Home Images of circles, lines, balls and half-planes under Möbius transformations
Article
Licensed
Unlicensed Requires Authentication

Images of circles, lines, balls and half-planes under Möbius transformations

  • Mateusz Krukowski EMAIL logo
Published/Copyright: August 27, 2020

Abstract

In this paper, we study the images of circles, lines, balls and half-planes under the Möbius transformations.

MSC 2010: 30A99

Acknowledgements

I would like to express my deepest appreciation and gratitude towards the anonymous reviewer, whose invaluable comments and remarks helped me improve and enrich the paper.

References

[1] F. Ares, J. G. Esteve, F. Falceto and A. R. de Queiroz, On the Möbius transformation in the entanglement entropy of fermionic chains, J. Stat. Mech. Theory Exp. 2016 (2016), no. 4, Article ID 043106. 10.1088/1742-5468/2016/04/043106Search in Google Scholar

[2] C. Bisi and G. Gentili, Möbius transformations and the Poincaré distance in the quaternionic setting, Indiana Univ. Math. J. 58 (2009), no. 6, 2729–2764. 10.1512/iumj.2009.58.3706Search in Google Scholar

[3] J. Chądzyński, Introduction to Complex Analysis (in Polish), Wydawnictwo Naukowe PWN, Warszawa, 1999. Search in Google Scholar

[4] R. V. Churchill, J. W. Brown and R. F. Verhey, Complex Variables and Applications, 3rd ed., McGraw-Hill, New York, 1976. Search in Google Scholar

[5] T. W. Gamelin, Complex Analysis, Undergrad. Texts Math., Springer, New York, 2001. 10.1007/978-0-387-21607-2Search in Google Scholar

[6] A. Ganczar, Problems in Complex Analysis (in Polish), Wydawnictwo Naukowe PWN, Warszawa, 2010. Search in Google Scholar

[7] S. Giardino, Möbius transformation for left-derivative quaternion holomorphic functions, Adv. Appl. Clifford Algebr. 27 (2017), no. 2, 1161–1173. 10.1007/s00006-016-0673-ySearch in Google Scholar

[8] R. Klén, H. Lindén, M. Vuorinen and G. Wang, The visual angle metric and Möbius transformations, Comput. Methods Funct. Theory 14 (2014), no. 2–3, 577–608. 10.1007/s40315-014-0075-xSearch in Google Scholar

[9] M. V. Lawson, The Möbius inverse monoid, J. Algebra 200 (1998), no. 2, 428–438. 10.1006/jabr.1997.7242Search in Google Scholar

[10] C. A. Manogue and T. Dray, Octonionic Möbius transformations, Modern Phys. Lett. A 14 (1999), no. 19, 1243–1255. 10.1142/S0217732399001346Search in Google Scholar

[11] F. Pelletier, R. Saffidine and N. Bensalem, Möbius transformations and the configuration space of a Hilbert snake, Bull. Sci. Math. 139 (2015), no. 8, 847–879. 10.1016/j.bulsci.2014.12.006Search in Google Scholar

[12] R. Randell, J. Simon and J. Tokle, Möbius transformations of polygons and partitions of 3-space, J. Knot Theory Ramifications 17 (2008), no. 11, 1401–1413. 10.1142/S0218216508006671Search in Google Scholar

[13] T. V. Rybalkina and V. V. Sergeĭchuk, Topological classification of Möbius transformations, Fundam. Prikl. Mat. 17 (2011/12), no. 6, 175–183. 10.1007/s10958-013-1496-1Search in Google Scholar

[14] C. Stoppato, Regular Moebius transformations of the space of quaternions, Ann. Global Anal. Geom. 39 (2011), no. 4, 387–401. 10.1007/s10455-010-9238-9Search in Google Scholar

[15] L. I. Volkovyskiĭ, G. L. Lunts and I. G. Aramanovich, A collection of problems on complex analysis, Dover, New York, 1965. Search in Google Scholar

[16] S. Yang, A characterization of Möbius transformations, Proc. Japan Acad. Ser. A Math. Sci. 84 (2008), no. 2, 35–38. 10.3792/pjaa.84.35Search in Google Scholar

Received: 2018-08-28
Accepted: 2019-11-14
Published Online: 2020-08-27
Published in Print: 2020-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaa-2020-2021/html
Scroll to top button