33] performed on

the point cloud points lying in the local neighborhood.

Figure 10: Definition of the road cross fallmi . By fitting a 2D line into the

points of the cross-profile of each road lane left (orange) and right (dark

red), the computed slope represents the cross fall.

The target centers Xtarget are estimated with the inlier

points of the RANSAC result using a cross-correlation

approach presented in [28]. The center coordinates of the

targets captured by the MMS are in UTM coordinates with

ellipsoidal heights, since the point cloud data was trans-

formed in the beginning (see 2.2.2 a). Height differences

are computed between every possible pair of target heights

h(i)
target

and h
( j)

target
:

u
(i, j)

target
= h

( j)

target
− h(i)

target
. (15)

Please note, that the MMS can only deliver ellipsoidal

heights. If we want to compare them with physical heights

fromother sources like leveling, we need a geoid undulation

[30] as stated before in Section 2.1.4. Since the distances

between the extracted regions of interest can be up to a

few kilometers, the undulation is not constant, meaning the

difference between ellipsoidal and physical heights changes

within the test site. To tackle this problem, the undulation

model GCG2016 [29] is used, as mentioned before.

2.3 Analysis of height differences

The computed height differences are analyzed, such that

the impact of the spatial distance between the measured

height measurements, the environmental conditions, and

the location of the height information relative to the mobile

mapping system during the measurement are investigated.

Therefore different measures are computed with different

types of height differences presented in Section 2.2.2. Please

note, that we use the ISO 5725-1 standard for the definition

of uncertainty in this work. Consequently, we use the terms

“precision” and “trueness” to describe the whole uncer-

tainty of a parameter.

2.3.1 Height differences from grid points along the road

axis

As mentioned in Section 2.1, we drive with the system over

the test site multiple times. The height information of every

generated grid point along the road axis is determined for

each pass, as explained in Section 2.2.2. At first, the empirical

standard deviation s
(i, j)
u of the height difference information

between grid points X(i)

grid
and X

( j)

grid
is computed:

su( i, j ) =

√√√√√
m∑
k=1

(
𝑣(k )
u( i, j )

)2

m− 1
(16)

The number m represents the number of realizations

of the height difference. If we can compute a height value
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for each grid point in every pass, the number of realizations

m equals to the number of passes. The residuals 𝑣(k )
u( i, j )

are

computed by subtracting the mean value ū(i, j) from the kth-

realization u(k )
(i, j)

:

𝑣(k )
u( i, j )

= u(k )
(i, j)

− ū(i, j) (17)

The standard deviation of a single height difference

is useful to evaluate the influence of the environmental

conditions since we can compare these values by resulting

standard deviations of other pairs of grid points with the

same spatial distance, which lie in different locations of the

test site.

The trueness of the height difference can only be eval-

uated by using existing reference height differences û(i, j) of

the used point pair X (i)

grid
and X

( j)

grid
. The difference between

themean and reference values represents the truenessmea-

sure:

Δu(i, j) = ū(i, j) − û(i, j). (18)

To evaluate the impact of the traveled distance between

the height measurements, the computed height differences

are grouped in distance classes k . Since the spacing 𝜀

between neighboring grid points is constant, the distance

along the road axis between the grid points is always a mul-

tiple of 𝜀. We can compute n− k different height differences

for each distance class Ck with a class distance 𝜖k of

𝜖k = k ⋅ 𝜖, k ∈ {1,… , n− 1}. (19)

The number n represents the number of grid points.

The standard deviation of the height differences of each

class s(k )u is computed by

s(k )
u

=

√√√√√√
mk∑
i=1

𝑣2
ui

mk − (n− k)
. (20)

The total number of realizations mk represents the

number of realizations for every pair within the distance

class k . If we can compute a height value for each grid

point in each pass, the number of realizations mk equals

(n− k) ⋅ N if N denotes the total number of passes. Please

note, that we need to subtract (n− k) mean values to com-

pute all residuals 𝑣ui in the current distance class, since we

have (n− k) different point pairs within this class. Addi-

tionally, the empirical standard deviation s(k )su
of the height

difference uncertainty s(k )u can be computed by consider-

ing all the empirical standard deviations of the grid point

pairs computed by equation (16), which are included in

the distance class. In the following, we call this value the

in-class variation of the height difference uncertainty. The

magnitude of this value is an indicator of how variable

the standard deviation of height differences is, because of

changing environmental conditions in the test site.

As we mentioned in the beginning, the reason for the

analysis with respect to the traveled distance is primarily

because of the uncertainty and the correlation of the tra-

jectory estimation. Consequently, we assume that the height

difference uncertainty depends on the time gap between

the acquisition and not really on the traveled distance. To

analyze the time dependency,we can transform the distance

𝜖k of the class k to a time gap 𝜏k byusing the average velocity

𝑣̄ of the system:

𝜏k =
𝜖k
𝑣̄
. (21)

The main assumption is, that the velocity stays con-

stant over the time of the acquisition of the grid points

X
(i)

grid
, since the classes are still built with respect to the

distance between the grid points. Especially for the com-

parison between the two data sets mentioned before with

significantly different velocities, also the time gap of the

classes should be considered.

2.3.2 Height differences from road cross fall

For each grid point location, the cross fall is estimated for

every pass. We compute the empirical standard deviation

smi
for each grid point location analog to equation (16).

The trueness value Δm(i) is computed the same way as in

equation (18). This value can only be computed if reference

information about the cross fall at this grid point location is

available.

2.3.3 Height differences from artificial targets

For every possible pair of target centers, the empirical

standard deviation s
u
( i, j )

target

is computed (see equation (16)).

The trueness valueΔu(i, j)
target

is represented by the difference

between themeanheight difference and the reference value

(see equation (18)).

3 Results and discussion

In this part, the experiments using the data sets presented

in Section 2.1 and the evaluation metrics in Section 2.3

are explained. Additionally, the results are shown and

interpreted.

For both data sets the height values and the cross fall

at every grid position generated along the road axis are

computed (see Section 2.2.2). The latter is presented only for
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the lane, which is located on the east if the street would

only go from south to north. In the following, this lane is

called the right lane. The height differences between every

pair of grid points are computed in every forward and back-

ward pass. Furthermore, in the rural data set (see Section

2.1.3), the center coordinates of the artificial targets are

estimated (see Section 2.2.2), and height differences are com-

puted between every pair of points. The height differences

and the cross fall are used to determine the uncertainty

of height differences concerning the three impact factors:

different traveled distances between both height measure-

ments, different environmental conditions, and varying

locations of theheight information relative to themeasuring

system.

3.1 Uncertainty concerning the traveled
distance

To evaluate the impact of the traveled distance, the height

difference uncertainty s(k )u for every distance class k is

considered. The values are shown in Figure 11 for both

data sets. The colors of the points depend on the number

of realized height differences within the distance class. The

number decreases depending on the arc length because the

number of possible pairs also decreases. The gray buffer

shows the in-class variation s(k )su
of the height difference

uncertainty of each distance class (see Section 2.3). Both

figures have an upper and a lower x-axis. The lower one

represents the spacing 𝜖k between the points of the distance

class k , whereas the upper one shows the average time

gap 𝜏k between the acquisition of the points considering

the velocity of the vehicle. The main assumption is, that the

velocity stays constant during the acquisition of the consid-

ered road part over in all passes. We observe an increasing

height difference uncertainty s(k )u concerning the traveled

distance in both data sets. In the public road data set, for the

distances 1 m–500 m, the increase is approximately linear.

The slope decreases then and at a distance of 2, 200 m, the

value of s(k )u becomes smaller. If the distance between points

is about 10 m the precision of the height difference is 0.5 mm

for this system in this dataset. At a distance of 100 m,we only

achieve a precision of 3.7 mm.

In the rural data set, for d = 10 m the standard devi-

ation is 0.5 mm, and for d = 100 m it increased to s(100)u =
2.7 mm. As we can observe, the height difference uncer-

tainty is not increasing linearly. The slope decreases after

an arc length of about 200 m.

We can see in both data sets, that the uncertainty of

height differences is increasing regarding the distance, espe-

cially for distances below 200 m. However, both data sets

cannot be compared directly with each other using the

lower x-axis, because the driving speed was significantly

different. On the public road, the average vehicle velocity

was 70 km∕h, whereas on the rural road, the speed was just
30 km∕h. By looking at the upper x-axis, we see that also for
similar time gaps, the values of the s(k )u are different for both

data sets. At a time gap of around 20 s, the height difference

uncertainty is approximately 12 mm for the public road data

set and 3 mm for the rural data set. If we reduce the time

gap to 1 s, the uncertainty values are 0.8 mm and 0.5 mm,

which is similar. The location relative to themobilemapping

system stays the same for both data sets, which leads to

the conclusion, that the only reason for this change in the

Figure 11: Height difference uncertainty for different distance classes described by the standard deviation s(k )u . The lower x-axis represents the

distance 𝜖k of the class, whereas the upper x-axis shows the average time gap 𝜏k between the acquisition of the point pairs in a class by considering the

average velocity of the vehicle in the data set. The colors represent the number of realizations within each distance class. The gray buffer visualizes the

in-class variation s(k )su
described as a standard deviation of the height difference uncertainty within the distance class. Please note, that the scale of the

left figure is two times higher than the right one for visualization reasons. (a) Results from the public road data set. (b) Results from the rural data set.
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uncertainty is the traveled distance or the time gap and

the change of the environmental conditions between the

points. Since the height difference uncertainty s(k )u of both

data sets is similar for smaller distances and time gaps, the

environmental conditions do not affect the uncertainty of

these distance classes. Furthermore, the in-class variation

of the height difference uncertainty s(k )su
is smaller for these

classes. This is an indicator of a stable uncertainty over

the whole test environment for this distance class, which

also indicates the low dependency on the environmental

conditions. The remaining influencing factors are time-

dependent correlations coming primarily from the GNSS

and IMU observations, which are fused in a Kalman filter to

estimate the pose of the vehicle. The positional errors are

nearly the same for both height values and are canceled

out for the height difference. For small distances, the IMU

delivers stable relative poses. The GNSS observations have a

larger influence on height differences over larger distances,

which is analyzed in the next subsection inmore detail. Nev-

ertheless, we can see in both data sets, that the uncertainty

stops increasing for high distance classes. Consequently, the

height difference uncertainty becomes practically indepen-

dent of the traveled distance for higher distance classes.

3.2 Uncertainty concerning the
environmental conditions

To evaluate the impact of the environmental conditions

the resulting uncertainty measures from both data sets are

compared. The surroundings of both data sets are com-

pletely different. We describe the environmental conditions

by using the computed the Positional Dilution of Preci-

sion (PDOP) [23] from the trajectory estimation process in

Inertial Explorer [25] (see Section 2.1.1). The PDOP value

depends on the geometry of the used GNSS satellites for

the position estimation. Consequently, we use this value

as an indicator for locations with bad GNSS conditions,

which mainly influence the trajectory estimation quality.

The PDOP value is shown in Figure 12 for both data sets.

We observe, that the PDOP values displayed in Figure 12b

are between 0 and 1 most of the time. Only one small part

in the northern area shows a PDOP value of larger than

5. This means, that the GNSS conditions are very good at

nearly every position in the test site. The conditions are

completely different at the other test site (see Figure 12a).

The PDOP value is larger at every position. There are several

areas, where the values are larger than 5. In some of these

areas, no GNSS solution is computed. We observe, that the

GNSS conditions are significantly worse than in the rural

environment.

Figure 12: PDOP values of one measurement epoch for both data sets.

(a) PDOP value at the test site in the forested area. (b) PDOP value at the

test site in the rural area.

Since bad GNSS conditions influence the height infor-

mation, the standard deviation of the height values s(i)
h
at

every grid point X(i)

grid
in both test sites is computed and

compared. We calculate s(i)
h
analogous to equation (16) by

computing the residuals 𝑣(k )
hi

from the mean value h̄i (see

equation (17)). The assumption is, that higher uncertainties

in the height information also lead to higher uncertainties

for the height difference information. Figure 13 shows the

standard deviation of the height information s(i)
h
at both test

sites for each grid point. We observe, that the height uncer-

tainty severely differs betweenboth data sets. The values for

the rural area data set (see Figure 13b) are between 4 mm

and 8 mm. However, in the foresty area (see Figure 13a) the

standard deviation changes between 6 mm and 30 mm. The

values depend on the location within the test site and are

higher in regions where the PDOP value is high.

This also affects the uncertainty of height differences

s(k )u per distance class. If we consider Figure 11 again,

we observe severe differences between both data sets for

higher distance classes. For distance classes larger than

500 m the value of s(k )u is higher than 15 mm for the public

road data set (see Figure 11a). Themaximumvalue is around

27 mm. Figure 11b shows the height difference uncertainty

s(k )u per distance class for the rural data set. The values are

at a distance of around 400 m around 5 mm. Themagnitude

of the height difference uncertainties s(k )u are fitting to the

height uncertainties s(i)
h
displayed in Figure 13. The reason



M. Wagner et al.: Evaluation of height differences in MMS point clouds — 647

Figure 13: Standard deviations of the height information s( i )
h
of each grid

point in both data sets. (a) Standard deviation of the height information

in the public road data set. (b) Standard deviation of the height

information in the rural area data set.

for this ismost likely the different environmental conditions

since the traveleddistance and the location of the grid points

relative to the system are the same for both data sets in the

same distance class. Furthermore, the in-class variations of

the height difference uncertainties s(k )su
are larger for the

public road data set. So the uncertainties are more vari-

able within a distance class, which comes from different

environmental conditions of the point pairs. Consequently,

the height difference uncertainty of points along the road

axis is severely influenced by the environmental conditions,

especially for larger distance classes.

This does not hold for the uncertainty of the cross

fall mi. The empirical standard deviation smi
changes in

both data sets between 0.7 mm

m
and 1.1 mm

m
in both data

sets. The changes appear to be random since no environ-

mental dependency is observable. The reason for this is,

that the measurement of the cross-profile happens at the

same time. Errors in the absolute height information of

the pose of the system are influencing all profile points

the same way. Consequently, the height difference is not

affected by this error. Only errors in the systems’ roll angle

and calibration can cause errors in the cross fall, which

do not seem to depend on the changing environmental

conditions.

3.3 Uncertainty concerning the location
relative to the measurement system

To evaluate the impact of the location of the height mea-

surement with respect to the mobile mapping system on

the uncertainty of height differences, the cross fall is con-

sidered. Therefore, the residuals of the cross fall 𝑣mi
and

their standard deviation smi
are considered for every grid

point. Figure 14 shows the residuals of the cross fall esti-

mation to the mean value of the right lane for every grid

point in the rural area. Please note, that the right lane was

previously defined as the eastern lane and it is the same

lane for forward and backward passes. The forward and

backward passes are symbolized with upper and upside-

down triangles. The passes are plotted with different colors.

It changes between 1.6
mm

m
and 0.7

mm

m
. There are no large

variations of the standard deviation visible. We observe a

systematic offset between all forward passes compared to

the backward passes by a constant factor of around 2
mm

m
.

The same observations can bemade for the public road data

set, as stated in Section 3.2. Because of this, no additional

figure is shownhere. The reason for thismight be an error in

the system calibration since it stays constant over both data

sets and does not change depending on the location within

one data set. One of the three boresight angles directly

influences the cross fall estimation, which causes a tilt of

the point cloud across the driving direction. If we adjust

the cross fall by the computed constant offset between for-

ward and backward passes, the empirical standard devi-

ation decreases to around 0.4
mm

m
. These small variations

can be caused by errors in the trajectory information or the

profile laser scanner. The same observation can bemade for

the left lane, which is not shown here.

Since reference data exists for the rural data set in one

small region, the trueness of the height differences uncer-

tainty can be evaluated under the same environmental con-

ditions. Therefore, the scanned road surface measured by

the Leica MS60 is used. Figure 15 shows the residuals of the

estimated cross fall to the reference values Δm(i). Like the

other figures, the colored triangles represent the residuals

of each path to the reference value. The blue dashed line

represents the residuals of the mean value to the reference

value for the grid points in the scanned area. We observe,

that themean values are close to zero for every point. There

are no systematic offsets or something else visible for the

blue curve. Only the systematic deviations between forward

and backward passes exist, whereas the mean values have

a magnitude of 0.5
mm

m
.
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Figure 14: Residuals of the cross fall to the mean value for every grid point in the rural data set (right part of the cross-section).

Figure 15: Residuals of the cross fall to the reference value in the rural

data set (right part of the cross-section).

Additionally, for the rural data set, the placed artificial

targets can be used to evaluate the influence of the location

of the object relative to the system. Therefore, the height

residuals 𝑣h( i )
target

are analyzed for each of these targets con-

sidering their different distances to the road center (see

Figure 4). Afterward, the height difference uncertainties

between every possible pair of targets are considered and

compared with the values derived from the grid points.

Figure 16 shows the residuals of three targets to their

mean height value, which have different distances to the

road center. The forward and backward passes are visual-

ized with different colors and with upper and upside-down

triangles, like in the figures before, but without additional

color information for the pass identification. The target A1

has a distance to the road center of around 3 m, which can

also be seen in Figure 4. Targets P5 and B26 have a distance

of around 5–6 m and 9 m.We observe, that the forward and

backward passes are diverging concerning an increase of

the distance. This behavior fits the results of the cross fall,

that forward and backward point clouds have a constant

Figure 16: Residuals of three targets with increasing distances to the

road center (rural data set).

tilt of about 2
mm

m
. The average difference between forward

and backward passes for point B26 is around 22 mm, which

can be explained by this tilt. That means, that the height

information uncertainty increases relative to the distance

to the measuring system. The most plausible reason are

remaining errors in the system calibration, as mentioned

before. Please note, that the used calibration parameters are

more than four years older than the data sets considered in

this paper.

Consequently, the height differences are also influ-

enced by the different configurations of both targets.

Figure 17 shows the empirical standard deviation of the

height differences between every possible pair of target

points s
u
( i, j )

target

displayed with differently colored squares. In

total, there are
(
13

2

)
= 78different target pairs. The yellow

curve shows the height difference uncertainty s(k )u of each

distance class of the road surface points, which are also

shown in Figure 11b. The height differences of the target

pairs are divided into three groups, which are displayed

in different colors. We do this, because the difference of

the location relative to the measuring system influences the
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Figure 17: Standard deviation of height differences between targets in the rural data set. The yellow curve represents the uncertainty of height

differences of the distance classes k of the grid points along the road axis. The squares represent the height difference uncertainty for every possible

pair of targets.

uncertainty of height differences, as stated before. In the

first group are all height differences, where the target pairs

are lying on the same side of the road and the horizontal dis-

tance to the road center is similar. In this group, the standard

deviations s
u
( i, j )

target

are expected to be similar to the estimated

ones from the grid points on the road surface since there is

no difference in the location betweenboth targets relative to

the system. Their height difference uncertainties are plotted

as blue squares. We observe, that the uncertainties fit the

curve of the grid points quite well. It seems that there are no

other influencing factors compared to the grid points on the

road surface. Some target pairs in the group have a slightly

larger standard deviation than the yellow curve, but this

Figure 18: Residuals of height differences between targets to the

reference data in the rural data set.

can be explained by the not-exactly-equal distances of the

targets to the road center. The second group is displayed in

light orange. In this group, all target pairs are on the same

side of the road but have significantly different distances to

the road center. Consequently, the previously mentioned tilt

in the point cloud influences the height difference depend-

ing on the relative position between the system and the

target. We observe, that the empirical standard deviation

s
u
( i, j )

target

of the height differences is higher than for the first

group. The orange squares are above the yellow curve. The

last group is displayedwith red squares. In this group, every

target pair is included, where the targets are located on

different sides of the road. Consequently, the influence of

the tilt on the height difference is high, since one target

is measured too high and one too low. We see, that the

standard deviations of the height difference in that group

are the largest. Furthermore, there is no clear trend, that

the uncertainty increases concerning the distance between

both points, is visible. To conclude, the systematic error,

which causes the tilt between forward and backward pass,

heavily influences the height difference uncertainty, if both

points lie at different locations relative to the measuring

system.

Since reference height differences between all target

pairs exist, due to reference height values from each tar-

get center, the trueness of height differences can be evalu-

ated. Figure 18 shows the residuals of the height differences

between every pair of targets to the reference value. The

big squares symbolize the residuals of the mean values to

the reference values. Their colors have the same meaning
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as before, so they divide the height differences into three

groups. The smaller transparent squares in the background

represent the residuals of every pass to the reference value.

The color depends on, whether the residual belongs to a

forward or a backward pass. We observe, that the mean

residuals are below 4.5 mm. The average value is −1 mm,
which can be explained by the small remaining errors of

the used undulation model (see Section 2.2.2). For larger

distances, the mean residuals are all negative, because the

undulation variation in the test site might be slightly differ-

ent than the modeled one. Other systematic behaviors con-

sidering the mean values (larger squares) are not observ-

able. Consequently, the traveled distance does not influence

the trueness, except for the drift in the undulation model.

Additionally, we observe, that for height differences in the

red category (different sides of the road), the residuals of

forward- and backward passes (smaller squares) diverge.

This can be seen especially for the point pair B26 and P6,

which is located at around 1, 200 m distance in the figure.

The green and purple points are separated, but the mean

value fits well with the reference data. So consequently,

the systematic deviation can be canceled out by averaging

forward and backward passes.

4 Conclusions

This paper presents a method to evaluate the uncertainty

of height differences in point clouds captured by mobile

mapping systems. Since the stochastic model of these sys-

tems is unknown or hard to model, a backward model-

ing approach was chosen. The method analyzes the impact

of three major influencing factors: the traveled distance

between the points, the environmental condition, where the

height difference is computed, and the location relative to

the measuring system.

– The impact of the traveled distance or the time gap

between both height acquisitions was analyzed by

evaluating height differences with different spatial

distances. The use of generated grid points at the road

surface provides a detailed impression of how the

height difference uncertainty behaves concerning the

temporal distance. It was shown that the uncertainty of

points lying close to each other is much smaller since

the two points have highly correlated pose informa-

tion coming from the trajectory. Furthermore, we saw,

that the environmental conditions do not significantly

influence the computed height difference uncertainty

for small distances under 100 m with the used mobile

mapping system and trajectory processing software.

– The influence of the environmental conditions was

evaluated, by analyzing the uncertainty in different

environments in the same way. It was shown that bad

GNSS conditions lead to a higher uncertainty in the

height information and consequently a larger standard

deviation of height differences. This is especially the

case if the distance between both height measurements

is large.

– The influence of the location of both points relative to

the measuring system was evaluated by the use of arti-

ficial targets placed at different distances from the road

center. Additionally, the road cross fall was considered,

since it can be interpreted as a height difference across

the driving direction. The results show that systematic

errors affect the uncertainty of height differences if the

points lie at different locations within the measuring

volume. A potential reason for this behavior is an error

in the system calibration,which causes a tilt of the point

cloud perpendicular to the driving direction. Since the

calibration valueswere estimatedmore than four years

before the acquisition of the data sets considered in

this paper, they might have changed over the years.

To prove this, a new system calibration has to be per-

formed in the future.

With this evaluation method, systematic deviations from

insufficient system calibration can be detected, as long they

are affecting the height difference information. By tak-

ing additional measurements in similar environments, the

transferability can be evaluated. Additionally, other envi-

ronments should be considered, like urban environments,

where mobile mapping systems are often used.
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