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Abstract: Suppose a large and dense point cloud of an ob-
ject with complex geometry is available that can be ap-
proximated by a smooth univariate function. In general,
for such point clouds the “best” approximation using the
method of least squares is usually hard or sometimes even
impossible to compute. In most cases, however, a “near-
best” approximation is just as good as the “best”, but
usually much easier and faster to calculate. Therefore, a
fast approach for the approximation of point clouds using
Chebyshev polynomials is described, which is based on an
interpolation in the Chebyshev points of the second kind.
This allows to calculate the unknown coefficients of the
polynomial by means of the Fast Fourier transform (FFT),
which can be extremely efficient, especially for high-order
polynomials. Thus, the focus of the presented approach
is not on sparse point clouds or point clouds which can
be approximated by functions with few parameters, but
rather on large dense point clouds for whose approxima-
tion perhaps even millions of unknown coefficients have
to be determined.

Keywords: Chebyshev polynomials, interpolation, least
squares approximation, Fast Fourier transform, point
cloud

1 Introduction
Modern measuring instruments can record information
about the geometry of physical objects and provide the
user with discrete points in a Cartesian coordinate system.
In geodetic practice, such measurements are mainly car-
ried out with terrestrial laser scanners or photogrammet-
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ric methods, which are capable of capturing millions of
points for the observed object. Often an appropriate curve
or surface approximation of the measured object with a
continuous function is required, either for further analy-
sis of the measurement results (e. g. deformation analysis)
or for the representation of the data in a CAD (computer-
aided design) model. For objects with complex shapes,
freeform curves or surfaces are mainly used for data mod-
elling, usually represented by a linear combination of ba-
sis functions, which can be freely chosen by the user de-
pending on the problem at hand. Some sets of basis func-
tions that are widely used and can be easily found in the
literature are, for example, B-Splines by Wang [43] or Har-
mening [21], Chebyshev polynomials by Chang [11], Clen-
shaw [13] or Smitka [40], Fourier series byWang [42], radial
basis functions by Majdisova [26] or Ohtake [33], spheri-
cal harmonics by Gannon [18, 30] or Mousa [30], wavelets
by Manson [27] or Zernike polynomials by Ibanez [24]. The
variety of different sets of basis functions in combination
with thedifferentmethods available for calculating theun-
known parameters, provides the user with an almost infi-
nite number of possibilities for an approximation of point
clouds using freeform curves or surfaces.

In geodetic science, B-Splines aremainly used as basis
functions for the approximation of point clouds, given by
the recurrence relation introduced by de Boor [15] and Cox
[14], while the unknown coefficients of the resulting Spline
are usually estimated using the method of least squares.
An overview on the approximation of 3D point clouds with
freeform curves and surfaces, including Bézier, B-Spline
and NURBS is given in the work of Bureick et al. [10] and
different mathematical representations of 2D splines and
their least squares solution for data approximation are dis-
cussed by Ezhov et al. [16]. A general review of point cloud
modellingmethods for deformation analysis has been pre-
sented byNeuner et al. [31] and the quantification of object
deformation using B-spline approximation is thoroughly
discussed by Harmening [20].

An aspect that has a significant influence on the result
of the spline approximation is the optimal knot placement,
while different strategies exist. The location can be prede-
fined as proposed in the study of de Boor [15] or Yanagi-
hara and Ohtaki [46], or treated as unknown parameters
leading to a nonlinear optimisation problem,which canbe
solved either directly as a non-linear adjustment problem,
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as e. g. shown by Schwetlick and Schütze [39], or by using
an additional optimisation algorithm, as e. g. addressed
by Galvez et al. [17], Bureick et al. [8, 9] or Schmitt and
Neuner [37]. Additionally, several criteria have been pre-
sented in the literature for choosing the optimal number
of control points, which is known as model selection. In
this regard, there are many studies that use the Akaike in-
formation criterion [2, 3] or the Bayesian information crite-
rion [38]. A detailed overview ofmodel selection strategies
is given by Harmening [20, p. 25 ff.]. Both, the problems of
knot placement and model selection can be considered as
separate research topics and have a significant impact on
the quality of the approximation using B-Splines.

Motivated by these challenges and since these ap-
proaches are usually used for small point clouds with only
a few unknown parameters to be determined, we present
a strategy for the approximation of point clouds using
Chebyshev polynomials, which is based on an interpola-
tion in the Chebyshev points of the second kind. Thus, we
deliberately avoid the computation of the “best” approx-
imation using the method of least squares in favour of a
“near-best” solution, which can be computedmuch easier
and extremely fast using the Fast Fourier transform (FFT).
Themain focus in this paper is on the curve approximation
of large anddense point clouds of objectswith complex ge-
ometry, consisting of hundreds of millions of points with
maybe even millions of unknown parameters to be deter-
mined.

Although the basic idea of our presented approach is
not new and has been already applied, see e. g. the con-
tributions by Clenshaw [13], Chang [11] or McKinley and
Ishihara [29], it has unfortunately received little attention
in the current literature. Recent contributions in geodetic
science that are known to the authors in this regard are
those of Hu et al. [23] and Xi et al. [44], without however
exploiting or at least addressing the full potential of this
approach. Since we approximate the whole point cloud by
a single polynomial, a split of the entire domain, as e. g.
required for an approximation with B-splines by choosing
an appropriate knot vector, is not needed. In addition, the
determination of the optimal polynomial degree is solely
based on the unknown coefficients and not, as usually, on
the residuals. Therefore, an additionalmodel selection cri-
terion is also not needed.

In this contribution we consider at first only point
clouds that represent curves without any kinks, jumps or
data gaps, which consequently can be approximated by
continuous smooth functions. Since for the determination
of the unknown parameters, as well as the optimal poly-
nomial degree, the residuals no longer play an important

role, a requirement for orthogonal residuals is not consid-
ered or rather explicitly omitted in this paper.

The paper is organized as follows: In Section 2 we
present the least squares approximation of functions by
a polynomial in the Chebyshev basis and its numerical
solution, as it as known in the literature. Afterwards, we
adapt the basic methodology of this approach and show
in Section 3 how it can be used to efficiently approximate
point clouds, which is the main contribution of our work.
An example is given in Section 4, while Section 5 briefly
summarises the investigations that were carried out and
critically reviews the results. An outlook on current re-
search regarding the presented approach concludes this
paper.

2 Approximation of functions

At first, we present the approximation of functions by a
polynomial in the Chebyshev basis using the method of
least squares. Since usually the calculation of the coeffi-
cients of the polynomial is very time-consuming and inac-
curate, we also present how the coefficients can be calcu-
lated fast and efficiently by an interpolation in the Cheby-
shev points using the Fast Fourier transform (FFT), as it is
known in the literature.

2.1 Least squares approximation

The Chebyshev polynomial of the first kind Tj(x) of degree
j ≥ 0 is defined by

Tj(x) = cos(j arccos(x)), for x ∈ [−1, 1], (1)

se e. g. Mason [28, p. 2] or Rivlin [36, p. 2]. These polynomi-
als satisfy the three term recurrence relation

Tj(x) = 2x Tj−1(x) − Tj−2(x), for j ≥ 2, (2)

with the initial conditions

T0(x) = 1 and T1(x) = x. (3)

Let us consider a function f (x) ∈ L2([−1, 1]), the Hilbert
space of square integrable functions,whichwewant to ap-
proximate by a polynomial Pp(x) of degree p in the Cheby-
shev basis. Pp(x) lies in the vector space V spanned by the
p + 1 basis functions

V = span{T0(x),T1(x), . . . ,Tp(x)} (4)
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and is given by the linear combination

Pp(x) =
p
∑
j=0

cj Tj(x)

= c0T0(x) + c1T1(x) + . . . + cpTp(x),

(5)

with the unknown coefficients cj. In general, f (x) is not
within V and is therefore different from Pp(x). The differ-
ence between f (x) and P(x) is known as residual function
v(x) and can be expressed by

f (x) + v(x) = Pp(x). (6)

To determine the unknown coefficients cj of a least squares
approximation of f (x), we minimise the length of v(x),
given by the L2 norm

‖v(x)‖2 = √⟨v, v⟩ = √
1

∫
−1

(v(x))2 dx, (7)

with ⟨⋅, ⋅⟩ being the inner product of two functions, see e. g.
Bronshtein et al. [7, p. 920]. Thus, the objective function
reads

Ω(c0, c1, . . . , cp) = ⟨v, v⟩→ min, (8)

with

v(x) = Pp(x) − f (x) =
p
∑
j=0

cj Tj(x) − f (x). (9)

Minimising the length of v(x) is equivalent to demand that
v(x) is orthogonal to vector space V , or as Langtangen [25,
p. 10] has shown, that v(x) is orthogonal to the p + 1 basis
functions. This leads to the inner products

⟨Ti, v⟩ = 0, (10)

with i = 0, 1, . . . , p. Rearranging (6) and inserting into (10)
yields

⟨Ti,Pp − f ⟩ = 0 (11)

and introducing (5) leads to the system of normal equa-
tions

⟨Ti,
p
∑
j=0

cj Tj − f ⟩ = 0. (12)

Since the inner product is bilinear, this equation system
results in

p
∑
j=0

cj⟨Ti,Tj⟩ = ⟨Ti, f ⟩, (13)

for i = 0, 1, . . . , p, which can be written in matrix notation
as follows

[[[[[

[

⟨T0,T0⟩ ⟨T0,T1⟩ . . . ⟨T0,Tp⟩
⟨T1,T0⟩ ⟨T1,T1⟩ . . . ⟨T1,Tp⟩

...
...

. . .
...

⟨Tp,T0⟩ ⟨Tp,T1⟩ . . . ⟨Tp,Tp⟩

]]]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
N

[[[[[

[

c0
c1
...
cp

]]]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟
c

=
[[[[[

[

⟨T0, f ⟩
⟨T1, f ⟩

...
⟨Tp, f ⟩

]]]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n

. (14)

As Chebyshev polynomials are orthogonal with respect to
a weighted inner product

⟨Ti,Tj⟩ =
1

∫
−1

Ti(x) Tj(x)
√1 − x2

dx

=
{{
{{
{

π, i = j = 0,
π/2, i = j ≥ 1,
0, i ̸= j,

(15)

the normal equation system (14) simplifies to

[[[[[

[

⟨T0,T0⟩ 0 . . . 0
0 ⟨T1,T1⟩ . . . 0
...

...
. . .

...
0 0 . . . ⟨Tp,Tp⟩

]]]]]

]

[[[[[

[

c0
c1
...
cp

]]]]]

]

=
[[[[[

[

⟨T0, f ⟩
⟨T1, f ⟩

...
⟨Tp, f ⟩

]]]]]

]

. (16)

The normal matrix N is diagonal and the unknown coeffi-
cients can be directly determined by

cj =
⟨Tj, f ⟩
⟨Tj,Tj⟩

(17)

with

⟨Tj, f ⟩ =
1

∫
−1

Tj(x) f (x)
√1 − x2

dx, (18)

for j = 0, 1, . . . , p.
The derivation of an analytical solution of the inte-

grals in (17) for arbitrary functions f (x) is hardly feasible,
so that a numerical solution is usually used. But, due to
singularities of the weighting function in (18) at x = ±1,
the numerical integration of the right hand side is slow
and inaccurate for higher polynomial degrees. To derive a
very fast and accurate solution for the numerical integra-
tion of (18), we present in the following the relationship
between the Chebyshev and Fourier series.

2.2 Connection to the Fourier series

Let us introduce the following change of variables

x = cos(θ) (19)
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and with

dx
dθ
=
d cos(θ)

dθ
= − sin(θ) (20)

we obtain

dx = − sin(θ)dθ. (21)

Inserting (19) and (21) in the right hand side of (18) and
changing the limits according to cos(π) = −1 and cos(0) =
1 yields

1

∫
−1

f (x) Tj(x)
√1 − x2

dx =
1

∫
−1

f (x) cos(j arccos(x))
√1 − x2

dx

= −
0

∫
π

f ( cos(θ)) cos(j θ)
√1 − cos2(θ)

sin(θ)dθ

= −
0

∫
π

f ( cos(θ)) cos(j θ)
sin(θ)

sin(θ)dθ

=
π

∫
0

f ( cos(θ)) cos(j θ)dθ

=
π

∫
0

F(θ) cos(j θ)dθ.

(22)

Hence, the unknown coefficients of a least squares approx-
imation of f (x) in the Chebyshev basis can be determined
by

cj =
1
⟨Tj,Tj⟩

π

∫
0

F(θ) cos(j θ)dθ. (23)

The presented change of variables can also be interpreted
as a mapping of f (x) onto the upper half of the unit circle,
as depicted in Figure 1. An arbitrary point z on the unit cir-

Figure 1: Unit circle in the complex plane with the imaginary unit
� = √−1.

cle is uniquely defined by its coordinates (x, y), satisfying

x2 + y2 = 1 , (24)

or by an angle θ, with

Re(z) = x = cos θ,
Im(z) = y = sin θ,

(25)

while the upper equation in (25) is the introduced change
of variables (19). Due to

x = Re(z) = Re( ̄z) (26)

it follows

F(θ) = F(−θ) (27)

and the integral in (23) can also be written as

cj =
1
2

1
⟨Tj,Tj⟩

π

∫
−π

F(θ) cos(j θ)dθ, (28)

which corresponds to a scaled Fourier cosine transform.
While mapping f (x) onto the unit circle we obtain a trans-
planted function F(θ) for θ ∈ [−π,π] which is an infinitely
differentiable, even and periodic function, as discussed by
Orszag [34]. Therefore, F(θ) has a Fourier cosine series ex-
pansion

F(θ) = 1
2
a0 +
∞

∑
j=1

aj cos(jωθ), (29)

where the coefficients aj are given by

aj =
1
π

π

∫
−π

F(θ) cos(j θ)dθ (30)

and which are equivalent to the coefficients cj in equa-
tion (28) except for a scaling factor, see the handbook by
Bronshtein et al. [7, p. 927]. Based on this fact, a fast and
accurate numerical solution for the integrals in (28) is pre-
sented in thenext sectionand the resulting coefficients of a
polynomial approximation in the Chebyshev basis are dis-
cussed in more detail on an example.

2.3 Numerical solution by an interpolation in
the Chebyshev points

In case F(θ) in (30) is known atN + 1 equally spaced points
θk, with k = 0, 1, 2, . . . ,N, the integral in (30) can be deter-
mined approximately by

aj ≈
2
N

N
∑
k=1

F(θk) cos(j θk), (31)
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for j = 0, 1, . . . ,N and, hence, can be efficiently computed
by the Fast Fourier Transform (FFT) or Fast Cosine Trans-
form, see the handbook by Bronshtein et al. [7, p. 928]. Ac-
cording to Trefethen [41, p. 15] this has been probably ob-
served around 1970, see for example the investigations of
Ahmed [1] or Orszag [34].

Let us consider some equally spaced points on the up-
per half of the unit circle, including the boundary points
on the intersection with the real axis at ±1, as depicted
in Figure 2. The projection of these equally spaced points

Figure 2: Equispaced points on the upper half on the unit circle in
blue and Chebyshev points in red.

onto the real axis are known asChebyshev points of the sec-
ond kind, Chebyshev extreme points or Chebyshev-Lobatto
points and are given by

xk = cos(
kπ
N
), 0 ≤ k ≤ N . (32)

In the followingwe just call themChebyshev points. These
points are the extrema of the Chebyshev polynomials of
the first kind, in contrast to the Chebyshev points of the
first kind, which are the roots. How the Chebyshev points
of the first kind can be used for the approximation of func-
tions will not be considered here any further, but is dis-
cussed e. g. by Xu [45].

If we discretize f (x) at the Chebyshev points we obtain

f (xk) = F(θk), (33)

which can directly be used to calculate the unknown coef-
ficients cj using FFT. Thereby the solution of the integrals
in equation (18) are only approximated and the calculated
coefficients cj correspond to those of an interpolation in
the Chebyshev points.

Although in theory we approximate functions by the
method of least squares, this approach is unsuitable in
practice as the integrals in equation (17) can be in general
solved only by numerical integration, which is in this case

slow and inaccurate. It is rather more efficient to approxi-
mate functions by interpolation in the Chebyshev points,
where the coefficients calculated by FFT converge to the
values of the exact solutions for equation (17) as the num-
ber of points increases.

To demonstrate such an approximation, we consider
the following function

f (x) = 1
2
tanh(5x − 0.2) + 1

2
, (34)

for x ∈ [−1, 1], which is depicted in Figure 3.

Figure 3: Function f (x) = 1
2 tanh(5x − 0.2) +

1
2 .

To show a very important property of an approxima-
tion in theChebyshevbasis,weapproximate f (x)byapoly-
nomial of degree p = 200. The coefficients cj are depicted
in Figure 4 and decrease geometrically until a plateau of
rounding errors near level of machine precision is reached
for j ≥ 117 and a floating-point relative accuracy of ϵ =
2.22 ⋅ 10−16 (vertical red line). As long as f (x) is continuous

Figure 4: Logarithmic plot of the coefficients |cj |.

and satisfies the Dini-Lipschitz condition, the Chebyshev
series expansion will converge to f (x), see the textbook
by Mason and Handscomb [28, Chapter 5.3.2]. As a rule
of thumb, the truncation error of this approximation is in
the same order-of-magnitude as the absolute value of the
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last coefficient, as mentioned by Boyd [6, p. 51]. Aurentz
[4] designed a chopping algorithm that detects and chops
the series at the beginning of this plateau. Consequently,
for this example a polynomial of degree p = 116 is found
as the best approximation of f (x). The resulting residual
function v(x) is shown in Figure 5 and reveals, as expected,
differences near machine precision. As illustrated by this

Figure 5: Residual function v(x) = P116(x) − f (x).

example, a Lipschitz continuous function on [−1, 1] has
a unique Chebyshev series, which is absolutely and uni-
formly convergent, see Trefethen [41, Theorem 3.1]. It has
been shown, that the coefficients cj in equation (17) can
be calculated very fast and accurately by an interpolation
in the Chebyshev points using FFT. Furthermore, the opti-
mal polynomial degree of the approximation canbe identi-
fied by an iterative increase until the coefficients reach the
plateau of rounding errors near level ofmachine precision,
which can then be detected and truncated. This provides
an efficient and accurate approach for the approximation
of functions and is the core of the open-source package
Chebfun [12], which was introduced in 2004 by Battles and
Trefethen [5].

3 Approximation of point clouds
Sincewe can consider functions as a special case of a point
cloud, i. e. a point cloud with an infinite number of error-
free points, we can directly adopt the presented procedure
for the approximation of point clouds. Furthermore, we
only consider point clouds on the interval [−1, 1] since any
interval [a, b] can be easily scaled to [−1, 1].

At first, let us generate a point cloud by discretising
function (34) at n + 1 linearly spaced points (xi, yi) for i =
0, 1, . . . , n. Now, the actual problem concerning the discre-
tised function arises from the fact, that there are usually
no more functional values f (xk) at the Chebyshev points

xk available. Therefore, we have to extract or interpolate
the corresponding values for the Chebyshev points from
the nearest surrounding points or a cluster of neighboured
points.

As long as the true values for f (xk) at the Chebyshev
points are not given any more, the coefficients will not de-
crease until they reach a plateau of rounding errors near
level of machine precision. In this case, a plateau will be
formed at a level≫ ϵ that depends essentially on the den-
sity of the point cloud and the amount of noise. Conse-
quently, the task is to identify this plateau and its level
and to truncate the coefficients at its beginning using the
chopping algorithm of Aurentz and Trefethen [4]. These
are in principle the main differences to the approximation
of functions using Chebfun [12], whereas the functional
values f (xk) and the level of the plateau are directly given.
Hence, Algorithm 1 describes a simple and fast approach
for the approximation of point clouds using Chebyshev
polynomials.

Algorithm 1 Pseudo code for the calculation of the coeffi-
cients cj for a polynomial approximation of the point cloud
xi, yi.
1: function approxPointCloud(xi, yi)
2: m = 6 ⊳ Initialisation for p.
3: while Plateau is not reached do
4: p = 2m ⊳ Polynomial degree.
5: xk = cos (

kπ
p ) ∀k = 0, 1, . . . , p

6: f (xk)← by e. g. linear interpolation
7: F(θk) = f (xk)
8: aj = Re(fft(F(θk)))
9: c∗j ← by rescaling aj
10: if Plateau is reached then
11: cj ← by truncating c∗j
12: else
13: m = m + 1
14: end if
15: end while
16: return cj
17: end function

Since we approximate the point cloud by an inter-
polation in the Chebyshev points xk, the accuracy of the
approximation depends directly on the accuracy of their
functional values f (xk). Besides the shape of the under-
lying unknown function, the density of the point cloud
and the amount of noisemainly influences the accuracy of
f (xk) and consequently of the approximation itself. Both
aspects will be addressed in more detail in the following
sections.
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3.1 Impact of point density

At first, we would like to demonstrate the impact of the
point density on the level of the plateau of the coefficients
and, thus, on the accuracy of the approximation itself.
Therefore, we generate point clouds using function (34)
at n + 1 = [102 104 106] linearly spaced points and
without taking anymeasurement noise into account. Each
point cloud will be approximated by a polynomial of de-
gree p = 200, while the functional values f (xk) at the
Chebyshev points xk will be determined by a simple lin-
ear interpolation. The resulting coefficients for each point
cloud are depicted in Figure 6.

Figure 6: Logarithmic plot of the coefficients |cj | for 102 (blue), 104

(red) and 106 (yellow) points without noise.

Asalreadymentioned, andalso illustratedbyFigure 6,
the coefficients decrease until they reach a plateau at a cer-
tain level, which is directly related to the point density.
This is essential for the presented approach, because the
higher the level of the plateau the lower the resulting poly-
nomial degree and consequently, the less accurate the ap-
proximation will be.

For this example, the mean level of the plateau for 102

(blue), 104 (red) and 106 (yellow) points is located at ap-
proximately 10−6, 10−10 and 10−14, respectively. It can be
observed that an increase in the number of points by a fac-
tor of 102 reduces the level of the plateau by ≈ 104. For
a point cloud with 106 points, the resulting coefficients
differ to the true values given in Figure 4 by only about
±5 ⋅ 10−13. It should also be noted, that the values for the
coefficients forming the plateau do not have the same ran-
dom characteristics as those in Figure 4, but rather show
some systematic variations, which probably result from
the calculation of the functional values f (xk) by a linear
interpolation. In general we can conclude that the accu-
racy of the approximation of point clouds, using the pro-
posed algorithm, increases proportionally with the point
density.

3.2 Impact of noise

In this section we illustrate the impact of measurement
noise on the level of the plateau. Therefore, we generate
a point cloud with 104 linearly spaced points and add
normally distributed noise with a standard deviation of
σ = [10% 1% 0.1%]. The resulting coefficients for
each point cloud are depicted in Figure 7. First of all, it

Figure 7: Logarithmic plot of the coefficients |cj | for 104 points with
noise of σ = 10% (blue), 1% (red), 0.1% (yellow) and without noise
(purple).

is apparent in Figure 7 that the three plateaus are quite
close to each other and their levels only differ by a fac-
tor of 10 and, therefore, share the same difference as the
corresponding standard deviation σ to which they refer.
Furthermore, the values of the coefficients forming each
plateau have, in this example, a rather random character-
istic. In a direct comparison with the coefficients of the
point cloud without noise (purple), it is also noticeable
that noise has a considerable impact on the level of the
plateau. Even if only low noise with σ = 0.1% is present,
the level of the plateau already increases from 10−10 to
≈ 10−4. A part of this increase is certainly due to the choice
of calculating the functional values f (xk) by a simple lin-
ear interpolation. Thus, the result could be significantly
improved by using better methods than a linear interpo-
lation. However, the measurement noise will always have
a considerable impact on the level of the plateau and con-
sequently on the accuracy of the approximation.

As we have shown, the accuracy of an approxima-
tion of point clouds by an interpolation in the Chebyshev
points is directly related to the point density andmeasure-
ment noise. In general we can state, that especially for
sparse point clouds or point clouds of simple geometries,
which can be approximated by low-order polynomials, the
presented approach is not the best choice. In such cases
it is preferable to estimate the polynomial coefficients us-
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ing themethod of least squares and determine the optimal
polynomial degree iteratively using a suitablemodel selec-
tion criterion, as for instance discussed byHarmening and
Neuner [22].

However, the presented approach is particularly suit-
able for the approximation of dense point clouds of com-
plex geometries, where even polynomials of millionth de-
gree can be usually calculated within a few seconds. So
the focus is on point clouds where the number of points
is much larger than the degree of the polynomial ap-
proximation. This will be illustrated in the following sec-
tion.

4 Example

To demonstrate the suitability of the presented approach
we consider the following example of a profile scan of
a bust of C. F. Gauss with 100000 points, as depicted in
Figure 8. The profile scan was extracted from a surface
scan of the bust and the number of points was increased
afterwards. In addition, the resulting point cloud was
smoothed in order to reduce the impact of measurement
noise as much as possible. The derived profile scan is con-
sidered as a point cloudwithoutmeasurement noise and is
used as a reference for the approximation in this example.

To analyse the accuracy of the approximation using
our approach, we generate a synthetic point cloud by
adding normally distributed noise with a standard devi-
ation of σx = σy = 0.5mm to the true coordinates of the
points of the reference profile scan. To approximate such a
point cloud, we consider the parametric representation of

Figure 8: Reference profile scan of a bust of C. F. Gauss with 100000
points.

the x and y coordinates in the form

x = Px,px (u) =
px
∑
j=0

cxj Tj(u),

y = Py,py (u) =
py
∑
j=0

cyj Tj(u),
(35)

with the new parameter u ∈ [−1, 1]. In general, there is no
corresponding value ui for each point (xi, yi) available.
Therefore, three different methods can be found in the lit-
erature for calculating ui for each point, namely “equally
spaced”, “chord length” and “centripetal”, see e. g. the
textbook by Piegl and Tiller [35, p. 364 ff.]. In this exam-
ple, we choose equally spaced values for ui. Since in this
case we determine the functional values at the Chebyshev
points by a simple linear interpolation, the stochastic
properties of the observations (xi, yi) will have no influ-
ence on the determination of these values. Therefore, we
can assume equally weighted and uncorrelated observa-
tions (xi, yi) and calculate the unknown parameters cxj
and cyj independently. This results in the two point clouds
with measurement noise depicted in Figure 9, which will
be approximated in the following sections using both our
proposed approach and the method of least squares.

Figure 9: Resulting two point clouds for the x and y coordinates with
measurement noise of σx = σy = 0.5mm and 100000 points.

As already mentioned, we have decided, for reasons
of simplicity, to determine the functional values at the
Chebyshev points by a linear interpolation. To obtainmore
precise results and also to take the stochastic properties of
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the observations (xi, yi) into account, the function values
at the Chebyshev points could be estimated by e. g. local
regression. However, this is out of the scope of this contri-
bution.

4.1 Approximation by interpolation
At first, we approximate the two point clouds fromFigure 9
by an interpolation in the Chebyshev points according to
the proposed approach described in Algorithm 1. As a so-
lution we obtain a curve which is described by two poly-
nomials of degree px = 528, py = 422 and which can not
be distinguished visually from the two point clouds in Fig-
ure 9. Therefore, we first of all will have a look at the re-
sulting residuals vxi = Px,528(ui)−xi and vyi = Py,422(ui)−yi,
which in this case are shown as a relative frequency his-
togram in Figure 10. The two histograms are just slightly

Figure 10: Relative frequency histogram of the resulting residuals vxi
and vyi for the approximation of the two point clouds with measure-
ment noise of σx = σy = 0.5mm and 100000 points.

different withmaximum values of max |vxi | ≈ 2.07mmand
max |vyi | ≈ 2.26mm. The distribution of both sets of resid-
uals correspond very well to a normal distribution with
an expectation nearly zero and a standard deviation of
sx = 0.5021mm and sy = 0.5022mm for vxi and vyi , re-
spectively. The residuals of both approximations therefore
correspond to the previously added normally distributed
noise with a standard deviation of σx = σy = 0.5mm.

To analyse the accuracy of the approximation in more
detail, the deviations Δxi and Δyi , which result as the differ-
ence between the polynomials and the point cloud of the
reference profile scan without measurement noise from
Figure 8, are shown in Figure 11. Due to the calculation

Figure 11: Deviations Δxi and Δyi between the resulting polynomials
and the point cloud of the reference profile scan without measure-
ment noise from Figure 8. For a better visualisation of the devia-
tions, the value range was limited to ±0.3mm. Therefore, the largest
deviations at the limits at u ≈ ±1 are not visible.

of the functional values f (xk) at the Chebyshev points by
a simple linear interpolation, the largest deviations occur
very close to the limits at u ≈ ±1, with maximum values
of max |Δxi | ≈ 0.59mm and max |Δyi | ≈ 1.21mm. How-
ever, for larger polynomial degrees, these areas are neg-
ligibly small in relation to the total point cloud and can
even be removed afterwards if desired. Alternatively, these
deviations at the limits can also be reduced by choosing
more precise methods for determining the functional val-
ues f (xk). In addition, larger deviations occur in the range
of u = −0.1 in both point clouds, which corresponds to
a spot on the forehead of the bust. There is a small dent
which could not be approximated properly, due to the
large measurement noise. Nevertheless, these deviations
are still much smaller than the introduced measurement
noise of σx = σy = 0.5mm. Apart from some few ex-
ceptions, the deviations for the x and y coordinates are
mainly below 0.1mm, with a resulting standard deviation
of sΔx ≈ 0.049mm and sΔy ≈ 0.051mm for Δxi and Δyi , re-
spectively.
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4.2 Least squares approximation

In this section we will derive the basic formulas to com-
pute the solution for a polynomial approximation using
themethod of least squares, see e. g. the textbooks by Ghi-
lani andWolf [19, p. 173 ff.] or Niemeier [32, p. 129 ff.]. Since
the derivation of the solution for a least squares approx-
imation is identical for xi and yi, we will present it only
for xi. The functional model for xi for the n + 1 points ac-
cording to equation (35) results in

xi = Px,px (u) =
px
∑
j=0

cxj Tj(ui)

= cx0T0(ui) + cx1T1(ui) + . . . + cxpxTpx (ui),
(36)

with the unknown parameters cxj and for i = 0, 1, . . . , n. If
we consider xi as observations and ui as error-free values
and introduce a residual vxi for each observation, we ob-
tain the following observation equations

xi + vxi = Px,px (u) =
px
∑
j=0

cxj Tj(ui) (37)

which can be written in matrix notation as

[[[[[

[

x0
x1
...
xn

]]]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟
lx

+
[[[[[

[

vx0
vx1
...
vxn

]]]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
vx

=
[[[[[

[

T0(u0) T1(u0) . . . Tpx (u0)
T0(u1) T1(u1) . . . Tpx (u1)

...
...

. . .
...

T0(un) T1(un) . . . Tpx (un)

]]]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
A

[[[[[

[

c0
c1
...
cpx

]]]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
cx

.

(38)
Assuming equally weighted and uncorrelated observa-
tions, the weight matrix P results in an identity matrix

P = In+1, (39)

which represents the stochastic model. To determine the
unknown parameters cxj of a least squares approximation,
we minimise the sum of weighted squared residuals, re-
sulting in the so-called normal equation system

ATPAcx = A
TPlx, (40)

with the normal matrix

N = ATPA (41)

and the vector of the right hand side

nx = A
TPlx. (42)

Solving (40) for cx yields the unknown coefficients cxj of
a least squares approximation. In contrast to the result-
ing normal matrix for the least squares approximation of

functions in equation (16), the normal matrix in (41) is a
dense matrix. Therefore, the normal equation system (40)
can not be solved as efficiently as (16).

For the two point clouds in Figure 9 we determine the
polynomial approximation by solving (40) with a polyno-
mial degree of px = 528 and py = 422. In principle, the
same distribution of the residuals results for both poly-
nomials with almost the same properties as already ob-
tained for the approximation by interpolation from Fig-
ure 10. Also the resulting deviations hardly differ visually
from those in Figure 11, with just slightly smaller values at
the limits of max |Δxi | ≈ 0.44mm andmax |Δyi | ≈ 0.97mm.

Accordingly, the polynomial approximation by the
method of least squares seems to correspond to the one
by an interpolation in the Chebyshev points from the pre-
vious section, which will be analysed in more detail in the
following.

4.3 Comparison

At first, wewill compare the solution of the polynomial co-
efficients obtained by an interpolation in the Chebyshev
points from Section 4.1 and by the method of least squares
from Section 4.2. The absolute differences between these
two sets of coefficients for the polynomials Px,528(u) and
Py,422(u) are shown in Figure 12. In general, small differ-
ences have been observed for most of the coefficients,
that range below 10−3mm,whereby the values for Py,422(u)
(red) are a bit smaller than for Px,528(u) (blue). Moreover,
both graphs show a similar trend, with an exponential in-
crease of the difference for larger j. Therefore, the maxi-
mum absolute difference of ≈ 7 ⋅ 10−3mm occurs at the
last coefficient for both polynomials, which is still nearly
100 times smaller than the added measurement noise of

Figure 12: Logarithmic plot of the absolute difference between the
polynomial coefficients obtained by an interpolation in the Cheby-
shev points and by the method of least squares for Px,528(u) in blue
and Py,422(u) in red.
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σx = σy = 0.5mm. Consequently, the two sets of polyno-
mials only differ slightly from each other, as can be seen in
Figure 13.

As in the previous sections, the largest deviations of
up to 0.25mm occur at the limits of the two polynomi-
als.However, sincebothpolynomials approximate the true
function rather poorly at the limits, compare Figure 11, no
conclusion can be drawn at this point aboutwhich approx-
imation is better orworse.Additionally,∼ 99.95%of all de-
viations are smaller than 5 ⋅ 10−2mm and even ∼ 85% are
smaller than 5 ⋅ 10−3mm, thus, they are 100 times smaller
than the added measurement noise. Whether these very
small deviations play a significant role depends, of course,
on the problem itself and has to be answered individually.
In the present example, however, these deviations are not
relevant.

Figure 13: Difference between the polynomials obtained by an in-
terpolation in the Chebyshev points and by the method of least
squares. For a better visualisation of the differences, the value
range was limited to ±0.015mm. Therefore, the largest differences
at the limits at u ≈ ±1 are not visible.

Except for the limits, a polynomial approximation of
dense point clouds by interpolation in the Chebyshev
points or by the method of least squares yields almost the
same result. But with the important difference, that the
approximation by interpolation can be calculated much
faster and also for polynomials of millionth degree, which
is hardly possible for an approximation using the method
of least squares according to Section 4.2. To clearly empha-
sise this fact, Table 1 shows the computation time required

Table 1: Computation time required for an approximation by inter-
polation in the Chebyshev points (IP) and by the method of least
squares (LS) of different sized point clouds and polynomial degrees
using a budget PC with an Intel Core i5-6400 @ 2.70GHz. All com-
putation have been performed in Matlab and the normal equation
system (40) has been solved using the backslash operator.

Time
case points polynomial degree IP LS

1 103 102 < 1ms ≈ 1ms
2 104 103 ≈ 2ms ≈ 0.5 s
3 105 104 ≈ 4ms ≈ 10min
4 106 105 ≈ 30ms –
5 107 106 ≈ 0.3 s –
6 108 107 ≈ 2 s –

for the approximation of different sized point clouds and
polynomial degrees. For small point clouds and low poly-
nomial degrees, there is hardly any significant difference
in the computation time between these two approaches,
but this changes quickly with increasing number of points
and polynomial degrees. For case 3, the computation time
using the method of least squares is already ≈ 10min and,
thus, nearly 150 000 times longer than for interpolation.
Most of the time is thereby needed to set up the normalma-
trix (41) and, based on extrapolations, this takes already
about 2 weeks for case 4. This is also the reason why in
Table 1 the computation time for an approximation using
the method of least squares for the last 3 cases could no
longer be given. In contrast, even a point cloud with 100
million points can be approximated by a polynomial of 10
millionth degree in less than 2 s using the presented ap-
proach of an interpolation in the Chebyshev points.

5 Conclusion and outlook
By slightly modifying the general methodology for an ap-
proximation of functions by an interpolation in the Cheby-
shev points, as applied byChebfun [12], the basic idea of an
approach was shown that allows even large point clouds
with complex geometry to be approximated very fast. The
identification of the optimal polynomial degree is based
on the determination and truncation of the plateau and
is therefore solely based on the computed polynomial co-
efficients. The impact of the point density and measure-
ment noise on the level of the plateau and consequently
on the accuracy of the approximation has been shown in
more detail. It has been demonstrated that the measure-
ment noise has the largest impact. Themain advantages of
the presented approach for the univariate approximation
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of point clouds by interpolation in the Chebyshev points in
contrast to an approximation using B-Splines can be sum-
marised as follows:
– No knot placement strategy needed.
– No additional model selection criteria needed.
– Extremely fast and efficient.

So far, themain challenge of the presented approach is the
determination of the functional values f (xk) at the Cheby-
shevpoints xk andalso thedeterminationof the level of the
plateau. Both aspects have a significant impact on the ap-
proximation itself. Sincewewanted to demonstrate the ba-
sic concept of an approximation in the Chebyshev basis by
an interpolation in the Chebyshev points in this contribu-
tion, we have limited ourselves to the simplest approaches
for both aspects.Howboth aspects canbe solved in a smart
way is currently being researched.

Moreover, we have neglected the stochastics of the
unknown parameters so far, which is, among other as-
pects, one of the essential result of a least squares ap-
proximation. In case the approximation is used e. g. for
a geodetic deformation analysis, the stochastic proper-
ties of the unknown parameters play an essential role
and must be taken into account. Therefore, the determi-
nation of the stochastic properties as well as the identifi-
cation of outliers is currently being investigated in more
detail.

Until now, only point clouds that can be described by
univariate functions, for example, a trajectory, can be ap-
proximatedby thepresented approach.However, the basic
methodology presented in this article, could be directly ex-
tended to the approximation of surfaces and is currently
being developed.
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