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Abstract: As artificial intelligence (AI) increasingly perme-
ates high-stakes domains such as healthcare, transporta-
tion, and law enforcement, ensuring its trustworthiness
has become a critical challenge. This article proposes an
integrative Explainable AI (XAI) framework to address the
challenges of interpretability, explainability, interactivity,
and robustness. By combining XAI methods, incorporating
human-AI interaction and using suitable evaluation tech-
niques, the implementation of this framework serves as a
holistic XAI approach. The article discusses the framework’s
contribution to trustworthy Al and gives an outlook on open
challenges related to interdisciplinary collaboration, Al gen-
eralization and Al evaluation.

Keywords: trustworthy AI; explainable AI; EU Al act; inte-
grative XAI frameworks; XAI in medicine

1 Introduction

Artificial Intelligence (AI) is increasingly shaping various
aspects of society, necessitating regulatory measures to
ensure its safe and ethical deployment. One of the latest reg-
ulatory efforts in this regard is the European AI Act, which
entered into force in August 2024 [1]. The EU AI Act provides
a legal framework for Al systems, categorizing them based
on risk levels and imposing strict requirements on high-
stakes Al applications such as healthcare, transportation
and law enforcement [2].

As Al systems become more embedded in high-stakes
domains, the concept of trustworthy Al has gained promi-
nence [3]-[7]. In general, trustworthy Al refers to systems
that possess characteristics considered worth to be relied
on. For example, according to a survey by Ali etal. [3],
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trustworthy Al refers to Al systems that are transparent, fair
and responsible, meaning they are accountable.

In this context, transparency refers to the explicit dis-
closure and availability of access to AI’s internal decision-
making mechanisms. Fair systems are designed to be free
from societal or technically induced biases, thereby pre-
venting unjustified disadvantages and failures [8]. Trans-
parency and fairness are, in turn, fundamental prereq-
uisites for the responsible deployment of AI systems in
accordance with ethical principles, societal norms, and legal
requirements. Furthermore, trustworthy AI is based on
interpretable, explainable, interactive and robust systems
[3] that can be understood, controlled and relied on.

Interpretability of trustworthy Al refers to the self-
explanatory nature of Al systems [9], including machine-
learned models and their decisions. Interpretability is given,
whenever the meaning of internal processes in models,
their constituents, and their outputs is inherently clear and
comprehensible. Explainability, on the other hand, denotes
the ability to provide explanations for decisions made by
complex and opaque “black-box” models, such as deep neu-
ral networks, to make them understandable to humans.
This includes both data-centered explanations [3] and mech-
anistic explainability [10]. Both explainability and inter-
pretability benefit from interactivity [11], meaning that Al
models, their decisions, and generated explanations can be
iteratively explored and revised by humans [12]. Through
guidance, Al systems shall become not only more compre-
hensible [13] but also more controllable [14].

Ultimately, the development of trustworthy AI aims
for stakeholder satisfaction and acceptance [3], addressing
needs of regulators, developers, experts and non-experts as
well as affected end-users [12], while promoting and ensur-
ing justified trust [15]. Trustworthy Al is therefore a broad
field that requires interdisciplinary collaboration among
stakeholders, depending on the specific challenge addressed
[381-[71.

From the multitude of mentioned aspects, this article
aims to specifically address the challenges of interpretabil-
ity, explainability, interactivity, and robustness in trustwor-
thy Al and to demonstrate how these can be integrated into
a technically feasible framework.
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Overall, this article seeks to promote and define an inte-
grative XAl framework, illustrate its realization for machine
learning in digital healthcare, and to demonstrate how
it can contribute to Al evaluation and generalization to
advance trustworthy Al in complex and critical application
domains.

The article is structured as follows. In Section 2, the
article emphasizes on the contribution of XAI and integra-
tive frameworks to solving challenges in making Al trust-
worthy. As a foundation, the necessary terminology for
defining and implementing integrative XAI frameworks is
introduced, along with application examples from digital
healthcare. Additionally, suitable XAI-based model evalu-
ation methods are briefly introduced. After a short sum-
mary of XAT’s contribution to trustworthy Al, the proposed
integrative XAI framework is introduced in Section 3. The
article gives an original definition and names the key com-
ponents for integrative XAI frameworks. Next, an exist-
ing implementation of the proposed integrative XAI frame-
work is described and illustrated in Section 4. First, an
overview of the framework’s architectural realization is
provided followed by a brief introduction of methods suit-
able for implementing the framework’s individual con-
stituents and explanatory approaches. Based on a unified
perspective on integrative XAI frameworks, the interdis-
ciplinary nature, theoretical foundation in reasoning and
contribution of the proposed solution to Al evaluation is
discussed in Section 5. The article synthesizes the key contri-
butions and limitations of the proposed framework toward
trustworthy AI in comparison to specialized XAI meth-
ods in Section 6 and concludes with an outlook on open
challenges related to generalization and socio-technical
aspects.

2 The role of explainable AI (XAI) in
trustworthy Al

The principal dimensions of trustworthy Al as introduced
in Ali etal. [3] are illustrated in Figure 1. Here, the chal-
lenges associated with the development of trustworthy Al
are grouped into two distinct but interrelated categories:
(1) technical and cognitive challenges in trustworthy Al,
and (2) socio-technical challenges in trustworthy AL While
robustness, explainability, interpretability and interactiv-
ity are considered to be mainly concerned with the tech-
nical development and testing of Al software and with
cognitively-inspired human-Al interaction, transparency,
fairness, responsibility and satisfaction are considered to be
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Figure 1: Key aspects of trustworthy Al as introduced by Ali et al. [3],
covering interpretability, explainability, interactivity and robustness of Al
(considered as technical or cognitive challenges in trustworthy Al
development and evaluation here) as well as transparency, fairness,
responsibility and satisfaction (considered as socio-technical challenges
here).

of socio-technical nature, involving regulatory, societal as
well as ethical aspects.!

A major driver in the implementation of trustworthy
Al is research in the field of Explainable Artificial Intelli-
gence (XAI) [16]. One of its primary objectives is to con-
tribute to trustworthy AI by developing techniques that
allow users to understand and trust Al decisions [3]. Over
the past years, the XAI community has proposed a vari-
ety of theoretical frameworks, methodologies, metrics, and
experimental approaches to develop interpretable, explain-
able, interactive and robust AI methods [16]. The following
section introduces key terminology necessary to understand
how the combination of various XAI methods can contribute
to an integrative framework and, consequently, to trust-
worthy AL

2.1 XAI terminology and examples from
digital healthcare

Explainable Artificial Intelligence (XAI) is a research field
dedicated to developing methods that either provide inher-
ent interpretability within machine learning models or
make opaque “black box” models, such as neural networks,
explainable [17]. XAI aims to bridge the gap between the
complexity of advanced Al models and the need for human
stakeholders to comprehend, control and ultimately trust
these models. For that purpose a multitude of methods has

1 Here, Transparency as a challenge rather than a technical character-
istic of trustworthy Al is referred to as having open access Al internals,
e.g., as open-source code, and therefore categorized as a socio-technical
challenge.
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been developed so far with distinct characteristics and spe-
cialized terminology describing them (see for example [3],
[16], [18] for a detailed overview).

The concept of explanation is at the core of XAI
research. The word explanation is etymologically derived
from the Latin verb explanare, containing the adjective
planus, which means intelligible or clear in Latin [19]. The
act of explanation is thus a form of communication that
is about conveying, processing and exchanging informa-
tion between communication partners about a subject of
matter with the purpose of providing reasons, uncovering
how things work or giving instructions [20]—[23]. The com-
munication partner that provides an explanation is called
explainer, the receiving party is called explainee and the sub-
ject of matter is generally termed the explanandum, which
is explained by the explanans [16], [22], [24].

In the context of XAl, the term explainer refers to a
tool or method used to generate explanations for the deci-
sions made by an AI model. An explainer works by ana-
lyzing the model’s inputs, processes or outputs to provide
insights that help humans (the explainees) understand the
reasons behind a specific prediction or behavior [12], [16].
Explainees may be experts, non-experts or developers that
each have a unique information need [12]. In general, they
are stakeholders of explanation outcomes. For example, in
digital healthcare, explainees may be regulators in medical
law, clinicians and medical experts, non-experts like insur-
ers as well as affected end-users, the patients.

The main purpose of an explanation is seen in the
literature as answering “Why?” and “How?” questions [23].
These go beyond asking “What is this? What does this do?”
(for example, the answer “rain” to the question “What is
that falling from the sky?” would not be considered an
explanation). Instead, the question “Why does it fall from
the sky?” could be explained with a reference to the for-
mation of clouds in the atmosphere and gravity as reasons
for rain, while the question “How does rain form?” could be
answered with an explanation of the chemistry and physics
of cloud formation and gravity, that is how rain works.
The question “Why do you take an umbrella?” asks for a
different explanation than the question “How do you open
an umbrella?”. While the first question asks for a reason as
in the rain example (here an intent or a motivation rather
than a mechanical cause), the second question is about
instructions (how to open an umbrella). In general, humans
tend to ask for reasons in explanations by posing the “Why?”
question [22] in order to gain an understanding about the
explanandum’s purpose (which is referred to as functional
understanding [10]). Explanations to the question “How?”
depend on whether it is a request for how something works

DE GRUYTER

(mechanistic understanding [10]) or whether it is a question
of how something is done (instructional explanations [20]).
The following tabular overview introduces the key terms
characterizing explanation methods and gives examples for
the domain of digital healthcare (see Tables 1-3).

The aim of all these explanation methods is to provide
the human explainee with a tool to explore AI models and
have them explained in order to increase understanding of
the model and its decisions. Another goal is to make trans-
parent how models can be adapted and possibly improved
in terms of performance, interpretability and robustness.
However, providing explanations is not enough for model
evaluation. Models should be scrutinized using XAlI-based
evaluation methods.

2.2 XAlI-based model evaluation methods

XAl-based model evaluation can be performed based on
methods and techniques that assess the efficiency, effective-
ness, reliability, and trustworthiness of explanations gener-
ated for given models [3], [67], [68]. The goal is to ensure that
the explanations provided for Al models are not only under-
standable but also meaningful and aligned with human
expectations and technical requirements [12], [16], [68], [69].
In the following paragraphs, a selection of methods is intro-
duced that support human-centered evaluation as well as
the assessment of a model’s robustness.

2.2.1 Human study

The term human study is an umbrella term for all studies
that involve a human person, being either an evaluator
or interaction partner. Human studies aim for gaining evi-
dence for the quality of and trust in models and explana-
tions [67], [69], [70]. They may include expert interviews and
questionnaires [69] as well as controlled and randomized
experiments with experts and end-users [66], [67], [71]. The
overall goal is to measure how explanations are perceived,
understood and used by explainees [12], [71]. Surprisingly,
although the human plays a crucial role in evaluating the
quality of XAI methods, a recent review by Suh et al. [72]
revealed that less than 1 % of works from a surveyed collec-
tion of 8254 XAI papers validate explainability with the help
of human studies.

2.2.2 Evaluation metrics

In the aforementioned human studies as well as in tech-
nical experiments, metrics help to measure the quality
of the model, the explanations and the interaction within
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Table 1: Part I of the overview on common XAI terminology with definitions and example use cases, primarily from digital healthcare scenarios. Part I
presents the basic terminology to characterize XAl methods.

Term

Definition

Example usage in digital healthcare

Inherent interpretability

Post-hoc explanation

Global explanation

Local explanation

Model-agnostic explanation

Model-specific explanation

Example-based explanation

Denotes the characteristic of a model to be naturally
interpretable without needing external explanation
methods. Interpretability is a core feature, allowing
users to understand the reasoning behind predictions
directly from the model’s structure or behavior [9], [16],
[25].

Refers to explanations generated after a model’s
prediction, usually applied to “black-box” models like
deep neural networks. These explanations attempt to
reveal the decision-making logic of the model or
data-specific features that influenced the model’s
output [3], [16], [18].

Refers to an explanation that describes the overall
behavior of a model. This type of explanation helps to
understand the general decision-making process of a
model across all possible inputs [3], [16], [18], [28], [29].

Focuses on explaining individual predictions made by a
model. It seeks to explicate why the model produced a
particular output for a given input [3], [16], [18], [28],
[29].

Refers to techniques that can be applied to any model,
regardless of its underlying architecture. These
methods are independent of the model’s internal
workings and provide insights based on the
input-output behavior of the model [3], [16], [18].

Describes methods designed for specific types of
models, such as deep neural networks. These
techniques leverage the architectural characteristics
and internal workings of a model to provide insights
into its decision making [3], [16], [18].

Summarizes methods that provide insights into a
model’s decision by comparing the model’s behavior
and output for a given instance with that of similar or
dissimilar examples.

In digital pathology, a rule-based model that directly maps
patient features (such as the presence of tumor tissue in
other tissues) to invasion depth and severity of cancer
would be inherently interpretable, as its decision path is
considered clear and understandable to the human
recipient [24], [26].

In digital pathology, a post-hoc explanation might clarify
why a model predicted a certain tissue being presentin a
sample by highlighting the most relevant features in the
tissue’s morphology, even if the internal workings of the
model are not inherently interpretable [27].

In digital pathology, a global explanation might reveal
how a model diagnoses tumor tissue across all given
samples based on general factors such as the occurrence
of tumor cells, specific tissue textures or the localization
and spatial constellation of relevant areas in tissue
samples [12], [24], [26], [30].

In the context of digital pathology, if an Al model predicts
that a patient has a tumor of certain severity, a local
explanation can highlight the specific factors, such as
tumor cells detected in a specific tissue sample, that
influenced the prediction for this patient [27]. It may also
explicate the spatial constellation of different tissues, for
example, to explain the resulting invasion depth of a
tumor for a specific patient [26], [31].

In malaria diagnostics, model-agnostic explanations may
explicate which areas in blood smear images are
considered relevant for the detection of infected cells,
regardless of the model in use [32]. Similarly, they can be
used for explainable (clinical) facial expression recognition,
although they may not be sufficiently fine-grained [33].

In clinical facial expression recognition, model-specific
explanations may explicate what facial characteristics a
model has considered relevant to predict certain states in
patients such as pain [34]. Compared to model-agnostic
approaches, they may provide more fine-grained
explanations [33] as well as the means to generate
explanations from different layers of an architecturally
complex model, such as demonstrated for digital
pathology [27].

Several approaches fall under this category: Contrastive
explanations [35], [36], prototype-based explanations [18],
[37]-[40] and case-based reasoning approaches [40], [41].
Their application in Al-driven digital healthcare is
mentioned in the respective rows of Table 2.

a human-AI system. Doshi-Velez and Kim [73] distinguish
three categories of metrics based on the level of human
involvement and technical or application maturity. They
refer to functionally-grounded metrics, when a human judg-
ment is not involved, to human-grounded metrics, when
subjective judgments, alignment with human knowledge,

or human behavioral patterns are measured), and to
application-grounded metrics, when a model and expla-
nations are evaluated against application-specific require-
ments or when the performance or the full human-Al-
system is evaluated in a real-world setting [16]. Examples
for functionally grounded metrics are fidelity, compactness
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Table 2: Part II of the overview on common XAI terminology with definitions and example use cases, primarily from digital healthcare scenarios. Part
11 presents explanation approaches that may cover various characteristics as introduced in Part I of the overview (see Table 1).

Term

Definition

Example usage in digital healthcare

Contrastive explanation

Prototype-based
explanation

Case-based reasoning

Attribution-based
explanation

Concept-based
explanation

Rule-based explanation

Probabilistic explanation

Refers to approaches which emphasize the differences
between an instance of one category being explained
in contrast to other similar instances from another
category, showing what features in the examples led to
the prediction being different [35], [36].

Helps in understanding which representative
characteristics in the data lead to a prediction by
comparing an instance to typical or prototypical cases
that the model has learned [37], [38], [44], [45].
Prototypes offer an aggregated view on model
decisions and provide relatable examples [18], [39],
[40], [46]-[48].

Involves explaining a model’s decision by referring to
previously seen, similar cases [40]-[42].

Focuses on identifying and quantifying the contribution
of each feature or input to the model’s prediction. They
usually visually highlight the most influential features
or inputs for improved interpretability of attributions
[31, (6], [18].

Aims for explaining model decisions by relating learned
features to higher-level, human-understandable
concepts or categories, rather than raw data or abstract
properties [30], [51].

Describes or approximates a model’s decision-making
process through a set of logical rules. These rules often
take the form of ”if-then” statements that reflect the
conditions under which a model produced its output
[16], [52], [53]. The goal is either to explicate individual
decision steps of a model or to uncover complex,
relational patterns in the data that influenced the
model’s output [3], [30].

Denotes explanations that provide insights into the
uncertainty or likelihood of a model’s prediction, rather
than offering deterministic outputs [54]-[56].

In clinical facial expression recognition, a contrastive
explanation could show why a patient, who cannot
articulate their subjective sensation, shows a facial
expression of pain (e.g., after a surgery) rather than the
very similar facial expression of disgust, highlighting
the key changes in the patient’s facial features
influencing the model’s decision [42], [43].

In clinical facial expression recognition, prototypes can
be derived from clusters over sequences of similar
facial expressions detected by a model [46]. They can
be used to illustrate typical facial expressions of pain or
of other emotional states that have led to the model’s
decision [46]. Prototypes can be selected from the input
data [31], [49] or generated based on identified
general, representative key features important to the
model [40], [42], [46].

If a patient’s mammography is predicted as possibly
indicative of breast cancer, the model’s prediction can
be explained by pointing to a similar historical case
where the patient’s symptoms and imaging features
closely matched the current case [50].

For clinical facial expression recognition based on
analyzing images from video records in patient
surveillance, the contribution of individual pixels to
detecting real facial expressions can be made
transparent. This is performed by explicating and
visualizing the relevance a model has computed for all
pixels in the form of heatmaps [34].

In digital pathology, mapping human-understandable
concepts onto attributions computed by a model, e.g.,
for features that represent morphological structures
[12], [27], can help to explain and evaluate a model’s
output in a domain-specific way [30].

In digital pathology, rule-based explanations can
reveal, whether a model (either interpretable or
opaque) has learned valid generalizations from input
data. For example, for the purpose of cancer invasion
depth classification, learned rules can be evaluated
against established medical classification systems that
define spatial relations between cancerous and other
tissue types [12], [26]. In clinical facial expression
recognition, rule-based explanations can add a layer of
expressiveness by considering the occurrence of facial
expressions and their temporal relatedness [42], [43].
In cognitive impairment diagnostics, a bayesian
network could explain the risk for developing dementia
dependent of risk factors such as the age of a person or
existing brain injuries [57]. Similarly, probabilistic rules
could express uncertainty in tumor invasion depth
computation [30].
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Table 3: Part III of the overview on common XAI terminology with definitions and example use cases, primarily from digital healthcare scenarios. Part
III presents explanation approaches that usually combine characteristics and methods as introduced in Part I and Part II of the overview (see Table 1

and Table 2).

Term

Definition

Example usage in digital healthcare

Multimodal explanation

Multiscope explanation

Explanatory dialogue

Corrective feedback

Refers to approaches that integrate multiple types of
information (e.g., text, visualizations, or sensor data) to
provide a more comprehensive and multifaceted
explanation [58].

Combines local and global explanations [28], either as
complementary units [12], [59] or by taking a glocal
perspective [60], which can be achieved by aggregating
local explanations [30], [46] or by leveraging local
explanations that are representative on a global scale
[60].

Refers to an interactive explanation process [49], where
humans and Al engage in a conversation to receive,
clarify and refine the explanations provided [21], [26],
[61]. This iterative process allows the human to ask
follow-up questions or request further details, making
the explanation more comprehensive and tailored to
the explainee’s information need [12], [61], [62].
Explanatory dialogues may benefit from integrating
multimodal, multiscope and different example-based
explanations [12], [61].

Refers to a change initiated and performed by the
explainee in order to adapt a model, an explanation or
the input itself (with the goal to correct and possibly
improve the model) [63]. Corrective feedback enables
explanatory interactive machine learning [64].

In digital pathology, a multimodal explanation, for example,
based on verbalized rules for invasion depth and visual
explanations for highlighting morphological structures,
supports a more holistic understanding of a model’s decision
making in experts as well as non-experts [12], [30], [31].

In digital pathology, explaining the tumor invasion depth
either for individual tissue samples or with respect to the
overall (global) set of classification rules, provides
complementary, multiscope explanations [31]. In clinical facial
expression recognition, glocal explanations can be derived
from clustering local explanations computed for individual
facial expressions (e.g., prototypes [46]).

In digital pathology, a medical expert or non-expert can
engage in an explanatory dialogue with a model through an
integrative explanation interface, for example, to learn about
a model’s tumor invasion depth classification outcomes [12],
[31]. The explainee may ask for a global explanation about the
model’s overall classification or for a local explanation to
explicate the reasons behind the invasion depth classification
for a specific tissue sample. The explainee may also request
more detailed explanations (e.qg., by navigating logic proofs
for the model’s reasoning steps [31], [49]). These may be
complemented by example-based explanations such as
prototypical tissue samples [31]. Medical experts as well as
non-experts can guide the explanation process and may thus
achieve a better understanding of and trust in the model [12],
[31], [49].

In digital pathology, balanced annotated data is often
unavailable, may be noisy, sparse or prone to limited
reliability as well as validity [12], [65], [66] leading to false
model outcomes. For example, in invasion depth
classification, corrective feedback can help to adapt a model
by introducing constraints in subsequent model updates and
may uncover noisy example to be re-labeled [12], [26].

or stability of an explanation [68]. Typical human-grounded
metrics are the degree of alignment with human knowledge
(e.g., the match between the content of an explanation and
human expert knowledge [38], [74]) and the degree of under-
standing usually measured by a proxy task to be solved by
the human [12], [16]. Application-grounded metrics may be
criteria such as the end-user satisfaction, costs and perfor-
mance of human-Al systems [16], [68].

2.2.3 Data augmentation and adversarial attacks

These techniques involve modifying the input data to test
how the model and its explanations behave under various
conditions. Data augmentation introduces slight variations

in the input data, while adversarial attacks generate subtle
but intentional perturbations to test the model’s and the
explanations’ robustness [68]. The evaluation focuses on
whether the model’s predictions and explanations improve
[42] or remain consistent and robust despite these changes
[75].

2.2.4 Constrained loss functions

This approach modifies the training process of a model by
incorporating constraints into the loss function to regular-
ize the model toward generating more general, accurate or
explainable outcomes [64], [76]. For example, a constrained
loss function can penalize the model for making decisions
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that do not adhere to feature or class correlations present in
the given ground truth. Correlation losses may thus improve
the model’s performance and resulting explanations, when-
ever they are based on valid expert knowledge [12], [77].

2.2.5 Constrained feature extraction

In this approach, the model is designed to only extract
features that satisfy given constraints and are considered
important for the model’s decision-making process [26],
[64]. After guiding the model toward these key features
during the training process, the evaluation step measures
whether the model performs well in comparison to the
unconstrained predecessor and whether generated expla-
nations highlight the most relevant and interpretable fea-
tures, accordingly [26], [30].

2.2.6 Concept suppression and ablation studies

These methods involve systematically removing or “sup-
pressing” certain features, concepts or architectural com-
ponents in the model to evaluate how each of them con-
tributes to the model’s decision-making process [58]. Abla-
tion studies help identify which relevant building blocks
most influenced the model’s predictions [58] and whether
the explanations refer to these important factors [30]. Sup-
pressing irrelevant features or concepts can be considered
constrained feature extraction as described above. Gradual
or repeated applications of such techniques can help to
assess the robustness of the model or explanations.

2.3 How XAl is contributing
to trustworthy Al

To summarize the previous paragraphs, XAI methods
encompass the aspects of trustworthy Al, namely inter-
pretability, explainability, interactivity, and robustness, by
leveraging a diverse range of techniques. Interpretability
is given under the use of inherently interpretable mod-
els. Explainability is supported by explanations of vary-
ing scope (local to global), model-specificity (agnostic or
specific), modality, complexity (attribution-based, concept-
based or relational information), determinism (probabilis-
tic or not), with different kinds of example-based expla-
nations available. Interaction is covered through different
interaction modes (explanatory dialogues and corrective
feedback) and robustness can be assessed through specific
evaluation and improvement techniques (mostly based on
constraints imposed on the model and adaptions to the input
data).
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Fusing these aspects and complementary XAI methods
is the goal of integrative XAI frameworks, which will be
introduced subsequently.

3 Integrative XAI frameworks

The following subsections shortly introduce the concept and
constituents of integrative XAI frameworks in advance to
describing an actual implementation.

3.1 Definition

Integrative XAI frameworks combine multiple XAI tech-
niques to provide a holistic understanding and evaluation
of Al models. They aim to improve the trustworthiness of Al
by leveraging a broad spectrum of complementary expla-
nation methods and XAI-based evaluation techniques while
aiming for human-centeredness and possibly the combi-
nation of symbolic and subsymbolic AI methods for com-
plex models and knowledge domains [12], [59], [62], [78].
Their constituents provide interpretability, explainability,
interactivity as well as robustness by integrating methods
and evaluation procedures with characteristics that support
these aspects.

3.2 Constituents

An integrative XAI framework cannot be based on a single
XAI method. It benefits most from a combination of tech-
niques that complement each other rather than introducing
redundancy for the sake of comprehensiveness in exchange
of expressiveness and interoperability. The constituents are
therefore chosen such that they each address the distinct
technical and cognitive trustworthy Al aspects.

3.2.1 Interpretable base model and Ad-hoc explanation
generation

This constituent trains or applies an inherently inter-
pretable model on given data to provide explanations gen-
erated directly from the model’s reasoning process. It is
considered as a base model as long as it is applied directly
on the given data.

3.2.2 Opaque base model and post-hoc explanation

This constituent trains or applies an opaque and possibly
complex model, such as a deep neural network, on given
data. Explainability can only be achieved by combining it
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with an explainer that provides post-hoc explanations for
predictions of the model on the given data.

3.2.3 Opaque base model and interpretable surrogate
model

An opaque base model can be approximated using an
interpretable surrogate approach to explanation. The inter-
pretable surrogate model is not applied to the original data.
The inputs it gets stem from the opaque base model’s inter-
nals or post-hoc explainer outputs that serve as interme-
diate representations suitable to be processed and inte-
grated into subsequent explanations by the chosen inter-
pretable surrogate model. Intermediate representations
may be derived from attributions, human-understandable
concepts, relational information and possibly probabilities.

3.2.4 Example-based explanation

Example-based explanation supports explainability
through the comparison of representative examples, that
illustrate model behavior, with examples the predictive
behavior was exhibited on. These methods can include
contrastive explanations, prototype-based explanations as
well as explanations derived from case-based reasoning
as constituents of a framework. By presenting concrete
instances rather than abstract reasoning processes and
outputs, example-based explanations relate a model’s
predictive behavior to real-world features.

3.2.5 Unimodal and multimodal explanation

Unimodal explanation as a constituent focuses on a single
modality, whereas multimodal explanation provides mul-
tifaceted insights into a model’s decision-making process
and outputs by utilizing various modalities. Combining uni-
modal as well as multimodal explanation approaches as
framework constituents offers the possibility to tailor the
explanation generation to varying information needs of
human recipients.

3.2.6 Corrective feedback and constraints

Corrective feedback and constraints as constituents provide
the means to the base model’s as well as surrogate model’s
evaluation. They can serve as tools for model improvement,
explanation adaption as well as user feedback. They may
target input data, model parameters, predictive features as
well as explanations.
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3.2.7 Explanatory dialogue

The explanatory dialogue serves as a crucial constituent
in integrative XAI frameworks enabling human users to
engage in interactive conversations with AI models. It sup-
ports inquiries about different explanations, revision of
explanations as well as providing feedback and corrections,
such as constraints, to the model.

4 Implementation of integrative
XAI frameworks

As motivated earlier, critical applications that require trust-
worthy AI could benefit from the implementation of more
integrative XAI frameworks. Example applications include
digital healthcare [66], [79], [80] and service robotics for
object recognition and object manipulation in care centers
[81], both illustrated in Figure 2.

These applications have in common that models need to
undergo rigorous evaluation in advance to deployment and
that the data used to train and test models may stem from
a complex knowledge domain [82]. In complex knowledge
domains, data is highly interrelated, meaning that knowl-
edge is not expressed by individual, independent concepts
but rather through manifold relationships between con-
cepts [82]. Models trained on tasks such as tumor classifica-
tion based on spatial tissue relations, pain assessment based
on dynamic facial expressions, object classification based on
composed object parts and context understanding from pos-
sibly ambiguous real-world scenarios, require expressive
explanatory and evaluation approaches. In tumor classifica-
tion, healthy tissue invaded and surrounded by cancerous
tissue may be considered as part of the tumor, while still
resembling normal healthy tissue [83]. Without consider-
ation of spatial relations, like containment and proximity
(healthy tissue mixed up with cancerous tissue) such clas-
sification would be limited [27]. In pain assessment, dis-
tinguishing similar individual facial expressions based on
temporal sequences of certain muscle movements may be
the key to separability compared to mere consideration of
occurrences of expressions [43], [46]. In object classification
performed, for example, by a service robot, expressing spa-
tial relations between concepts can provide the means for
distinguishing similar object classes. For example, teapots
and vases can be considered similar objects from a cognitive
perspective [84]. The occurrence of flowers in the presence
of a bowl shaped vessel may not be sufficient to distinguish
a vase from a teapot. It may make a difference, whether
the flowers are located as ornaments on a teapot’s vessel or
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Figure 2: Applications in complex knowledge domains such as digital healthcare and service robotics can benefit from integrative XAI frameworks.
Local (possibly concept-based) explanations can help to validate a models output (e.g., the correct recognition of mucosa tissue [27], of a facial action
like brow raisers [46], and of object parts like handles and spouts on teapots [30]). Rule-based global explanations can put these concepts into context
(if a small mucosa region is surrounded by tumor tissue, it is probably part of the cancerous area and should add to it in quantity [12], [27]). Contrastive
explanations can contribute to distinguishing similar cases (e.g., a handle and a spout can be present both in teapots and vases, however, more often
the spout is right of the handle in teapots oriented to the right compared to vases [30]). Prototypes can help to find or generate representative
instances that allow for information aggregation and comparison based on typical characteristics (e.g., raising the brows and parting the lips is a
process in facial expression that is typical for surprise and temporal prototypes can explicate this change, for example, visually with aggregated
attributions [46]). The combination of multiscope (global and local) explanations as well as multiple modalities (e.g., visualizations and verbal
explanations) within a human-AI dialogue allows for bi-directional, more expressive and comprehensible interaction in these application areas [12],

[31], [49].

placed inside a vase [30]. Similarly, for teapots oriented to
the right it usually holds that the majority of cases has a han-
dle right of the spout compared to vases that may also have
a handle and a spout, however, in different spatial constel-
lation [30]. The characteristics of instances from different
subgroups can be compared to instances from contrastive
classes [30], [42], [43]. They also can be aggregated in the
form of prototypical, concept-based and rule-based (rela-
tional) explanations for increased usefulness and compre-
hensibility of model decisions [30], [46]. Integrating uncer-
tainty, e.g., in the form of probabilities, can provide the
means to more nuanced and realistic explanations [30], [85].

This is especially important for the assessment of risks
resulting from the usage of an Al system. The consequences
of mistakes such as false diagnostic decisions or incorrect
object manipulations (imagine a service robot bringing the
vase instead of the teapot to fill a cup) could be fatal [8].
Although, no Al system is allowed to make critical deci-
sions on behalf of humans [1], a holistic approach to eval-
uation is needed to avoid, for example, human confirma-
tion bias [12], [29], [66] and biased models or “Clever Hans”
learning [86], [87] interfering with trustworthiness. Expres-
sive explanations and rigorous evaluation as intended
by the design of integrative XAI frameworks can act as
countermeasures.

4.1 Architectural overview

Figure 3 presents part I of the architectural overview, focus-
ing on different types of models and explainers in integra-
tive XAI frameworks. The architecture proposes three dif-
ferent integration paths. Path A illustrates the approach of
combining an opaque base model with a post-hoc explainer,
e.g., an attribution-based explanation method that high-
lights features relevant to a model’s predictive behavior (red
if representative for a class, blue otherwise). Path B illus-
trates the approach of using either an interpretable base
model or by combining an opaque base model with an inter-
pretable surrogate model, e.g., a rule-based method capable
to express relational information. In addition, path C illus-
trates an approach that complements explainability and
interpretability by expressing probabilities for the occur-
rence of concepts and consequently relations computed
based on top of extracted concepts.

Figure 4 presents part II of the architectural overview.
On the left, it is illustrating example-based explanations, in
particular contrastive and similarity-based explanations,
for all proposed integration paths as introduced in Figure 3.
On the right, it is illustrating an explanatory dialogue
that provides explainability, interpretability as well as
interaction in the form of a conversation between the Al
system and a human.
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Figure 3: PartI of the architectural overview for the proposed integrative XAI framework. Path A: Combination of an opaque base model, such as a
neural network, support vector machine or other non-linear model with a post-hoc explanation method such as relevance propagation, probabilistic
models, or clustering among others. Path B: Combining an opaque base model with an interpretable surrogate model, such as a decision tree,
inductive logic programming or other rule-based models. Also path B: Providing an interpretable base model. Path C: Enhancing path B by
computation of probabilities for concepts, their occurrences as well as relations in interpretable models. Illustrated for the teapot versus vase
classification problem adapted from Finzel et al. [30], where attributions may be translated by a human or automated agent into concepts like “lid” (c;)
and “flower” (c,) and where relations may be computed by an expressive interpretable model. Such relations may express spatial constellations like
“the lid is on top of the pot” as a means to characterize a teapot in contrast to a vase. Probabilistic methods may account for heterogeneity in objects
of a target class that may share characteristics with objects in the contrastive class (e.g., a teapot may not have a lid, which also holds for a vase). The
combination of different constituents is denoted by a logic or (V) and reasoning that takes place in constituents of the framework is expressed by
implication (<) and logical entailment (F) as well as logical connectives (A, V). Relations are denoted by upper case R indexed to distinguish different
relations in logical expressions. Similarly, concepts are denoted by lower case ¢ indexed to distinguish different concepts in logical expressions.

Probabilities are expressed by the parameter 6.

Figure 5 presents part III of the architectural overview.
It primarily illustrates the aspects of evaluation and human
control inside integrative XAI frameworks denoted as
concept-based and relational model correction and evalu-
ation here.

As mentioned before, model quality may be harmed by
bias, leading to mistakes in predictive outcomes. In classifi-
cation tasks, this may include misclassification of examples
or classifications for the wrong reasons (false concepts, false
relations and false probabilities in particular, leading to
false explanations [88]). The human decision-maker (usu-
ally a domain expert, for example, a doctor) may intro-
duce constraints in the opaque base model, possibly through
the interface and integration of an interpretable surrogate
model. As introduced earlier, such corrective feedback may
include countermeasures like concept suppression in abla-
tion studies, constrained feature extraction, constraining
the loss(es) of involved model(s) as well as broadening the
feature basis through data augmentation. In general, correc-
tive feedback in the form of constraints provides guidance

to the base model by weakening undesired and strengthen-
ing desired concepts and relations. Consequently, guidance
provides the means to explore and change model decisions
and explanations [89], [90]. Spanning the evaluation over
opaque base models integrated with post-hoc explainers
and interpretable surrogate models, extends performance-
based evaluation by knowledge-based evaluation.

An overall illustration of the information flow between
the human user and the Al system as well as within the inte-
grative XAI framework is provided in Figure 6. Emphasis is
put on the aspect that the human can explore, evaluate and
may even learn from model decisions. This may be espe-
cially supported by multimodal and multiscope explana-
tions gathered from post-hoc explanations and inherent or
surrogate explanations [30], [71]. The human is furthermore
empowered to provide constraints in the form of domain
knowledge to the interpretable base or surrogate model and
in the form of various constraints and augmentations, as
introduced earlier, to adapt the opaque base model, its attri-
butions and concepts, respectively. The information flow
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Figure 4: PartII of the architectural overview for the proposed integrative XAI framework. All three proposed integration paths from Figure 3 can be
enhanced by example-based explanations (left side) and explanatory dialogues (right side) build on top. Contrastive explanations may primarily serve
the comparison of different instances (e.g., teapots and vases in object classification tasks). Constrasts can be generated based on attributions (red if
representative for a class, blue otherwise), concepts extracted from attributions and rules generated on top of concepts. Likewise, similarity-based
explanations, e.g., prototype-based explanations, can be generated based on attributions, concepts and relations present in similar instances (e.g.,
two teapots and with similar features). Reasoning that takes place in constituents of the framework is expressed by implication (<) and logical
entailment (F). In the logical expressions, instances from different classes are denoted as e* and e~, whereas instances from same classes are both
denoted as e*. Probabilities are expressed by the parameter 6. Relations are denoted by upper case R indexed to distinguish different relations in
logical expressions. Similarly, concepts are denoted by lower case c indexed to distinguish different concepts in logical expressions. Logic rules are
denoted by upper case C indexed to distinguish alternative rules. The dialogue is built on top of the pipeline (instances are classified by a model, the
model’s predictive behavior gets explained and prepared for being interpreted by a human, who is then involved in conversation with an explanation
interface built on top of the Al system). The conversational interaction includes inquiries about the prediction (What), requests for reasons behind a
prediction (Why) and the reasoning leading to that prediction (How) as well as requests for example-based explanations (prototype-based, contrastive).
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The explanatory dialogue provides verbal interaction as well as pictorial illustrations showing instances and attributions of concepts upon request
(multimodal explanations). In principle, such an explanatory dialogue can provide global as well as local insights for model-specific as well as
model-agnostic explainers, making it a focal point of integrative XAI frameworks.

also illustrates the role of data as input to the model, to
attribution computation and visualization and as a basis for
probability computation that determines attribution and
that serves as a basis for expressing the likelihood of con-
cepts and relations in interpretable models. The informa-
tion flow also illustrates that integrative XAI frameworks
provide the means to inject human knowledge at different
parts of the process (in the form of concepts, domain knowl-
edge or data).

4.2 Methods

Individual building blocks of the proposed integrative XAI
framework have already been implemented for realistic
and real-world data. The realization has partially taken

place within two related research projects, the Transpar-
ent Medical Expert Companion and the PainFaceReader as
introduced by Schmid & Finzel [26] and reported by Finzel
[12]. Experiments and evaluations have been conducted in
collaboration with different research groups and medical
institutes. Tissue samples for the use case of digital pathol-
ogy were collected and curated at the University Hospital
Erlangen (collaboration with Dr. med. Carol Geppert, Dr.
med. Markus Eckstein, and Prof. Dr. Arndt Hartmann, insti-
tute of pathology) and partially analyzed at Fraunhofer IIS
with the help of deep learning models (in collaboration with
Dr. Volker Bruns, Dr. Michaela Benz, research group for
medical image analysis). Explanatory approaches, opaque
base models and interpretable models were developed and
applied at the University of Bamberg (the author of this
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Figure 5: Part III of the architectural overview for the proposed integrative XAI framework. The explanatory dialogue can be enhanced by
constrained-based correction and evaluation of concepts and relations utilized by the Al model in its decision-making process or as generated by
integrated explainers. The Al model may base its decision (e.g., the classification of an object as a vase) on wrong reasons (e.g., it considers flowers
painted on the vessel as relevant to the target class). The human may provide corrective feedback to change the model’s reasons for a decision (e.g.,
by stating that the spatial relation of flowers being contained by the vessel is the relevant information that has to be considered by the model). This
feedback may be translated into constraints or augmentation measures to improve the model and its outcomes (here, the correction is transformed
into logic constraints, which are propagated through an interpretable surrogate model that adapts it decision first, before providing guidance to the
underlying opaque base model). The opaque base mode (e.g., a neural network) may receive the guidance as a form of concept suppression,
constrained feature extraction, constrained loss or may be enhanced through data augmentation. The ultimate goal of this process is, to adapt the
model’s decision process and output t, such that a new version t’ results from provided human feedback. This may result in reclassification of
instances (e.g., the vase is now recognized as a teapot) or a different attribution of concepts (e.g., the flowers inside the vase are more relevant than
the flowers painted on the vase’s vessel). This performance- and knowledge-based evaluation may result in more robust Al systems by mitigating false
and inconsistent model decisions. It thus contributes to another important aspect of trustworthy Al complementing the explanatory dialogue as
introduced in part I of the integrative XAI framework. Note that reasoning that takes place in constituents of the framework is expressed by
implication (<) here. Probabilities are expressed by the parameter 6. Relations are denoted by upper case R indexed to distinguish different relations
in logical expressions. Similarly, concepts are denoted by lower case c indexed to distinguish different concepts in logical expressions.

article under the supervision of Prof. Dr. Ute Schmid, chair
of Cognitive Systems). Records for clinical facial expres-
sion recognition were provided by Prof. Dr. Stefan Lauten-
bacher (chair of Physiological Psychology at the University
of Bamberg) and Prof. Dr. Miriam Kunz (chair of Medical
Psychology and Sociology at the University of Augsburg).
Explanatory approaches for facial expression recognition
were developed and applied in collaboration with Fraun-
hofer IIS (Jens Garbas, Smart Sensing and Electronics). Out-
side of the scope of the two research projects, benchmarks
for (human) concept learning were reviewed and tested
in collaboration with BOKU University (Prof. Dr. Andreas
Holzinger, head of HCAI Lab).?

In this article, the underlying XAI framework is devel-
oped, conceptualized, extended and described as part of
a dissertation by the first author of this work. The meth-
ods characterized in the following paragraphs have been
combined to realize individual constituents of the pro-
posed framework and to answer related research questions.
Detailed results can be found in the referenced works.

2 See for example a survey on benchmarks for concept learning [91]
and an investigation of explaining graph neural networks with rele-
vant sub-graphs [92].

4.2.1 Inductive logic programming (ILP) for inherent
and surrogate explanation

ILP is a machine learning approach that generates inher-
ently interpretable models from input examples using sym-
bolic first-order-logic expressions [13], [93]-[95]. Due to its
expressiveness and safety properties [96] it is well-suited
for learning and explaining models in complex knowledge
domains. ILP’s inherent interpretability stems not only from
its declarative programming paradigm but also from the
fact that input examples, background knowledge describ-
ing them, learned theories (rules) and ILP algorithms are
altogether based on first-order logic [24], [26], [93], [94]. This
integrative nature supports comprehensibility as demon-
strated in human studies [13], [30] and allows for traceable
and verifiable reasoning [49], [96].

Critical decision scenarios requiring high interpretabil-
ity, such as medicine [13], [24], may benefit from this
property. For example, in digital pathology, ILP can clarify
the conditions under which certain tissue structures are
classified, using relational rules that are easy for domain
experts to verify [12], [26] and easy to understand by non-
experts [12], [13], [71].

Although the birth year of ILP dates back to 1991, inter-
est in the formal properties and interpretability of this
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Figure 6: An overview of the information flow in the proposed integrative XAI framework, connecting the human with the AI system via an
explanation interface that provides an explanatory dialogue and the means for constraint-based model correction and evaluation.

approach has not waned. In the course of research into
neuro-symbolic Al and explainability, it is enjoying renewed
popularity [93], [97], [98]. State-of-the-art implementations
provide libraries and extensions in other programming
languages such as Python [30], [99], [100]. This makes it
easy to couple ILP with neural networks [26], [30], [100],
[101].

In an integrative XAI framework, ILP can serve as an
interpretable base model or as a surrogate model to opaque
base models. The surrogate model can either be used to
imitate and approximate the base model’s behavior [102]
or to analyze an opaque base model’s output from the per-
spective of conceptual and relational information with the
purpose of data and domain-specific explainability [3], [24],
[26], [30], [101].

This approach provides both local and global explana-
tions and can be integrated with other techniques, such as
multimodal explanations, example-based explanations and
explanatory dialogues [30], [31], [42], [49] and constraints
to refine model behavior [26], [30], [42]. For example, in
digital pathology, experts can use constraints to help the
model distinguish between closely related tissue types more
accurately, especially when the data contains noise. Such
constraints can improve model performance but require
some form of quality control to avoid biases in adaptation
[26].

It is further suitable for generating either determinis-
tic or probabilistic concept-based as well as relation-based
explanations [30]. ILP is available in different variants, for
example, as probabilistic ILP [101], [103], [104] as well as in
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frameworks providing abductive reasoning for explanation
besides induction [105]. It further supports constraint-based
corrective feedback [26], [105]. ILP is therefore a suitable
method to cover many important aspects of integrative XAI
frameworks, provided that input data is available in corre-
sponding logical representations.

4.2.2 Convolutional Neural Networks (CNNs) as opaque
base models

Computer vision and image classification in particular, are
important areas of research in digital healthcare due to
the growing amount of image data as a foundation to
visual diagnostics [12]. The proposed integrative XAI frame-
work was therefore mainly tested for image classification
(for opaque base models) and related use cases (for inter-
pretable models).

CNNs are a type of artificial neural network designed
for deep learning-based image classification tasks (com-
puter vision). They learn in a multi-layered fashion due
to their architecture consisting of a backbone with mul-
tiple subsequent convolutional layers combined with an
additional classification head. Each layer in the backbone
provides a collection of convolutional filters. These filters
perform abstraction on the input to derive features of var-
ious complexity and expressiveness (ranging from simple
concepts like dots or lines to rather complex shapes like cell
structures). These features are assigned more or less rele-
vance during a training procedure using learnable weights
and activation functions. The occurrence of features and
their relevance ultimately determines the classification of
an input image in the end. The foundations of Convolu-
tional Neural Networks were introduced by LeCun et al.
[106].

In an integrative XAI framework, a CNN takes the role
of the opaque base model due to its model complexity. It is
suitable for end-to-end learning (requiring no or less fea-
ture engineering compared to traditional machine learn-
ing approaches, while showing high classification perfor-
mances) and has excelled in many computer vision tasks,
including the digital healthcare use cases, presented in this
work. Still, as outlined earlier, there remains a need for
explainability to trust in the models outputs for the right
reasons.

4.2.3 Gradient-weighted class activation mapping
(Grad-CAM) for local post-hoc explanations

Grad-CAM computes and visualizes which image areas have
been considered important in an classification task by a
CNN. Grad-CAM generates class-specific activation maps by
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computing the gradient of the target class score with respect
to a CNN’s feature maps derived from convolution filter
operations. These gradients indicate pixel-wise contribu-
tions to the class score. Spatially averaging the gradients
yields weights, which are used to linearly combine feature
maps and to produce the final activation map (a heatmap)
for the respective target class [107].

In an integrative XAI framework, Grad-CAM can pro-
vide local, attribution-based, post-hoc explanations for
opaque base model CNNs. While Grad-CAM is only appli-
cable to CNNs (model-specific), its advantage is that it
provides class-specific visual explanations (expressing pos-
itive relevance) across different convolutional layers of
a CNN. Furthermore, the activation information can be
aggregated across individual layers of a CNN, to derive
the most influencial layers for a specific classification task
such as tissue classification [27]. This allows for an approx-
imate, layer-wise relevance analysis with class-specific
importance scores. Grad-CAM can be combined with ILP
[100] to realize a neuro-symbolic system. A concept-based
variant of Grad-CAM uses pooled concept activation vec-
tor values as weights instead of the globally averaged
gradients to produce human-understandable explanations
[108].

In pathology, visual explanations generated with Grad-
CAM can be evaluated by pathologists to see how differ-
ent model layers see relevant morphological structures in
tissue classification [27]. By showing experts which tissue
areas in the image are most influential for the model’s
decision, Grad-CAM helps practitioners better understand
the significance of various tissue structures in the model’s
classification and to evaluate its correctness, accordingly
[271.

4.2.4 Relevance propagation for local and
concept-based post-hoc explanations

In general, relevance propagation methods assign relevance
scores to input features (e.g., individual pixels) by propa-
gating a model’s prediction backward through its layers,
following structured redistribution rules. These relevance
scores, visualized as heatmaps, quantify each feature’s con-
tribution to the output. The most prominent method to
date is Layer-wise Relevance Propagation (LRP) [109]. Its
advantage is that it conserves total relevance across lay-
ers to ensure faithful attribution. It distinguishes posi-
tive relevance (supporting the target output) from nega-
tive relevance (contradicting it). Being model-specific, LRP
directly leverages the network’s structure and parame-
ters, enhancing fidelity but reducing flexibility compared
to model-agnostic methods. A concept-level extension to
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LRP, called Concept Relevance Propagation (CRP), allows for
the approximation of human-understandable concepts in
learned features [110], [111].

In integrative XAI frameworks relevance propagation
can serve as a local, attribution-based, post-hoc explana-
tion technique for opaque base models and is applicable
to a large variety of tasks (rather model-specific for non-
linear learning approaches like deep learning; not lim-
ited to CNNs). Similar to Grad-CAM it allows for a multi-
layer insight into a model’s learned representations. Its
concept-based variant CRP, that tests for semantic, human-
understandable concepts, has been combined with ILP in
a recent work to realize a neuro-symbolic approach to
concept-based and relational explanation [30]. A human
study with experts supports the findings that the com-
bined, multimodal explanations are superior in useful-
ness in comparison to unimodal explanations (heatmaps or
rules) for the complex knowledge domain of ornithology
[30].

4.2.5 t-Distributed stochastic neighbor embedding
(t-SNE) for global post-hoc explanations

The method t-SNE provides visualizations for a set of high-
dimensional data points, by mapping them into a 2D or
3D space that preserves local neighborhoods (pairwise sim-
ilarities in the data), meaning that points that are close
in the high-dimensional space tend to remain close in
the lower-dimensional representation [112]. It was intro-
duced by van der Maaten and Hinton [112]. t-SNE can
be used to derive more global explanations by aggregat-
ing local explanations such as done by the Spectral Rele-
vance Analysis (SpRAy) technique. SpRAy identifies overall
patterns in a model’s attributions by clustering relevance
maps.

In integrative XAI frameworks t-SNE and SpRAy can be
used to detect potentially misleading “Clever Hans” effects
[113] in models. Furthermore t-SNE applied to local expla-
nations serves the purpose of aggregating information and
reducing the information load for human explainees [12].
For example, in facial expression classification, clustering
attributions with the help of t-SNE can reveal that a model
has learned certain subgroups of expressions that are rep-
resentative of a certain emotion. This way, prototypes can
be derived as introduced earlier [46]. t-SNE may also help
to identify small clusters (potentially anomalies or samples
underrepresented in the data). This is especially of inter-
est, if the model may be heavily weighting random, irrele-
vant image features that do not correlate with actual facial
expressions (such as the background) [12], [46].
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4.3 Explanatory approaches

4.3.1 Contrastive explanations as an example-based
approach

This approach compares similar instances with distinct clas-
sifications to clarify boundaries between categories, usually
based on minimal differences [42], [114].

The implemented integrative XAI framework leveraged
contrastive explanations, for example, in distinguishing
facial expressions of pain and disgust, using both attribute-
based and relational near-miss and far-miss examples for
explaining an ILP model’s decision [43]. Near misses are
instances that are most similar to an example that is to
be explained, but belong to the opposite class [114]. Far
misses are the most dissimilar contrastive examples. The
underlying explanation is based on a request like “Why is
this pain and not disgust?” (see also the request presented
in Figure 4).

Experimental results showed that contrastive explana-
tions were generally shorter than exhaustive ones for all
experimental settings, focusing only on the most critical
distinguishing features [43]. This supports interpretability
and improves efficiency, making them particularly useful in
classification tasks with subtle differences. The experimen-
tal evaluation further highlighted the role of near misses,
which shared many similarities with explained instances
but differed in key attributes, for generating shorter expla-
nations compared to far misses. The findings suggest that
contrastive explanations, especially near misses, are help-
ful when structural differences need to be emphasized for
highly similar instances [42], [43].

Another implementation of contrastive explanations
within the integrative XAI framework based on concept-
based and relational explanations (CoReX) combining CRP
and ILP [30] aimed for explaining misclassifications instead
of obtaining the shortest possible explanations (which
could, however, also be integrated as formalized in [42]).
The CoReX approach showed that contrastive explanations
for ILP-based surrogate models can reveal which concepts
have not been sufficiently assigned with relevance by a CNN.
This insufficiency was logically proven by tracing the back-
ground knowledge of a misclassified example and finding
insufficient support as a cause for not fulfilling the rules of
the interpretable surrogate model [30].

4.3.2 Prototype-based explanations as an
example-based approach

As motivated earlier, prototypes can be helpful, where data
is highly complex and cannot be generalized into one single
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rule, function or even model [12]. Prototype-based explana-
tions can provide a more global view on the model’s decision
behavior compared to other example-based explanations,
especially if they are based on aggregating most influential
features [46].

In the integrative XAI framework, prototype-based
explanations were used to aggregate local explanations to
reduce the information load put on explainees. In partic-
ular, local explanation aggregation for deriving prototypes
from temporal sequences of video frames was successfully
applied for facial expression recognition [46]. Respective
temporal prototypes were extracted from t-SNE (SpRAy)
clusters generated based on local explanations of similar
video frames. The temporal prototypes further enhanced
interpretability by illustrating typical changes in facial
expressions over time for different emotional states, e.g.,
surprise, while achieving a considerable information com-
pression [46].

In another experiment, prototype-based explanations
were derived from clustering ILP rules to identify structures
in concepts learned by the model that could be generalized
from individual example subsets [30]. The qualitative anal-
ysis revealed that examples covered by such prototypical
rule sets may exhibit a biased distribution of features (e.g.,
smiling faces and long hair in female persons [30]).

4.3.3 Concept-based and relational explanations as a
hybrid and human-centered approach

Concept-based and relational explanations provide a novel
approach to explaining opaque base models. They can com-
bine local and global explainability, may be realized in
a model-specific or model-agnostic way and provide mul-
timodal and possibly also example-based explanations to
explainees.

For the proposed integrative XAI framework, a rele-
vance propagation method, CRP in particular, was used as a
concept extractor and combined with ILP to derive expres-
sive concept-based and relational explanations for CNNs
applied to complex knowledge domains [30].

Experiments showed that for the opaque base model
CNNs, fine-tuned on binary classification tasks, ablating con-
cepts in CNNs that have been integrated into rules by an
ILP-based surrogate model, supports the concepts’ impor-
tance as well as the fidelity of the ILP model by consider-
able drops in each CNN’s performance. The experiments
showed that concept-based ablation studies allow for a
clearer understanding of how relevant and irrelevant con-
cepts influence CNN predictions and that relational infor-
mation may be superior to absolute relevance in concepts.
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Furthermore, a human study, particularly involving experts
from ornithology, showed that combined, multimodal expla-
nations (concept-based visualizations and verbalized rela-
tional rules) were considered more useful than purely
visual or verbal explanations for distinguishing similar
birds. The human evaluation also showed that descriptions
from experts themselves may still be perceived as more use-
ful than explanations from the proposed CoReX approach.
The CoReX approach was also provided with user-defined
constraints allowing for adaptation of ablations as well as
exploration and control of model and explanation outputs
[30].3

4.3.4 Multimodal, multiscope and example-based
explanations in Human-AI dialogues

At the heart of every integrative XAI framework is the
explanatory dialogue (see Figure 6). This is where all com-
ponents flow together bi-directionally via an explanatory
interface (from the AI model to the human and back) [26],
[49]. As motivated earlier, integrating multimodal, multi-
scope and example-based explanations into explanatory
dialogues, enables explainees to explore different aspects of
a model’s decision-making process and outputs by benefit-
ing from multifaceted views and intuitive interaction [12],
[21], [71].

For the particular integrative XAI framework, an
explanatory dialogue was implemented for digital pathol-
ogy [31] with the functionality to answer requests from
explainees about classification outcomes and to provide typ-
ical examples of healthy and diseased tissues as prototypes.

4.4 Summary

In summary, the methods used for the implementation of
the integrative XAI frameworks were found to provide vary-
inglevels of transparency, complementing each other rather
than producing redundant explanations. They have been
evaluated as beneficial for validating and improving inter-
pretable as well as opaque models and their decisions in
complex knowledge domains, such as digital healthcare.
Integrating such methods for explanations may facilitate
the use of Al-assisted systems in other healthcare scenar-
ios and beyond, while strengthening user trust [3], [12],
[70].

3 The concept-based and relational explanation approach (CoReX) is
currently extended and will allow for probabilistic explanation as well
as dialogue-based interaction in the near future.
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5 Interdisciplinary collaboration,
combined reasoning and Al
evaluation as drivers of
integrative XAI frameworks

A major lesson learned from the development of the pro-
posed integrative XAI framework was, that it benefits
from being based on a strong interdisciplinary collabora-
tion. This surely holds for future integrative frameworks.
Experts from the research fields of explainable artificial
intelligence, cognitive science, human-computer interac-
tion, ethics and the respective application domain (e.g.,
medicine) should work together to ensure that these frame-
works are not only technically reliable but also intuitively
comprehensible and usable for humans [21]. Computer sci-
entists contribute technical expertise, while domain experts
use their knowledge to ensure that model decisions and
explanations are relevant and helpful for the application
context. Cognitive and interaction insights are particularly
helpful for the design of human-centered explanations to
address the varying requirements of experts and non-
experts [12], [71]. The inclusion of ethical considerations
contributes to beneficial and trustworthy Al solutions, cov-
ering socio-technical aspects besides purely technical and
cognitive ones [3].

An aspect not discussed in detail in this work is
the fact that integrative XAI frameworks combine differ-
ent reasoning approaches, either in models or in human
explainees. In particular, they integrate abductive, deduc-
tive and inductive explanation processes that together may
support the iterative achievement of better generalization
capabilities in human-AI collaboration [115]-[117]. In such
processes abduction can foster discovery (e.g., of prelimi-
nary hypotheses to be tested), deduction can provide con-
firmation (e.g., by automated proofs) while induction sup-
ports generalization from observations for the purpose of
explanation (e.g., based on representative concepts and
relations found in model outputs [118]), leading to an inte-
gration of exploration, evaluation (optimization) and learn-
ing in an overall reasoning framework (see Figure 7). Such
approaches are considered to be contributing to trustwor-
thy AI [119].

For the technical part, integrative XAI frameworks as
the one proposed and implemented, are developed at the
intersection of three major research areas: explainabil-
ity research (XAI), neuro-symbolic AI and human-centered
research. A synthesis of all aspects relevant to realizing
integrative XAI frameworks is illustrated in Figure 8
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Figure 7: Integrative XAI frameworks should integrate abductive,
deductive as well as inductive explanation processes. This way they could
fuse knowledge discovery, confirmation and generalization as introduced
by Pierce [117]. Ultimately, the goal is, to integrate exploration, evaluation
(optimization) and learning to create holistic frameworks.

summarizing the contribution of the approach proposed,
described and discussed in this work.

Under the hood, abduction, deduction and induction
is supported by various functionalities and methods. Multi-
modal and multiscope explanations offer different perspec-
tives on the system facilitating the creation, confirmation
or revision of hypotheses about an AI model’s behavior.
Interactive explanations allow for control and guidance
during the process. Both, control and guidance can be imple-
mented through explanatory dialogues and constraints, pos-
sibly complemented by example-based explanations that
map abstract reasoning artifacts or attributions to concrete
and realistic cases. This may include contrastive explana-
tions, prototypes or case-based reasoning. The basic build-
ing blocks of such integrative XAI frameworks, especially for
complex knowledge domains, are concepts, relations and
relevance information (either in the form of attribution or
probability [120]).

In such frameworks, inherently interpretable models
can serve as more transparent alternatives to opaque mod-
els (especially if their performance and runtime are com-
parable). They may further be used as a contextual super-
structure on top of opaque models and post-hoc explainers
(recall the case, where recognizing a mucosa tissue sample
correctly for the right reasons is not enough if the spatial
context, the containment in a cancerous area, is not con-
sidered for the final outcome and thus the domain-specific
evaluation of an Al model). Interpretable models can also
serve as surrogate models that approximate the decision-
making processes of an opaque model or, for the purpose
of data explainability [3], [121], providing information about
which characteristics were prevalent in the data and could
therefore have led to a certain decision by the opaque base
model.
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Figure 8: The proposed integrative XAI framework heavily relies on concepts and methods from the field of explainable Artificial Intelligence (XAI),
abbreviated as explainability, from neuro-symbolic A as well as human-centered Al research. Integrative XAI frameworks fuse abductive, deductive
and inductive explanation processes. They provide multimodal explanations, multiscope explanations (also called multilevel explanations), they
combine example-based explanations with explanatory dialogues and constraint-based guidance. The building blocks of explanations are concepts,

relations and relevance (such as probabilities).

In this work, (Inductive) Logic Programming in particu-
lar was presented as an inherently interpretable approach
that not only enables machine learning on logical expres-
sions, but also supports multimodal explanations through
verbalized rules and multiscope explanations through inter-
actively navigating deductive proofs in explanatory dia-
logues. It further provides the means to corrective feedback
through user-defined logical constraints.

With regard to the opaque base model, the instan-
tiation of the integrative XAI framework presented here
focused on image classification with Convolutional Neural
Networks (CNNs) [106]. An implementation with other non-
linear machine learning approaches would also be conceiv-
able, especially if suitable post-hoc approaches or alterna-
tive interpretable models exist for these [16].

For CNNs there are a variety of post-hoc explanation
methods. The present work has focused on relevance propa-
gation methods and gradient-weighted class activation map-
ping, as these support model-specific explanations as well

as recognition and extraction of human-understandable
concepts from CNNs. In particular, they play a role in the
generation of relevance-based, local explanations as well
as for example-based explanations. It has been demon-
strated that these methods can be enhanced in their eval-
uative power by performing concept-based ablation stud-
ies, in particular, from rules learned by an interpretable
surrogate model. This paves the way for applying user-
defined constraints on surrogate models to explore or revise
underlying opaque base models with the help of human
knowledge.

At this point, it is worth mentioning that the methods
used here to instantiate the framework were also employed
for the purpose of XAl-based model evaluation as intro-
duced in Subsection 2.2. As such methods are suitable to
evaluate a models explanatory performance and robust-
ness, they can be considered drivers of the framework’s
trustworthiness and are therefore a crucial part of it. Fur-
ther evaluation methods as presented, for example, in
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Nauta et al. [68] and motivated by [73], could be integrated
in the future.

6 Synthesis and limitations

In summary, the realized framework has advantages over
unimodal, purely visual explanation methods in that it
relies on explainability through human-understandable
concepts as well as human-centered multimodal represen-
tations and multiscope perspectives [12]. It differs from
purely mechanistic [10], unidirectional explanations by con-
sidering and focusing on the human being as the explainee
involved in a bi-directional exchange. In contrast to single-
model approaches, it offers a holistic integration of different
forms of reasoning through the neuro-symbolic approach
combining an opaque deep-learning model with post-hoc
explanations and an inherently interpretable surrogate
model for the purpose of exploration, evaluation and learn-
ing in general. It is therefore argued that integrative XAI
frameworks allow for a comprehensive evaluation and
improvement of human-AlI systems. As demonstrated in this
work, this is particularly interesting for critical applications
such as digital healthcare. Further medical fields, such as
physiology, where unimodal explanatory methods for Al
models are predominantly used [121], could benefit from
such a framework in the future.

The limitations of the proposed integrative XAI frame-
work stem from the individual imperfections of the methods
involved. For example, ILP excels in learning from rela-
tional data but may not scale well for data set sizes utilized
by deep-learning approaches, unless these opaque base
models are fine-tuned for specific small data set use cases,
such as binary image classification [30], [42]. ILP is well
suited for integrating knowledge into the learning process
of a neural networks and for knowledge-based evaluation
[122].

Post-hoc explanation methods suffer from the het-
erogeneity and redundancy of concepts in CNNs [123],
[124]. Furthermore, it may be impossible for some features
learned by opaque base models to be mapped to human
understandable concepts and relational information [125],
[126], be it, due to a difference between the digital world and
mental models or due to high levels of abstraction in opaque
models (such as the property of translation invariance in
CNNs with large amounts of layers [127], [128]).

Furthermore, combining several methods requires a
major integration effort and thus collaboration hetween
experts from different (technical and non-technical) fields,
which may not always be feasible.
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While all the mentioned methods have already been
evaluated with respect to their utility, either in technical
experiments or human studies, an evaluation of the whole
integrative XAI model has been, so far, conducted just par-
tially for the combination of concept-based and relational
explanations as a foundation to multimodal explanations in
the complex knowledge domain of ornithology [30].

There are some aspects that remain as general chal-
lenges and are therefore a limitation of the current imple-
mentation of the integrative XAI framework. For example,
emphasizing on the importance of explicating reasoning
behind explanation generation may be a first step towards
more global explanation methods rather than focusing on
symbols and concept relevance, which was found to not
correspond to abstract reasoning itself [129].

Explanations derived from multiple explainers for the
same underlying model may suffer from the Rashomon
effect as do different models applied to the same data [130],
meaning that explainers may produce differing explana-
tions for which it may be hard to decide, which of them is
faithful to the underlying model. Ablation studies as pre-
sented in this work may be a first step toward measuring
the Rashomon effect with the help of performance drops for
suppressed concepts stemming from relevant explanations
and consistency in performance for the suppression of con-
cepts from irrelevant explanations.

7 Conclusions

This article introduced Explainable Artificial Intelligence
(XAI) as a field contributing to trustworthy Al in particu-
lar by fostering explainability, interpretability, interactivity
and robustness. It presented important XAI concepts and
methods and provided examples for their application in
digital healthcare. As the core contribution, an integrative
XAI framework was proposed, combining complementary
XAI methods, human-AI interaction and suitable evaluation
techniques to address the four mentioned trustworthy Al
dimensions. This article showcased the implementation of
individual framework constituents with the help of differ-
ent XAI methods and justified their suitability based on
findings from experiments conducted in realistic and real-
world applications in digital healthcare. This work empha-
sized the importance of integrative XAI frameworks for
complex knowledge domains and for human-centered eval-
uation of AI models. It further discussed drivers of trust-
worthy Al with respect to (1) interdisciplinary collabora-
tion among Al developers, practitioners and cognitive scien-
tists for more human-centered integrative XAI frameworks,
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(2) combined logical reasoning for integrative XAI frame-
works that support knowledge discovery, confirmation and
generalization through abductive, deductive and induc-
tive approaches to explanation, (3) rigorous Al evaluation
toward optimizing such integrative XAI frameworks with
respect to application-grounded, functional and human-
centered requirements.

This article has introduced the fundamental terminol-
ogy and key components necessary for defining and imple-
menting integrative XAI frameworks. By illustrating poten-
tial applications and discussing the architectural realization
of such a framework, I have demonstrated how various XAI
methods can be systematically combined to enhance inter-
pretability, explainability, interactivity, and robustness in
trustworthy Al systems. Furthermore, the interdisciplinary
nature of the proposed approach highlights the importance
of collaboration across domains to ensure the develop-
ment of trustworthy Al solutions that are both technically
sound, human-centered and aligned with socio-technical
requirements.

In comparison to specialized XAI methods, the inte-
grative framework presented in this work offers a more
holistic approach to trustworthy Al, addressing multiple
dimensions as presented in my synthesis. In particular,
it was stressed that integrative XAI frameworks heav-
ily rely on explainable approaches, neuro-symbolic Al
and human-centered evaluation. Several drivers for inte-
grative frameworks were identified, particularly regard-
ing the (1) interdisciplinary collaboration and the socio-
technical implications of trustworthy AI in real-world
deployment, (2) the implementation of a full reasoning
lifecycle that supports discovery, confirmation of exist-
ing knowledge as well as generalization of models and
explanations across different tasks and (3) the rigorous
evaluation of AI ensuring that integrative XAI frame-
works are adaptable to and useful in diverse application
domains.

Adopting and extending the proposed integrative XAI
framework to overcome limitations in concept extraction,
integration effort, high-level evaluation and the Rashomon
effect could pave the way to tackle remaining challenges and
to provide truly trustworthy AL
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