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Abstract: Displacements in typical monitoring applications

occur in 3D but having sensors capable of measuring such

3D deformations with areal coverage is rare. One way could

be to combine three or more line-of-sight measurements

carried out from different locations at the same time and

derive 3D displacement vectors. AutomotiveMultiple-Input-

Multiple-Output Synthetic Aperture Radar (MIMO-SAR) sys-

tems are of interest for suchmonitoring applications as they

can acquire line-of-sight displacement measurements with

areal coverage and are associated with low cost and high

flexibility. In this paper, we present a set of algorithms deriv-

ing 3D displacement vectors from line-of-sight displacement

measurements while applying spatial and temporal least

squares adjustments. We evaluated the algorithms on sim-

ulated data and tested them on experimentally acquired

MIMO-SAR acquisitions. The results showed that espe-

cially spatial parametric and non-parametric least squares

adjustments worked very well for typical displacements

occurring in geomonitoring and structural monitoring (e.g.

tilting, bending, oscillating, etc.). The simulations were con-

firmed by an experiment, where a corner cube was moved

step-wise. The results show that acquisitions of off-the-shelf

automotive-grade MIMO-SAR systems can be combined to

derive 3D displacement vectors with high accuracy.
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1 Introduction

1.1 Overview

Monitoring of natural and artificial structures is carried out

by public authorities and private entities tomitigate the risk

of failure or fatal events. It is often crucial to know not only

the amplitude and speed but also the direction ofmovement

to assess the deformation mechanisms [1]. Various sensors

with different strengths and weaknesses are being applied

in deformation monitoring [2] but they are typically expen-

sive (e.g. total stations [3]) or their configuration cannot be

adapted flexibly by the user (e.g. satellite-based systems [4]).

Radar sensors in combination with radar interferometry

are of interest for deformation monitoring because of their

ability to detect surface deformations with sub-millimetre

precision and a temporal resolution on the level of millisec-

onds [5, 6]. However, radar systems are mainly sensitive

in the line-of-sight direction when using the phase infor-

mation [7] or orthogonal on a planar area when exploit-

ing the amplitudes [8]. Therefore the actual movement as

a 3D displacement vector cannot be derived with a single

instrument.

Automotive Multiple-Input-Multiple-Output Synthetic

Aperture Radar (MIMO-SAR) systems are particularly inter-

esting for deformation monitoring applications because of

their low cost and the potential to use multiple systems

concurrently [9]. Those systems are designed to distinguish

objects ahead of a vehicle. Usually, they have a wide field-

of-view (almost 180◦) with fine range and azimuth reso-

lutions but generally coarse elevation resolution. A single

instrument can derive a 2D map of LOS displacements by

using interferometry. Combining acquisitions of three or

more instruments allows the derivation of 3D displacement

vectors.

In this work, we investigate how to determine 3D dis-

placement vectors out of LOS displacement vectors. The

algorithms can of be applied to line-of-sight measurements

from various measuring instruments. Due to the previously

mentioned advantages, we are focusing on MIMO-SAR sys-

tems, and we tested and evaluated the algorithms on sim-

ulated and real MIMO-SAR acquisitions. To this end, we
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deploy three MIMO-SAR systems for an experimental setup

with a point scatterer in the form of a corner cube mounted

on a motorised translation stage as well as a concrete sam-

ple. We derive the 3D displacement vectors and compare

them to ground truth data.

After surveying the state-of-the-art, we describe in

Section 2 the processing workflow and the adjustment

algorithm to derive 3D displacement vectors from LOS dis-

placement vectors. In Sections 3 and 4 we test, validate, and

discuss the algorithm on simulated and real radar acquisi-

tions and we conclude in Section 5.

1.2 State-of-the-art

Deriving real 3D displacement measurements based on

radar interferometry requires utilising at least three radar

systems simultaneously from different locations. This can

be done by using three or more active (i.e. sending and

receiving) radar systems [10, 11] or by using bi-static config-

urationswith one active andmultiple passive (i.e. receiving)

radar systems [12]. It is also possible to employ a single

[13] or a combination of ground-based and satellite-based

sensors [14] for mapping slowly moving objects at different

locations and points in time.

Other approaches derive pseudo-3D displacements by

using one or two radar sensors while taking geophysical or

mathematical assumptions into account. For example:

– A bridge is expected to deform mainly in the direction

of gravity. A single sensor can be used to derive verti-

cal displacements based on the interferometric phase,

and the line-of-sight with its relation to the direction of

gravity [9].

– An open pit mine exhibiting sliding or toppling motion.

The interferometric phase measurements of two sen-

sors can be combined to derive pseudo-3D displace-

ments by utilising a weighting function for the height

values [15].

– A object moving between two acquisitions does change

not only the interferometric phase but also the ampli-

tude. This spectral diversity between two co-registered

acquisitions can be exploited and allows deriving the

orthogonal displacements (i.e. up-down and left-right)

[8, 16]. However, this comes with a severe drawback in

terms of accuracy as the accuracy depends now on the

angular and range resolution and not anymore on the

wavelength of the emitted electromagnetic wave.

All those approaches did not model any uncertainties and

weighting of the input data to improve the reliability of

the derived 3D displacement vectors. Furthermore and to

the authors’ knowledge, only single-time acquisitions have

been used to derive 3D displacements. In this paper, we

present an approach where time series were used to quan-

tify the uncertainties of line-of-sight displacement measure-

ment for each observed object or bin. We implemented

those variances in the stochastic model, and afterwards, we

carried out parametric and non-parametric least squares

(LSQ) adjustments based on temporal or spatial correlation.

2 Methods

We give an overview of the output of a radar acquisition with some rel-

evant properties and definitions in Section 2.1. An overview of the pro-

cessing workflow is then given in Section 2.2. Afterwards, we describe

the preprocessing of the data in Section 2.3, followed by the description

of the transformation of line-of-sight displacement vectors to the final

3D displacement vectors in Section 2.4.

2.1 Data characteristics

The basic output of a radar acquisition is a single look complex image

(SLC). The dimensions of this complex-valued matrix correspond to

the number of resolution cells in range and azimuth (Figure 1(b)). The

complex number of a cell B
k,l represents the amplitude AS

and phase

𝜙
S
of the radar signal scattered back by all the scatterers S within the

bin (Figure 1(a)). The bin size depends on the resolution Δr and Δ𝜃
in range and azimuth direction (Figure 1(c)), respectively. Following

and extending [17, 18], we define the polar coordinate system of the

MIMO-SAR system as follows:

– X
R denotes the cross-range direction in parallel to the linear

antenna array;

– Y
R denotes the along-range direction in parallel to the antenna

boresight;

– with ZR being orthogonal to XR and YR;

– the range R is the distance between the origin of all antenna pairs

and the scatterer S;

– the unit vector LOS encodes the direction from the origin to S;

– the azimuth 𝜃 is the deflection of LOS from Y
R in the XR

Y
R-plane;

and

– the elevation 𝜖 is the deflection of LOS from the XR
Y
R-plane.

It shall be noted that the azimuth in the context of linear SAR is not

equal to the geometric azimuth but is defined as

𝜃 = arcsin

(
{NVA − 2k: 0 ≤ k ≤ NVA, k ∈ ℤ}

NVA

)
(1)

with NVA being the number of unique and evenly-distributed synthe-

sised antenna positions along the cross-range direction (Figure 1(c)).

The output provided by the manufacturer for the MIMO-SAR system

is then in Cartesian coordinates as

X
R = R ⋅ cos

(
𝜃
)

(2)

Y
R = R ⋅ sin

(
𝜃
)

(3)

A simple radar system with one fixed receiving antenna (RXA) can

only derive the range component R from the received signal scattered

back from a scatterer S. Using multiple antennas, as is the case for a
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Figure 1: Radar acquisition of a scatterer S: (a) measurement principle of an FMCW radar sensor, (b) SLC matrix with the axes oriented in range and

azimuth; (c) topview and (d) cross-section of the polar coordinate system of a MIMO-SAR system and the relationship to the radar Cartesian coordinate

system.

MIMO-SAR system, it is also possible to compute the angle of arrival. If

the antennas are arranged linearly, the angle of arrival in the azimuth

direction can be detected but not the angle of arrival in the elevation

direction (Figure 1(c) and (d)). Getting the relative location in 3D coor-

dinates of the scatterer S observed by a linear MIMO-SAR can therefore

be established by either (a) having a 3Dmodel acquired by othermeans

andprojecting the bins to the surface [19] or (b)moving the radar sensor

along the axis Z
R
[20].

Determining a 3D displacement vector would require having at

least three known LOS displacement vectors in one common frame.

As each radar system uses its own, local polar coordinate system a

common global coordinate system has to be defined and implemented

(Figure 2).

2.2 Workflow and data preprocessing

We propose a four-step processing workflow to acquire 3D displace-

ment vectors from SLCs. An overview can be seen in Figure 3. The steps

are described in detail in their respective sections. As input data, a time

series of SLC images and a point cloud are required with information

regarding their relative location and orientation towards each other

Figure 2: Definition of the Cartesian coordinate system of MIMO-SAR

systems with a linear antenna array and a common global coordinate

system.

(Figure 2) [18]. A preprocessing has to be carried out to transform

each dataset to one common coordinate and temporal (i.e. temporal

shift of timestamps) system and create the interferograms containing

the displacements dLOS in line-of-sight. The interferograms are then

matched with the point cloud, and the line-of-sight displacement vec-

tors are calculated. In a final step least squares adjustments are applied

to determine the 3D displacement vectors d
3D
representing the actual

displacements of the corresponding scatterers.

As a first step, the SLC images of each radar instrument have to be

converted to interferograms by applying

d
k

LOS
= (𝜑

tk
− 𝜑

tk−1 ) ⋅
𝜆

4𝜋
(4)

on all bins of the image. Here,𝜑
t
contains the phase information at time

t, 𝜆 is the wavelength of the emitted electromagnetic wave (Figure 1(a))

and k is an index variable (Figure 1(b)). The resulting estimate dk
LOS

for

the line-of-sight displacement only coincides with the actual line-of-

sight displacement if the absolute value is smaller than 𝜆∕4. For larger
movements, phase unwrapping has to be performed (e.g. [21]).

In a second step, we analysed the time series of interferograms by

calculating for each bin B
k,l three different values: (a) The coherence

COH after [22] as a measure of noise in the spatial neighbourhood, (b)

the amplitude stability index ASI after [23, 24] as a measure of noise

in the temporal neighbourhood, with ASI being related to the well-

known amplitude dispersion index (ADI) [25] by ASI = 1− ADI, and

(c) the maximum displacement MRD as a measure to detect outliers.

We defined thresholds for those measures after empirically analysing

the images with the aim of keeping persistent scatterers. Bins with

a coherence COH < 0.8, an amplitude stability index ASI < 0.2, and

a maximum displacement MRD > 50 mm are omitted. Optionally, we

applied further filtering based on time constraints (i.e. within a given

time frame) and area of interest (i.e. within a given range and azimuth).

The intermediate results are then (1) a list of bins with persistent

scatterers and their respective polar coordinates in azimuth and range;

(2) for each of those bins a time series of line-of-sight displacements; and

(3) a list of timestamps representing the times of acquisition.

2.3 Coregistration and geometrical projections

The point cloud and interferograms need to be in one common coor-

dinate system to perform a successful matching. In parallel to the

previous steps, the Cartesian coordinates CG
PC

of the point cloud will

first be transformed to the Cartesian coordinate system of the radar

sensor thereby yielding C
R

PC
and afterwards to the polar coordinate

system of each radar sensor. For this purpose the centre coordinates

C
G

RI
=

[
X
G

RI
, YG

RI
, ZG

RI

]⊺
and orientation (𝛼 rotation around XG, 𝛽 rotation
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Figure 3: Simplified processing workflow from single look complex images to 3D displacement vectors.

around Y
G, and 𝛾 rotation around Z

G) of the radar sensor has to be

known. In our case study, this information has been extracted from a

point cloud acquired by a laser scanner [18]. The transformation can be

applied by using homogeneous coordinates on

C
R

PC
= M𝛼 ⋅M𝛽 ⋅M𝛾 ⋅ T ⋅ CG

PC
(5)

where M𝛼,M𝛽 ,M𝛾 , and T are the (homogeneous versions of the)

Tait–Bryan rotation matrices and the translation vector, respectively.

For potential future work, we already implemented three rotations

even though only two would be sufficient for linear array geocoding.

The result is a mapping from the matrix CG
PC
onto the matrix CR

PC

containing the Cartesian coordinates of the point cloud in the system of

the radar instrument.

C
G

PC
=

⎡⎢⎢⎢⎢⎣

X
G

PC,1
X
G

PC,2
… X

G

PC,n

Y
G

PC,1
Y
G

PC,2
… Y

G

PC,n

Z
G

PC,1
Z
G

PC,2
… Z

G

PC,n

1 1 … 1

⎤⎥⎥⎥⎥⎦
(6)

C
R

PC
=

⎡⎢⎢⎢⎢⎣

X
R

PC,1
X
R

PC,2
… X

R

PC,n

Y
R

PC,1
Y
R

PC,2
… Y

R

PC,n

Z
R

PC,1
Z
R

PC,2
… Z

R

PC,n

1 1 … 1

⎤⎥⎥⎥⎥⎦
(7)

These Cartesian coordinates can then be converted to polar coor-

dinates

RPC =
√
XR

PC

2 + YR

PC

2 + ZR
PC

2

𝜃PC = arctan

(
YR

PC

XR

PC

)

𝜖PC = sin

(
ZR
PC

R

)
(8)

The interferograms and point cloud are now in the same coordinate

system, and the actual matching can be done. The number of points

in the point cloud can be extensive and consists of many points not

being in the field of view (FOV) of the radar instrument. Therefore, a

first rough point cloud filtering is applied where points are kept if they

fulfil the conditions
Rmin ≤ RPC ≤ Rmax

𝜃min ≤ 𝜃PC ≤ 𝜃max

𝜖min ≤ 𝜖PC ≤ 𝜖max

(9)

Rmin and Rmax are theminimumandmaximumacceptable range values

and they both have to be positive. 𝜃min and 𝜃max are the minimum

and maximum acceptable azimuth values and they have to be within

the radar instruments field of view (i.e. TIDEP-01012: [−90◦, +90◦]).
𝜖min and 𝜖max are the minimum and maximum acceptable elevation

values and they have to be within the beam-width defined by the radar

instrument (i.e. TIDEP-01012: [−20◦, +20◦]).

The lower and upper bound (range), as well as the left and right

bound (azimuth) of each bin B
k,l , are defined by the range and azimuth

resolution. Therefore, each remaining point of the point cloud can be

compared to those bounds. If a point S is within the limits of a bin

B
k,l then the line-of-sight displacement dLOS is assigned to this point.

The line-of-sight defined by the unit vector can now be calculated by

applying subtraction

C
G

LOS
= C

G

RI
− C

G

PC
(10)

followed by a scaling

R =
√
C
G

LOS

⊺
⋅ CG

LOS

E
LOS

(i) = C
G

LOS
(i)

R(i, j)

(11)

with i and j being the indices of thematrixwith the constraints i = j and

∀i ∈ {1,… , n}, to receive the unit vectors E
LOS

= [EXEYEZ] or E
LOS

=
[e

LOS,1
… e

LOS,k
… e

LOS,n
]⊺. Finally, for each radar instrument, a list of

matched points exists. Those lists will be merged by only keeping the

points matched in all radar instruments.

2.4 Estimation of 3D displacements

The following section will explain the mathematical background of

the algorithms. We start with the observation equation for 3d dis-

placement vectors to line-of-sight observations in Section 2.4.1 followed

by a detailed description of the parametric and non-parametric least

squares adjustments in Section 2.4.2 and 2.4.3, respectively. Thefirst one

requires pre-knowledge of the function describing the data, while the

latter one requires a function describing the structure of the correla-

tions of the data.

2.4.1 Observation equations: Assuming a scatterer S moved

between observations carried out at times t1 and t2 (see Figure 4) then

the displacement can be described as a vector

d
3D

=
⎡⎢⎢⎣
d
X

d
Y

d
Z

⎤⎥⎥⎦, (12)

where dX , dY , and d
Z are the coordinate components of the displace-

ments in X, Y , and Z, respectively. A radar instrument k can derive

through interferometry, the displacement in line-of-sight dLOS,k . This is

the projection of d
3D
onto the (unit) vector e

LOS,k
which describes the

location of the scatterer S with respect to the radar instrument k. The

relation can be expressed by

rLOS,k = d
⊺

3D
⋅ e

LOS,k
(13)
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Reformulated and expressed in matrix notation this can be written as

⎡⎢⎢⎢⎣
rLOS,1

.

.

.

rLOS,n

⎤⎥⎥⎥⎦
⏟⏟⏟

l

=
⎡⎢⎢⎢⎣
e
X

1
e
Y

1
e
Z

1

.

.

.
.
.
.

.

.

.

e
X

n
e
Y

n
e
Z

n

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

A

⋅
⎡⎢⎢⎣
d
X

d
Y

d
Z

⎤⎥⎥⎦
⏟⏟⏟

x

(14)

and requires at least three independent observations dLOS to solve for

d
3D
. Using more than the minimum required observations will lead to

an over-determined equation system. A least squares (LSQ) adjustment

[26, 27] can be beneficial. The stochastic model for this adjustment

problem can be formulated as

l+ 𝜖 = Ax (15)

with l ∈ ℝn being the vector of observations, x ∈ ℝ3 the vector of

unknown parameters, A is the design matrix and 𝜖 are the deviations

assumed to be an i.i.d Gaussian random vector. The goal would then be

to find x such that

min
x

‖l− Ax‖2. (16)

which would correspond to x being the maximum likelihood estimator

for the parameters [28, p. 150]. The solution for Eq. (15) in combination

with a weighting matrix P to incorporate knowledge of the variance of

observations would then be [28, p. 139]

x =
(
A
⊺
PA

)−1
A
⊺
Pl. (17)

Applying this equation would provide the best solution for each scat-

terer S not accounting for temporal or spatial neighbourhood relations.

2.4.2 Parametric LSQ adjustment: Assuming ninstr instruments

acquired ntime observations of a scatterer S over a period of time. Apply-

ing Eq. (17) with Eq. (14) would give independent displacement vectors

d
3D

with coordinate components in X, Y , and Z for each instrument

and point in time. The same counts for all observed npoint scatterers.

Apparent, high-frequency movement attributable to noise (e.g. instru-

mental noise, atmospheric variation) would be visible in the resulting

displacement vectors. The aim would be to define a function with npara
parameters that can describe the observations l such that the resulting

vectors are smooth in the temporal or spatial domain.

The parametric function estimation requires as an input a func-

tion matching the expected behaviour of the data itself. We model

Figure 4: Relation between the measured Line-of-Sight displacements

and the actual occurring displacement in 3D. The square symbol indicates

the location of instrument I
k
in 3D space and the circular symbols

indicate the positions of a scatterer S at time t1 and t2, respectively.

x as a linear superposition of basis functions g
m
leading to the 3D

displacement vectors x being expressible as

x =
npara∑
m=1

𝛼
m
⋅ g

m
= G𝜶, (18)

where G is a design matrix, g
m
the mth basis function or column of

G, 𝜶 the parameter vector, and x the 3D displacement vector. The 3D

displacement vector has the shape of

x =
[
d
X

1
d
Y

1
d
Z

1
… d

X

n f
d
Y

n f
d
Z

n f

]⊺
(3⋅n f ×1)

(19)

with n
f
referring to either ntime (i.e. temporal LSQ adjustment) or npoint

(i.e. spatial LSQ adjustment). The parameter vector consists of npara
parameters with

𝜶 =
[
𝛼1 𝛼2 … 𝛼

npara

]⊺
(npara×1)

. (20)

where npara =
(
3 ⋅

(
ndeg + 1

))
in case of temporal and npara =(

32 ⋅
(
ndeg + 1

))
in case of spatial adjustment with ndeg being the

degree of the parametric function. The design matrix describes the

transformation and is built as

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(f
1
) 0 0

0 g(f
1
) 0

0 0 g(f
1
)

g(f
2
) 0 0

.

.

.
.
.
.

.

.

.

0 g(f
k
) 0

.

.

.
.
.
.

.

.

.

0 0 g(f
nf
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3⋅n f ×npara)

(21)

with

g(f
k
) =

[
(f
k
)0 (f

k
)1 (f

k
)2 … (f

k
)ndeg

]
(1×npara)

(22)

in case of a polynomial function of degree ndeg for an input fk with

f
k
=

⎧⎪⎨⎪⎩
[
t
k

]
, temporal LSQ[

X
k

Y
k

Z
k

]
, spatial LSQ

(23)

where, in the spatial context, we denote by the term (f
k
)n the three

functions
[
X
n

k
Y
n

k
Z
n

k

]
. As this choice of basis functions does not con-

tain multivariate polynomials, the model only permits non-linearities

that are separate in the individual space directions. Depending on the

expected behaviour of the displacement field, the inclusion of more

cross-terms might be appropriate. The projection of the 3D displace-

ment vectors onto the line-of-sight vectors to get the line-of-sight dis-

placement vectors l for each observation and instrument is made in a

second step. The linear equation Eq. (18) will be extended to

l+ 𝜖 = Q G𝜶
⏟⏟⏟

x

. (24)

with l containing all the observations

l =
[
r
i1 , f1

… r
in , f1

r
i1 , f2

… r
in , fn f

]⊺
(ninstr ⋅n f ×1)

(25)
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and the design matrix Q having a block-diagonal shape

Q =

⎡⎢⎢⎢⎢⎢⎣

E
1

0

⋱
E
s

⋱
0 E

nf

⎤⎥⎥⎥⎥⎥⎦
(ninst ⋅n f ×3⋅n f )

(26)

with E consisting of the unit vectors of the scatterer S to each radar

instrument I. E has already been introduced in Eq. (11) but for the

readers’ convenience we define the design more precisely as

E
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The aim would be to find 𝛼1 to 𝛼npara such that

min
𝜶

‖Qx− l‖2. (28)

The solution comes out of Eq. (17) with B = QG such that

𝜶 =
(
B
⊺
PB

)−1
B
⊺
Pl. (29)

with the weighting matrix P having a block-diagonal shape

P =
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p
1

0

⋱
p
s

⋱
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nf
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(30)

andp a submatrix ofP consisting of the squared inverse of the standard

deviations derived from the observations, with

p
s
=
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. (31)

Weighting is necessary to balance the different observations accord-

ing to their reliability. For MIMO-SAR systems, the observation’s noise

depends on various factors (e.g. strength of reflected signal) and can

depend on the target’s location and orientation with respect to the

radar instrument. We determined the empirical standard deviation s

for each radar instrument i and the respective scatterer S for a period of

no displacement before the actualmovementwas initiated. The inverse

of the weighting matrix P is denoted by 𝚺. It is the covariance matrix
quantifying uncertainties of the observations.

2.4.3 Non-parametric LSQ adjustment: The non-parametric vector

field estimation [29, p. 159ff.] does not require as an input a specific

functionmatching the data itself but a function describing the structure

of the correlations. We start with the assumption that a linear function

l+ 𝜖 = Fx. (32)

maps the 3D displacement vectors in x to the line-of-sight displacement

vectors l. The latter is equal to the one introduced in Eq. (25). The vector

x is rearranged compared to Eq. (19) and has the form of

x =
[
d
X

1
… d

X

n f
d
Y

1
… d

Y

n f
d
Z

1
… d

Z

n f

]
(3⋅n f ×1)

⊺
(33)

The rearrangement has been done to simplify the design matrix F

which has the shape of

F =

⎛⎜⎜⎜⎜⎜⎝

E
X 0 … 0 E

Y 0 … 0 E
Z 0 … 0

0 E
X 0 … 0 E

Y 0 … 0 E
Z ⋱

.

.

.
.
.
. ⋱ ⋱ ⋱ … ⋱ ⋱ ⋱ … ⋱ ⋱ 0

0 … 0 E
X 0 … 0 E

Y 0 … 0 E
Z

⎞⎟⎟⎟⎟⎟⎠
(ninstr ⋅n f ×3⋅n f )

(34)

with E
X, EY, and E

Z being the unit vectors as introduced in Eq. (27).

Describing the correlation of the data is donewith squared exponential

functions. They are typically used tomodel smooth stochastic processes

[30, p. 83–84] and are typically used for interpolation and estimation in

geospatial context and machine learning. They are separated for each

coordinate component and defined as

k
q
(f
1
, f

k
) = s

2
q
⋅ exp

(
−
(

dim(fk )∑
j=1

(
f
k, j − f1, j

m
j

)2
))

(35)

with q ∈ {x, y, z}. s
q
describes the assumed variances and determines

the size of plausible deformations, whereasm
j
quantifies the expected

correlation length, thereby determining the smoothness of the estima-

tor. In other words, s
q
is a scaling factor for the correlation. Large s

q

results in high correlations, while s
q
≪ 1 results in low correlations.

m
j
, on the other hand, gives the length of correlation. In this paper,

we acquired data with an acquisition frequency of 40 Hz, resulting

in Δ f being 0.025 s. As it can be seen in Figure 5, if m
j
= 1 then high

correlations (>0.9) are to be expected up to 0.3 s, while small correla-

tions (<0.1) are to be expected after about 1.5 s. The same for m
j
= 20

occurs for a time of up to 6.5 s and after about 30 s, respectively. As

the occurring displacements in this investigation are predominantly

smooth and relatively slowly changing, we set s
q
and m

j
to be 1 and

20, respectively.

Figure 5: Duration of correlation for f
k, j − f

k−1, j = 0.025 s and d
j
of 1, 5,

and 20.
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The quantity f is defined as in Eq. (23). For each component, a

matrix of size (n
f
× n

f
) is created and filled. A block-diagonal covari-

ance matrix K is built as

K =
⎡⎢⎢⎣
k
x

0 0

0 k
y

0

0 0 k
z

⎤⎥⎥⎦
(3⋅n f ×3⋅n f )

(36)

The aim is to find the 3D displacement vectors such that the following

condition is minimised

min
x

‖Fx− l‖2H Σ
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Punishes
deviation from l

+ ‖x‖2H K

⏟⏟⏟
Punishes
unlikeliness ofx

(37)

‖Fx− l‖2H Σ
= (Fx− l)⊺𝚺−1

(Fx− l)

‖x‖2H K

= x
⊺
K
−1
x

(38)

where the first part punishes the intermediate solution for x, the

stronger the deviations from the observations are and the second part

punishes the intermediate solution for x, the unlikelier x. The solution

to the problem can be calculated by applying [29, p. 160]

x =
[(
FKF

⊺ + 𝚺
)−1

l

]⊺
FK (39)

Applying this equation would provide the best solution for a

smooth temporal or spatial deformation.

3 Validations with simulated data

3.1 Numerical model

We implemented the above parametric and non-parametric

LSQ adjustment in Matlab and provided them, and

other related scripts via GitHub [31]. We simulated radar

acquisitions with various deformations to evaluate and

compare the different approaches.

First, a planar 3D point cloudwith a regular grid of 31 by

31 points (9 by 9 m) was initialised. The point cloud did not

move over a period of 50 observations before initiating

– tilt,

– rotation,

– areal bending (ceiling),

– linear bending (bridge),

– random correlated deformation,

– step-wise deformation, or

– oscillating deformation with damping

with amaximumdisplacement of 5 mm, followed by a static

period of another 50 observations, see Figures 6 and 7. The

point cloud was artificially observed by ninstr = 5 radar

instruments located at random positions approximately

Figure 6: Visualisation of simulated 3d displacement vectors (red arrows) of (a) tilt, (b) rotation, (c) areal bending, (d) linear bending, (e) step-wise or

oscillating, and (f) random correlated deformations of the simulated point cloud (black circle).
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Figure 7: Visualisation of time series of line-of-sight dis-

placement observed by a simulated MIMO-SAR. The left

column shows the full simulated time series of displace-

ments with the arrow indicating the respective zoom-in

position as shown in the right column. (a) and (b) Indicate

a tilt or rotation, (c) and (d) step-wise deformation, (e) and

(f) random correlated deformation, (g) and (h) oscillating

deformation with damping, (i) and (j) linear bending.
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15 morthogonal to the planar point cloud.We simulated five

instruments because we wanted to test the algorithm on an

over-determined system. We also randomly generated the

radar locations once and then used the same locations in all

numerical simulations to suppress the influence of the radar

locations on the results and thus simplify the comparison of

the results. A random noise of 𝜎 = 25 μm was added to the

line-of-sight displacements to simulate real measurements

comparable to the results reported in [9, 17].

3.2 Quality of estimations

Examples of the outcomes for the approaches can be seen in

Figure 7. It depicts line-of-sight displacements of one point

as seen from one of the five simulated radar instruments.

The first 50 observations are without any displacements

followed by a predefined movement for 200 observations

followed by another 50 observations without changing dis-

placements. Visually looking at those samples it can be

seen that the cubic function utilised in the temporal cubic

parametric adjustment (TCP) can only describe continuous

linear movements, like the ones shown for the rotating or

tilting cases (Figure 7(a) and (b)), well. The cubic function

for the spatial parametric adjustment (SCP)works quitewell

except for random correlated deformations where it devi-

ates from the ground truth. The temporal (TNP) and spatial

(SNP) non-parametric adjustments work visually well with

TNP slightly over-smoothed at times of changes of relative

displacements.

These visual impressions can be supported numerically

by deducting the adjusted line-of-sight displacement from

the ground truth and calculating the root mean square

errors (RMSE) of these differences. This has been done

for all simulated radar observations and is summarised

in Table 1. The TCP solutions have an RMSE of ≥32 μm,
which is larger than the simulated noise of 25 μm. It shows
that TCP degraded the observations and cannot describe

the deformations well for these examples. The TNP adjust-

ment performed well except for the step-wise and oscillat-

ing movements, where the smoothing of the interpolated

curve was too strong. The adjustment could have been

improved by decreasing the smoothness of the estimator

(see Eq. (35)) but this was not done to allow a comparison

of the methods. The spatial adjustments performed very

well, except for random-correlated deformations. Overall

it can be summarised that spatial parametric adjustments

would workwell if a parametric function could describe the

deformation. However, non-parametric adjustments are

simpler to use as they don’t require prior knowledge of

the underlying deformation behaviour and can improve the

observations in most cases.

Table 1: Averaged root mean square error (RMSE) in μm for the

temporal cubic parametric (TCP), temporal non-parametric (TNP), spatial

cubic parametric (SCP), and spatial non-parametric (SNP) adjustment for

the seven simulated deformations, where noise of 25 μmwas added to

the observations.

TCP TNP SCP SNP

Tilting (T+ S) 36 8 3 3

Rotating (T+ S) 32 8 3 3

Areal bending (T+ S) 39 8 3 4

Linear bending (T+ S) 596 8 18 4

Random correlated (T+ S) 863 9 454 114

Step-wise (T) 295 24 2 3

Oscillating (T) 1100 43 2 3

4 Validation with experimental

data

4.1 Experimental device and setup

We conducted our experimental investigation using three

Texas Instruments TIDEP-01012 MIMO-SAR systems. We

refer for detailed specifications to previous publications

[9, 17]. The range resolution depends on the chosen sweep

bandwidth of the emitted chirp. The range resolution

was 4 cm using the settings reported in Table 2 for the

experiment.

Three instruments were set up in a large hall next to

each other, each controlled by a different laptop. The radar

instruments were mounted on tripods at different heights

above ground and faced a corner cube at about 12.5 m at

boresight (Figure 8(a)–(c)). Additionally, a planar concrete

sample of 50 × 50 cm (Figure 8, S) was put up left of the

corner cube (Figure 8, CC). The corner cubewasmounted on

a motorised translation stage (ThorLabs MTS50/M-Z8) and

moved at steps of 0.5 mm. The sample was moved manually

with a rotation of 40mrad from its initial position, while the

radar instruments acquired their measurements.

A 3d model of the experimental set-up is required

to project the line-of-sight acquisitions. This model was

Table 2: Parameters for the experiment.

Parameter Value

Center frequency fc [GHz] 79.04

Sweep bandwidthΔ f [MHz] 3748.31

Frequency slope sc [MHz/μs] 56.005

Ramp duration TRamp [μs] 66.93

Acquisition rate [Hz] 40



278 — A. Baumann-Ouyang et al.: Estimating 3D displacement vectors

Figure 8: Experimental setup with the three radar instruments (A–C),

the corner cube (CC), and the concrete sample (S). (a) shows a map, and

(b) a picture of the experimental setup.

acquired using a laser scanner (Leica RTC360). A local net-

work was established using a total station (Leica TS60) to

combine the 3d model of the environment and the SLCs

acquired by the three different radar instruments. The axis

Y
G was defined by the direction of a wall in the hall (see

Figure 8(a)); the axis ZG was defined to be vertical; and the

axis XG was defined to be orthogonal to YG and ZG in a right-

handed coordinate system (see Figure 2). A spherical prism

was mounted with the corner cube onto the translation

stage, and the movements were tracked with the total sta-

tion to derive the ground truth 3d displacement vector. Five

BOTA8 targets [32] were mounted on the wall and pillars,

and their centre coordinates were measured reflectorless

with the total station. The targets were used to register the

3d model acquired with the laser scanner. The registered

laser scanning point cloud was used to derive the locations

and orientations of the radar instruments, the corner cube,

and the concrete sample.

4.2 Data description

Figure 9 (left column) shows the amplitude images for each

of the instruments for acquisitions from the locations as

described in the previous section in Figure 8. Radar instru-

ments A and B show similar amplitudes with strong reflec-

tors corresponding to pillars, concrete sample, tripods, and

corner cube. Floor and ceiling reflectweakly instead. Instru-

ment C shows higher and noisier amplitude values overall

due to being an older version of the TIDEP-01012 (Revision C

vs. Revision E). In the second column the coherence images

are given for the first and last SLC acquired within an

acquisition period of about 2 min and a neighbourhood 3

× 3 bins. It can be seen that the corner cube (CC) shows a

high coherence in all three images. The concrete sample S

also has high coherence for instruments A and B but lower

coherence for instrument C. Strong reflectors increase the

effect of azimuthal sidelobes [33] and are visible as circular

areas (e.g. Figure 9). This can make it difficult to separate

objects due to overlapping signals. For this experiment, we

took care that no overlapping of strong reflectors occurred

and that the signals were always separated by at least 0.5 m

in azimuth and range direction.

An excerpt of the observed line-of-sight displacements

for the step-wise moving corner cube (CC) can be seen

in Figure 10. The three time series were temporally co-

registered at time T . The stability of data storage depends

on the specific instruments with one of the instruments

having a data loss of approximately 7%. This difference

causes a miss-alignment of the data the further away from

the point of temporal co-registration the data are visualised.

To validate the algorithm presented in this work, we filtered

the data. We only kept acquisitions where no change of

displacements have been observed for all three instruments

(i.e. flat areas).

4.3 Estimation quality: corner cube

A corner cube was moved in a predefined direction, and

the direction of movement is visualised as a bold black line

in Figure 11. For the interpretation of the ground truth, it

has to be considered that for the given acquisition geometry

(i.e. location of the total station with respect to the corner

cube) and instrument specification (i.e. accuracy of distance

and angle measurement) a 3D accuracy of 0.6 mm can be

expected.

The 3D displacement vectors derived from the LSQ

adjustment can be seen in Figure 11(a) as red arrows. Even

though the corner cube only corresponds to measurements

in very few radar bins, our algorithm produces a displace-

ment field assigning one separate deformation vector to

every point of the laser scanning point cloud in the extent

of the corner cube. It is obvious that the vectors are not

parallel as they should be for a rigid body. The same is true

for the temporal adjustments based on TCP (b) and TNP (c).

The advantage of spatial adjustments is clearly visible with

all vectors being parallel for SCP (d) and SNP (e), the latter

being closer to the ground truth.
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Figure 9: Example of radar acquistions with (a)–(c) being amplitude

images acquired by the instruments A, B, and C, respectively, and (d)–(f)

being coherence images of the same.

Calculating the absolute values from the 3D displace-

ment vectors as defined in Eq. (11) gives the actual displace-

ment. In Figure 12 (left column), we show the displacements

for the time series of the corner cube. The step-wise move-

ments of 0.5 mm can clearly be seen for the TNP, SCP, and

SNPadjusted vectors. The TCP function did not represent the

data well enough, and the result is a smoothed time series

as already shown in Table 1 and Figure 7. The programmed

step-sizes of the motorised translation stages were taken as

ground truth. These values were deducted from the abso-

lute displacements, and the results can be seen in the right

column of Figure 12. The simple LSQ (b) and TCP (d) adjust-

ments performed theworstwith deviations from the ground

truth in the range of approx. −0.5 to +0.5 mm. The TNP (f)

Figure 10: Line-of-Sight displacements of the corner cube (CC) as

measured by instruments A (black), B (red), and C (blue). The arrow

indicates the point in time where the dataset were coregistered.

Differences in the (horizontal) time axis are mainly due to data gaps (see

text), while the differences in the (vertical) displacement axis are mainly

due to different viewing angles of the radar sensors concerning the

direction of movement.

and SCP (h) adjustments seem to perform similarlywellwith

deviations from the ground truth in the range of approx.

−0.05 to+0.2mm. The visually best performing algorithm is

the SNP (j) adjustment with a single peak deviation of about

+0.07 mm and otherwise being between 0 and +0.02 mm.
These statements are underlined by Table 3 showing the

RMSE for each series. Most of the values coincide well with

the simulated ones shown in Table 1. The 27 μm for the real

case scenariowith SCP is larger compared to the 2μmfor the

simulated scenario. Looking at the respective Figure 12(h)

indicates that the larger error occurs when the corner cube

has been moved, with a larger impact at the beginning and

end of the time series. Nevertheless, it is still a factor of 2

better than the LSQ. Finally, the SNP (j) adjustment resulted

in an RMSE of 6 μm indicating that SNP works very well for

step-wise movements of a corner cube.

4.4 Estimation quality: planar concrete
sample

The planar concrete sample S stood on the ground and was

manually rotated for approximately 40 mrad or 10 mm at

the edges in the clockwise direction. The line-of-sight dis-

placements for one of the radar instruments can be seen

in Figure 13. The first 20 s of the time series in (a) do not

show any deformations for any of the observed points on

the sample. Then the rotation is performed within about

5 s and afterwards, the points are again in a stable state

with displacements within −10 and some +10 mm. That a
rotation occurred can be seen when looking at Figure 13(b)

where the LOS displacements from (a) have been projected

to the radar instruments’ line-of-sight.

We processed the data the same way as we did for the

point scatterer, but we could not get areal 3D displacements.
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Figure 11: The meshed point cloud (black points) represents the corner

cube, and the black, bold line indicates the ground truth displacement.

The red lines represent the 3D displacement vectors for the 70 points

acquired by laser scanning and displacements derived from radar

acquisitions with (a) least square, (b) TCP, (c) TNP, (d) SCP, and (e) SNP. All

vectors are scaled by a factor of 10 [=cm] for improved visibility.

Figure 12: The magnitude of the estimated 3D displacements can be

seen in the left column, and the deviation from the ground truth in the

right column. The values for each point are visualised and plotted over

each other with (a) and (b) least square, (c) and (d) TCP, (e) and (f) TNP,

(g) and (h) SCP, and (i) and (j) SNP.

All three radar instruments have been calibrated using the

procedure outlined in the Texas Instruments’ mmWave Stu-

dio software [34]. While comparing the amplitude images

with geodetic measurements, we observed a range and

azimuth shift in the order of magnitude of 12–20 cm and
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Table 3: RMSE in μm for the simplified (S), temporal cubic parametric

(TCP), temporal non-parametric (TNP), spatial cubic parametric (SCP),

and spatial non-parametric (SNP) adjustment for the step-wise

movement of the corner cube.

Estimation S TCP TNP SCP SNP

RMSE [μm] 66 288 25 27 6

Figure 13: Example of line-of-sight displacement measurement acquired

by sensor B for a concrete plate, which was rotated around the ZG-axis

with about 10 mm. In (a) are the line-of-sight displacements plotted, and

in (a) are the displacements projected in the direction of the radar

instrument for all associated laser scanning points.

0 to 1◦ respectively. The shifts are not constant for all

instruments and relative locations. For a point scatterer like

a corner cube, it was possible to spatially co-register the

acquisitions with the amplitude image such that the correct

radar bin was projected to the correct laser scanning point.

However, applying the same corrections as derived from the

corner cube signal to the concrete sample failed. Experi-

ments carried out outside of the framework of this paper

indicated non-constant range and azimuth shifts within the

field of view of the radar sensor. Unfortunately, the concrete

sample has a weaker more dispersed amplitude image and

it was impossible to estimate the corrections and to map

all the observed displacements such that they coincide for

all the instruments at all the points. Solving this for areal

targets requires amore sophisticated calibration procedure.

This goes beyond the scope of this paper and has to be

addressed in future work.

5 Conclusions

Deriving 3D displacements from line-of-sight displacements

is beneficial for the understanding of the actually occur-

ring deformations in many monitoring applications. In this

paper, we describe a set of algorithms to derive 3D dis-

placements from line-of-sight displacement measurements

acquired by simulated and real MIMO-SAR sensors. The dis-

placement measurements are least squares adjusted with

spatial or temporal conditions based on parametric and

non-parametric functions. The resulting 3D displacement

vectors are improved compared to a simple adjustment

without applied conditions.

The numerical simulation involved typical displace-

ment patterns as they could occur in geomonitoring or

structural monitoring applications (e.g. tilting, bending,

oscillating, etc.). We showed that the simulated line-of-sight

displacements measurements with a simulated noise of 25

μm could be improved when using spatial cubic paramet-

ric, temporal or spatial non-parametric functions in most

cases and get standard deviations of 2–9 μm. The temporal
adjustment did not work well for step-wise or oscillat-

ing movements with RMSE of 24 and 43 μm, respectively.
The spatial adjustments worked well for all cases except

for random correlated displacement patterns where the

results were degraded with an RMSE of 114 and 454 μm,
respectively.

The experiment with a corner cube moving step-wise

showed that the algorithmworkswith real data and that the

results coincide with the simulated data. The radar instru-

ment could also measure the displacements occurring on

non-point scatterers like a planar concrete sample of 50 by

50 cm but the instruments need more sophisticated spatial

calibrations for mapping multiple instruments on a com-

mon point cloud and combine the measurements. We also

observed a temporal miss-alignment due to data acquisition

gaps varying for each instrument. Deriving a calibration

procedure and mitigating the impact of the temporal miss-

alignment are out of the scope of this paper and have to be

addressed in future work.

Overall it can be concluded that the proposed algo-

rithms work well and improve the results in general com-

pared to a simple least square adjustment. Especially the

non-parametric adjustments are favourable compared to

traditional, parametric adjustments since prior knowledge

of the expected displacement is not necessary. We also pro-

vide MATLAB scripts of the algorithms via GitHub such

that they are publicly accessible and can be used by other

researchers and potential users.

Future work should investigate the combination of

spatial and temporal adjustment and include further con-

straints (e.g. allowing only vertical/horizontal displace-

ments). The algorithms should also be tested and evalu-

ated on other types of line-of-sight sensors, displacement

patterns, and areal deformation measurements to further

prove the general applicability.
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