Abstract
This work addresses the topic of a quality modelling of terrestrial laser scans, including different quality measures such as precision, systematic deviations in distance measurement and completeness. For this purpose, the term “quality” is first defined in more detail in the field of TLS. A distinction is made between a total of seven categories that affect the quality of the TLS point cloud. The focus in this work lies on the uncertainty modeling of the TLS point clouds especially the distance measurement. It is demonstrated that influences such as the intensity and the incidence angle can lead to systematic deviations in the distance measurement of more than 1 mm. Based on these findings, it is presented that systematic deviations in distance measurement can be divided into four classes using machine learning classification approaches. The predicted classes can be useful for deformation analysis or for processing steps like registration. At the end of this work the entire quality assessment process is demonstrated using a real TLS point cloud (40 million points).
Funding source: Zentrales Innovationsprogramm Mittelstand (ZIM) des BMWi
Award Identifier / Grant number: 16KN086442
Acknowledgment
The author would like to thank Dr. Hesse und Partner Ingenieure for providing the Leica LAS XL sensor.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The research presented was carried out within the scope of the collaborative project “Qualitátsgerechte Virtualisierung von zeitvariablen Objekträumen (QViZO)”, which was supported by the German Federal Ministry for Economic Affairs and Energy (BMWi) and the Central Innovation Programme for SMEs (ZIM FuE- Kooperationsprojekt, 16KN086442).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Schweitzer, J, Schwieger, V. Modeling of quality for engineering geodesy processes in civil engineering. J Appl Geodesy 2011;5:13–22. https://doi.org/10.1515/jag.2011.002.Search in Google Scholar
2. Kalenjuk, S, Lienhart, W. A method for efficient quality control and enhancement of mobile laser scanning data. Rem Sens 2022;14:857. https://doi.org/10.3390/rs14040857.Search in Google Scholar
3. O’Banion, M. Rigorous 3D point cloud quality assessment [Ph.D. thesis]. Oregon State University; 2017.Search in Google Scholar
4. Adan, A, Huber, D. 3d reconstruction of interior wall surfaces under occlusion and clutter. In: 2011 international conference on 3D imaging, modeling, processing, visualization and transmission (3DIMPVT 2011). Piscataway, NJ: IEEE; 2011:275–81 pp.10.1109/3DIMPVT.2011.42Search in Google Scholar
5. Alsadik, B, Gerke, M, Vosselman, G. Visibility analysis of point cloud in close range photogrammetry. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2014;II–5:9–16. https://doi.org/10.5194/isprsannals-ii-5-9-2014.Search in Google Scholar
6. Partovi, T, Dähne, M, Maboudi, M, Krueger, D, Gerke, M. Automatic integration of laser scanning and photogrammetric point clouds: from acquisition to co-registration. Int Arch Photogram Rem Sens Spatial Inf Sci 2021;XLIII-B1-2021:85–92. https://doi.org/10.5194/isprs-archives-xliii-b1-2021-85-2021.Search in Google Scholar
7. Joint Committee for Guides in Metrology. Evaluation of measurement data – guide to the expression of uncertainty in measurement; 2008. Available from: https://www.iso.org/sites/JCGM/GUM-JCGM100.htm [Accessed 22 Aug 2022].Search in Google Scholar
8. Holst, C, Kuhlmann, H. Challenges and present fields of action at laser scanner based deformation analyses. J Appl Geodesy 2016;2016:17–25.10.1515/jag-2015-0025Search in Google Scholar
9. Medić, T, Holst, C, Kuhlmann, H. Optimizing the target-based calibration procedure of terrestrial laser scanners. Allgemeine Vermessungs-Nachrichten: 2020:27–36 pp.Search in Google Scholar
10. Neitzel, F. Gemeinsame Bestimmung von Ziel-, Kippachsenfehler und Exzentrizität der Zielachse am Beispiel des Laserscanners Zoller + Fröhlich Imager 5003. In: Photogrammetrie-Laserscanning-Optische 3D-Messtechnik, Beiträge der Oldenburger 3D-Tage; 2006.Search in Google Scholar
11. Neitzel, F. Untersuchung des Achssystems und des Taumelfehlers terrestrischer Laserscanner mit tachymetrischem Messprinzip. In: Terrestrisches Laser-Scanning (TLS 2006), Schriftenreihe des DVW, Band 51. Augsburg: Wißner-Verlag; 2006:15–34 pp.Search in Google Scholar
12. Muralikrishnan, B, Ferrucci, M, Sawyer, D, Gerner, G, Lee, V, Blackburn, C, et al.. Volumetric performance evaluation of a laser scanner based on geometric error model. Precis Eng J Int Soc Precis Eng Nanotechnol 2015;40:139–50. https://doi.org/10.1016/j.precisioneng.2014.11.002.Search in Google Scholar
13. Reshetyuk, Y. Investigation of the influence of surface reflectance on the measurements with the terrestrial laser scanner leica hds 3000. In: zfv – Zeitschrift für Geodäsie, Geoinformation und Landmanagement; 2006.Search in Google Scholar
14. Schulz, T. Calibration of a terrestrial laser scanner for engineering geodesy [Ph.D. thesis]. ETH Zurich; 2008.Search in Google Scholar
15. Zámečníková, M, Wieser, A, Woschitz, H, Ressl, C. Influence of surface reflectivity on reflectorless electronic distance measurement and terrestrial laser scanning. J Appl Geodesy 2014;8:311–26. https://doi.org/10.1515/jag-2014-0016.Search in Google Scholar
16. Wujanz, D, Burger, M, Mettenleiter, M, Neitzel, F. An intensity-based stochastic model for terrestrial laser scanners. ISPRS J Photogrammetry Remote Sens 2017;125:146–55. https://doi.org/10.1016/j.isprsjprs.2016.12.006.Search in Google Scholar
17. Schäfer, T. Berührungslose und flächenhafte Deformationsmessungen an Betonoberflächen unter besonderer Berücksichtigung der Interaktion zwischen Laserstrahl und Oberfläche [dissertation]. München: Technischen Universität München; 2017.Search in Google Scholar
18. Juretzko, M. Reflektorlose Video-Tachymetrie : ein integrales Verfahren zur Erfassung geometrischer und visueller Informationen [dissertation]. Bochum: Ruhr-Universität Bochum; 2004.Search in Google Scholar
19. Soudarissanane, S, Lindenbergh, R, Menenti, M, Teunissen, P. Scanning geometry: influencing factor on the quality of terrestrial laser scanning points. ISPRS J Photogrammetry Remote Sens 2011;66:389–99. https://doi.org/10.1016/j.isprsjprs.2011.01.005.Search in Google Scholar
20. Zámečníková, M, Neuner, H. Towards the influence of the angle of incidence and the surface roughness on distances in terrestrial laser scanning. In: FIG working week 2017; 2017.Search in Google Scholar
21. Paffenholz, JA, Bae, KH. Geo-referencing point clouds with transformational and positional uncertainties. J Appl Geodesy 2012;6:33–46. https://doi.org/10.1515/jag-2011-0010.Search in Google Scholar
22. Shah, M, Franaszek, M, Cheok, G. Propagation of error from registration parameters to transformed data. J Res Natl Inst Stand Technol 2016;121:196. https://doi.org/10.6028/jres.121.009.Search in Google Scholar PubMed PubMed Central
23. Kauker, S, Schwieger, V. A synthetic covariance matrix for monitoring by terrestrial laser scanning. J Appl Geodesy 2017;11:77–87. https://doi.org/10.1515/jag-2016-0026.Search in Google Scholar
24. Kerekes, G, Schwieger, V. Determining variance-covariance matrices for terrestrial laser scans: a case study of the arch dam kops. In: Contributions to international conferences on engineering surveying. Cham: Springer; 2021:57–68 pp.10.1007/978-3-030-51953-7_5Search in Google Scholar
25. Kermarrec, G, Lösler, M, Hartmann, J. Analysis of the temporal correlations of tls range observations from plane fitting residuals. ISPRS J Photogrammetry Remote Sens 2021;171:119–32. https://doi.org/10.1016/j.isprsjprs.2020.10.012.Search in Google Scholar
26. Schmitz, B, Kuhlmann, H, Holst, C. Investigating the resolution capability of terrestrial laser scanners and its impact on the effective number of measurements. ISPRS J Photogrammetry Remote Sens 2020;159:41–52. https://doi.org/10.1016/j.isprsjprs.2019.11.002.Search in Google Scholar
27. Zhao, X, Kermarrec, G, Kargoll, B, Alkhatib, H, Neumann, I. Influence of the simplified stochastic model of tls measurements on geometry-based deformation analysis. J Appl Geodesy 2019;13:199–214. https://doi.org/10.1515/jag-2019-0002.Search in Google Scholar
28. Rusu, RB, Cousins, S. 3D is here: point cloud library (PCL). In: IEEE international conference on robotics and automation (ICRA). Shanghai, China; 2011.10.1109/ICRA.2011.5980567Search in Google Scholar
29. International Organization for Standardization. Qualitätsmanagementsysteme – Grundlagen und Begriffe (ISO_9000:2015); Deutsche und Englische Fassung. Berlin: Beuth Verlag GmbH; 2015.Search in Google Scholar
30. Hennes, M. Konkurrierende Genauigkeitsmaße – Potential und Schwächen aus der Sicht des Anwenders. Allgemeine Vermessungs-Nachrichten 2007;7:136–46.Search in Google Scholar
31. Schmitz, B, Holst, C, Medic, T, Lichti, DD, Kuhlmann, H. How to efficiently determine the range precision of 3d terrestrial laser scanners. Sensors 2019;19:1466. https://doi.org/10.3390/s19061466.Search in Google Scholar PubMed PubMed Central
32. Stenz, U, Hartmann, J, Paffenholz, JA, Neumann, I. High-precision 3d object capturing with static and kinematic terrestrial laser scanning in industrial applications—approaches of quality assessment. Rem Sens 2020;12:290. https://doi.org/10.3390/rs12020290.Search in Google Scholar
33. Wujanz, D, Burger, M, Tschirschwitz, F, Nietzschmann, T, Neitzel, F, Kersten, TP. Determination of intensity-based stochastic models for terrestrial laser scanners utilising 3d-point clouds. Sensors 2018;18:2187. https://doi.org/10.3390/s18072187.Search in Google Scholar PubMed PubMed Central
34. Bormann, R, Hampp, J, Hagele, M, Vincze, M. Fast and accurate normal estimation by efficient 3d edge detection. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE; 2015:3930–7 pp.10.1109/IROS.2015.7353930Search in Google Scholar
35. Hackel, T, Wegner, J, Schindler, K. Contour detection in unstructured 3d point clouds. In: IEEE conference on computer vision and pattern recognition (CVPR); 2016:1610–8 pp.10.1109/CVPR.2016.178Search in Google Scholar
36. Weber, C, Hahmann, S, Hagen, H. Sharp feature detection in point clouds. In: 2010 shape modeling international conference. IEEE; 2010:175–86 pp.10.1109/SMI.2010.32Search in Google Scholar
37. Chaudhry, S, Salido-Monzú, D, Wieser, A. A modeling approach for predicting the resolution capability in terrestrial laser scanning. Rem Sens 2021;13:615. https://doi.org/10.3390/rs13040615.Search in Google Scholar
38. Wang, Q, Sohn, H, Cheng, JC. Development of a mixed pixel filter for improved dimension estimation using amcw laser scanner. ISPRS J Photogrammetry Remote Sens 2016;119:246–58. https://doi.org/10.1016/j.isprsjprs.2016.06.004.Search in Google Scholar
39. Ahmed, SM, Tan, YZ, Chew, CM, Mamun, AA, Wong, FS. Edge and corner detection for unorganized 3d point clouds with application to robotic welding; 2018. Available from: https://arxiv.org/pdf/1809.10468 [Accessed 22 Aug 2022].10.1109/IROS.2018.8593910Search in Google Scholar
40. Sheng, Y. Quantifying the size of a lidar footprint: a set of generalized equations. IEEE Geosci Rem Sens Lett 2008;5:419–22. https://doi.org/10.1109/lgrs.2008.916978.Search in Google Scholar
41. Zoller + Fröhlich GmbH. Z + F IMAGER® Z + F IMAGER 5016: data sheet; 2022. Available from: https://scandric.de/wp-content/uploads/ZF-IMAGER-5016_Datenblatt-D_kompr.pdf [Accessed 22 Aug 22].Search in Google Scholar
42. Hexagon Manufacturing Intelligence. Leica- laser tracker systems; 2022. Available from: https://www.hexagonmi.com/de-de/products/laser-tracker-systems [Accessed 22 Aug 2022].Search in Google Scholar
43. technet GmbH. scantra; 2022. Available from: https://www.technet-gmbh.com/produkte/scantra/.Search in Google Scholar
44. Kazhdan, M, Chuang, M, Rusinkiewicz, S, Hoppe, H. Poisson surface reconstruction with envelope constraints. Comput Graph Forum 2020;39:173–82. https://doi.org/10.1111/cgf.14077.Search in Google Scholar
45. Zhou, QY, Park, J, Koltun, V. Open3d: a modern library for 3d data processing; 2018. Available from: http://arxiv.org/pdf/1801.09847v1 [Accessed 22 Aug 22].Search in Google Scholar
46. Linzer, F, Papčová, M, Neuner, H. Quantification of systematic distance deviations for scanning total stations using robotic applications. In: Contributions to international conferences on engineering surveying, springer proceedings in earth and environmental sciences. Cham, Switzerland: Springer; 2021:98–108 pp.10.1007/978-3-030-51953-7_8Search in Google Scholar
47. Chen, T, Guestrin, C. Xgboost. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. New York, NY, USA: ACM; 2016:785–94 pp.10.1145/2939672.2939785Search in Google Scholar
48. Breiman, L. Classification and regression trees. New York: Routledge; 1984.Search in Google Scholar
49. Pedregosa, F, Varoquaux, G, Gramfort, A, Michel, V, Thirion, B, Grisel, O, et al.. Scikit-learn: machine learning in python. J Mach Learn Res 2011;12:2825–30.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Implementation of the EVRF2007 height reference frame in Poland
- Original Research Articles
- Assessment of android smartphones positioning in multi-GNSS/NavIC environment
- Automatic quality assessment of terrestrial laser scans
- Improvement of international reference ionospheric model total electron content maps: a case study using artificial neural network in Egypt
- Implementing SRIF filter with MANS-PPP software package for GNSS precise point position solution accuracy enhancement
- Classification and object detection with image assisted total station and machine learning
- Reference clock impact on GNSS clock outliers
- Changes in the long-term stability of GPS, GLONASS and Galileo clocks based on the IGS repro3 campaign
- An improved Kloubuchar ionospheric correction model for single frequency GNSS receivers
- Comparative analysis of regression algorithms for the prediction of NavIC differential corrections
- Modeling 3D crustal velocities in the vicinities of Alaska and the Bering sea
Articles in the same Issue
- Frontmatter
- Review
- Implementation of the EVRF2007 height reference frame in Poland
- Original Research Articles
- Assessment of android smartphones positioning in multi-GNSS/NavIC environment
- Automatic quality assessment of terrestrial laser scans
- Improvement of international reference ionospheric model total electron content maps: a case study using artificial neural network in Egypt
- Implementing SRIF filter with MANS-PPP software package for GNSS precise point position solution accuracy enhancement
- Classification and object detection with image assisted total station and machine learning
- Reference clock impact on GNSS clock outliers
- Changes in the long-term stability of GPS, GLONASS and Galileo clocks based on the IGS repro3 campaign
- An improved Kloubuchar ionospheric correction model for single frequency GNSS receivers
- Comparative analysis of regression algorithms for the prediction of NavIC differential corrections
- Modeling 3D crustal velocities in the vicinities of Alaska and the Bering sea