Home On some nonlinear hyperbolic p(x,t)-Laplacian equations
Article
Licensed
Unlicensed Requires Authentication

On some nonlinear hyperbolic p(x,t)-Laplacian equations

  • Taghi Ahmedatt ORCID logo , Ahmed Aberqi , Abedlfettah Touzani and Chihab Yazough EMAIL logo
Published/Copyright: May 16, 2018

Abstract

This paper is devoted to study the global existence of solutions of the hyperbolic Dirichlet equation

utt=Lu+f(x,t)in ΩT=Ω×(0,T),

where L is a nonlinear operator and ϕ(x,t,), f(x,t) and the exponents of the nonlinearities p(x,t) and μ(x,t) are given functions.

MSC 2010: 35L86; 35J05

References

[1] S. Antontsev, Wave equation with p(x,t)-Laplacian and damping term: Existence and blow-up, J. Difference Equ. Appl. 3 (2011), 503–525. 10.7153/dea-03-32Search in Google Scholar

[2] S. Antontsev, M. Chipot and Y. Xie, Uniqueness results for equations of the p(x)-Laplacian type, Adv. Math. Sci. Appl. 17 (2007), 287–304. Search in Google Scholar

[3] S. Antontsev, J. I. Diaz and S. Shmarev, Energy Methods for Free Boundary Problems: Applications to Non-Linear PDEs and Fluid Mechanics, Progr. Nonlinear Differential Equations Appl. 48, Birkhäuser, Boston, 2002. 10.1007/978-1-4612-0091-8Search in Google Scholar

[4] S. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (2006), 19–36. 10.1007/s11565-006-0002-9Search in Google Scholar

[5] S. Antontsev and S. I. Shmarev, Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, Handbook of Differential Equations, Stationary Partial Differential Equations. Vol. 3, Elsevier, Amsterdam (2006), 1–100. 10.1016/S1874-5733(06)80005-7Search in Google Scholar

[6] S. Antontsev and S. I. Shmarev, Localization of solutions of anisotropic parabolic equations, Nonlinear Anal. 71 (2009), e725–e737. 10.1016/j.na.2008.11.025Search in Google Scholar

[7] S. Antontsev and S. I. Shmarev, Parabolic equations with anisotropic nonstandard growth conditions, Free Boundary Problems. Theory and Applications, Internat. Ser. Numer. Math. 154, Birkhäuser, Basel (2006), 33–44. 10.1007/978-3-7643-7719-9_4Search in Google Scholar

[8] S. Antontsev and V. Zhikov, Higher integrability for parabolic equations of p(x,t)-Laplacian type, Adv. Differential Equations 10 (2005), 1053–1080. 10.57262/ade/1355867817Search in Google Scholar

[9] E. Azroul, M. Benboubker, H. Redwane and C. Yazough, Renormalized solutions for a class of nonlinear parabolic equations without sign condition involving nonstandard growth, An. Univ. Craiova Ser. Mat. Inform. 41 (2014), no. 1, 69–87. Search in Google Scholar

[10] A. Benaissa and S. Mokeddem, Decay estimates for the wave equation of p-Laplacian type with dissipation of m-Laplacian type, Math. Methods Appl. Sci. 30 (2007), 237–247. 10.1002/mma.789Search in Google Scholar

[11] M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data, J. Differential Equations 249 (2010), no. 6, 1483–1515. 10.1016/j.jde.2010.05.011Search in Google Scholar

[12] M. Benboubker, H. Chrayteh, M. El Moumni and H. Hjiaj, Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data, Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 1, 151–169. 10.1007/s10114-015-3555-7Search in Google Scholar

[13] J. Bennouna, B. El Hamdaoui, M. Mekkour and H. Redwane, Nonlinear parabolic inequalities in Lebesgue–Sobolev spaces with variable exponent, Ric. Mat. 65 (2016), no. 1, 93–125. 10.1007/s11587-016-0255-2Search in Google Scholar

[14] J. Clements, Existence theorems for a quasilinear evolution equation, SIAM J. Appl. Math. 26 (1974), 745–752. 10.1137/0126066Search in Google Scholar

[15] L. Diening, P. Harjulehto, P. Hästö and M. R’́ažička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer, Heidelberg, Germany, 2011. 10.1007/978-3-642-18363-8Search in Google Scholar

[16] M. Dreher, The wave equation for the p-Laplacian, Hokkaido Math. J. 36 (2007), 21–52. 10.14492/hokmj/1285766660Search in Google Scholar

[17] X. L. Fan and D. Zhao, On the generalised Orlicz–Sobolev Space Wk,p(x)(Ω), J. Gansu Educ. College 12 (1998), no. 1, 1–6. Search in Google Scholar

[18] V. A. Galaktionov and S. I. Pohozaev, Blow-up and critical exponents for nonlinear hyperbolic equations, Nonlinear Anal. 53 (2003), 453–466. 10.1016/S0362-546X(02)00311-5Search in Google Scholar

[19] H. Gao and T. F. Ma, Global solutions for a nonlinear wave equation with p-Laplacian operator, Electron. J. Qual. Theory Differ. Equ. 1999 (1999), Paper No. 11. 10.14232/ejqtde.1999.1.11Search in Google Scholar

[20] J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod, Paris, 1969. Search in Google Scholar

[21] J. P. Pinasco, Blow-up for parabolic and hyperbolic problems with variable exponents, Nonlinear Anal. 71 (2009), 1094–1099. 10.1016/j.na.2008.11.030Search in Google Scholar

[22] K. Rajagopal and M. Ruzička, Mathematical modeling of electro-rheological fluids, Contin.Mech. Thermodyn. 13 (2001), 59–78. 10.1007/s001610100034Search in Google Scholar

[23] M. Ruzička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. 1748, Springer, Berlin, 2000. 10.1007/BFb0104029Search in Google Scholar

[24] S. G. Samko, Density 𝒞0(N) in the generalized Sobolev spaces Wm,p(x)(N), Dokl. Akad. Nauk 369 (1999), 451–454. Search in Google Scholar

[25] J. Simon, Compact sets in the space Lp(0,T;B), Ann. Mat. Pura Appl. (4) 146 (1952), 65–96. 10.1007/BF01762360Search in Google Scholar

[26] G. Todorova and E. Vitillario, Blow-up for nonlinear dissipative wave equations in n, J. Math. Anal. Appl. 303 (2005), 242–257. 10.1016/j.jmaa.2004.08.039Search in Google Scholar

[27] Z. Wilstein, Global well-posedness for a nonlinear wave equation with p-Laplacian damping, Dissertation, University of Nebraska-Lincoln, 2011, http://digitalcommons.unl.edu/mathstudent/24. Search in Google Scholar

[28] Z. Yang, Cauchy problem for quasi-linear wave equations with viscous damping, J. Math. Anal. Appl. 320 (2006), 859–881. 10.1016/j.jmaa.2005.07.051Search in Google Scholar

[29] Z. Yang and G. Chen, Global existence of solutions for quasi-linear wave equations with viscous damping, J. Math. Anal. Appl. 285 (2003), 604–618. 10.1016/S0022-247X(03)00448-7Search in Google Scholar

[30] D. Zhao, W. J. Qiang and X. L. Fan, On generalized Orlicz spaces Lp(x)(Ω), J. Gansu Sci. 9 (1997), no. 2. Search in Google Scholar

[31] Y. Zhijian, Existence and asymptotic behaviour of solutions for a class of quasi-linear evolution equations with non-linear damping and source terms, Math. Methods Appl. Sci. 25 (2002), 795–814. 10.1002/mma.306Search in Google Scholar

[32] Y. Zhijian, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differential Equations 187 (2003), 520–540. 10.1016/S0022-0396(02)00042-6Search in Google Scholar

[33] Y. Zhijian, Initial boundary value problem for a class of non-linear strongly damped wave equations, Math. Methods Appl. Sci. 26 (2003), 1047–1066. 10.1002/mma.412Search in Google Scholar

[34] Y. Zhijian, Cauchy problem for a class of nonlinear dispersive wave equations arising in elastoplastic flow, J. Math. Anal. Appl. 313 (2006), 197–217. 10.1016/j.jmaa.2005.04.086Search in Google Scholar

[35] V. V. Zhikov, On the density of smooth functions in Sobolev-Orlich spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), 1–14. Search in Google Scholar

Received: 2016-6-24
Revised: 2017-5-15
Accepted: 2017-12-19
Published Online: 2018-5-16
Published in Print: 2018-6-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaa-2018-0006/html
Scroll to top button