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Abstract: As artificial intelligence (AI) increasingly perme-

ates high-stakes domains such as healthcare, transporta-

tion, and law enforcement, ensuring its trustworthiness

has become a critical challenge. This article proposes an

integrative Explainable AI (XAI) framework to address the

challenges of interpretability, explainability, interactivity,

and robustness. By combining XAI methods, incorporating

human-AI interaction and using suitable evaluation tech-

niques, the implementation of this framework serves as a

holistic XAI approach. The article discusses the framework’s

contribution to trustworthy AI and gives an outlook on open

challenges related to interdisciplinary collaboration, AI gen-

eralization and AI evaluation.

Keywords: trustworthy AI; explainable AI; EU AI act; inte-

grative XAI frameworks; XAI in medicine

1 Introduction

Artificial Intelligence (AI) is increasingly shaping various

aspects of society, necessitating regulatory measures to

ensure its safe and ethical deployment. One of the latest reg-

ulatory efforts in this regard is the European AI Act, which

entered into force in August 2024 [1]. The EU AI Act provides

a legal framework for AI systems, categorizing them based

on risk levels and imposing strict requirements on high-

stakes AI applications such as healthcare, transportation

and law enforcement [2].

As AI systems become more embedded in high-stakes

domains, the concept of trustworthy AI has gained promi-

nence [3]–[7]. In general, trustworthy AI refers to systems

that possess characteristics considered worth to be relied

on. For example, according to a survey by Ali et al. [3],
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trustworthy AI refers to AI systems that are transparent, fair

and responsible, meaning they are accountable.

In this context, transparency refers to the explicit dis-

closure and availability of access to AI’s internal decision-

making mechanisms. Fair systems are designed to be free

from societal or technically induced biases, thereby pre-

venting unjustified disadvantages and failures [8]. Trans-

parency and fairness are, in turn, fundamental prereq-

uisites for the responsible deployment of AI systems in

accordancewith ethical principles, societal norms, and legal

requirements. Furthermore, trustworthy AI is based on

interpretable, explainable, interactive and robust systems

[3] that can be understood, controlled and relied on.

Interpretability of trustworthy AI refers to the self-

explanatory nature of AI systems [9], including machine-

learnedmodels and their decisions. Interpretability is given,

whenever the meaning of internal processes in models,

their constituents, and their outputs is inherently clear and

comprehensible. Explainability, on the other hand, denotes

the ability to provide explanations for decisions made by

complex and opaque “black-box” models, such as deep neu-

ral networks, to make them understandable to humans.

This includes both data-centered explanations [3] andmech-

anistic explainability [10]. Both explainability and inter-

pretability benefit from interactivity [11], meaning that AI

models, their decisions, and generated explanations can be

iteratively explored and revised by humans [12]. Through

guidance, AI systems shall become not only more compre-

hensible [13] but also more controllable [14].

Ultimately, the development of trustworthy AI aims

for stakeholder satisfaction and acceptance [3], addressing

needs of regulators, developers, experts and non-experts as

well as affected end-users [12], while promoting and ensur-

ing justified trust [15]. Trustworthy AI is therefore a broad

field that requires interdisciplinary collaboration among

stakeholders, depending on the specific challenge addressed

[3]–[7].

From the multitude of mentioned aspects, this article

aims to specifically address the challenges of interpretabil-

ity, explainability, interactivity, and robustness in trustwor-

thy AI, and to demonstrate how these can be integrated into

a technically feasible framework.
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Overall, this article seeks to promote and define an inte-

grative XAI framework, illustrate its realization formachine

learning in digital healthcare, and to demonstrate how

it can contribute to AI evaluation and generalization to

advance trustworthy AI in complex and critical application

domains.

The article is structured as follows. In Section 2, the

article emphasizes on the contribution of XAI and integra-

tive frameworks to solving challenges in making AI trust-

worthy. As a foundation, the necessary terminology for

defining and implementing integrative XAI frameworks is

introduced, along with application examples from digital

healthcare. Additionally, suitable XAI-based model evalu-

ation methods are briefly introduced. After a short sum-

mary of XAI’s contribution to trustworthy AI, the proposed

integrative XAI framework is introduced in Section 3. The

article gives an original definition and names the key com-

ponents for integrative XAI frameworks. Next, an exist-

ing implementation of the proposed integrative XAI frame-

work is described and illustrated in Section 4. First, an

overview of the framework’s architectural realization is

provided followed by a brief introduction of methods suit-

able for implementing the framework’s individual con-

stituents and explanatory approaches. Based on a unified

perspective on integrative XAI frameworks, the interdis-

ciplinary nature, theoretical foundation in reasoning and

contribution of the proposed solution to AI evaluation is

discussed in Section 5. The article synthesizes the key contri-

butions and limitations of the proposed framework toward

trustworthy AI in comparison to specialized XAI meth-

ods in Section 6 and concludes with an outlook on open

challenges related to generalization and socio-technical

aspects.

2 The role of explainable AI (XAI) in

trustworthy AI

The principal dimensions of trustworthy AI as introduced

in Ali et al. [3] are illustrated in Figure 1. Here, the chal-

lenges associated with the development of trustworthy AI

are grouped into two distinct but interrelated categories:

(1) technical and cognitive challenges in trustworthy AI,

and (2) socio-technical challenges in trustworthy AI. While

robustness, explainability, interpretability and interactiv-

ity are considered to be mainly concerned with the tech-

nical development and testing of AI software and with

cognitively-inspired human-AI interaction, transparency,

fairness, responsibility and satisfaction are considered to be

Figure 1: Key aspects of trustworthy AI as introduced by Ali et al. [3],

covering interpretability, explainability, interactivity and robustness of AI

(considered as technical or cognitive challenges in trustworthy AI

development and evaluation here) as well as transparency, fairness,

responsibility and satisfaction (considered as socio-technical challenges

here).

of socio-technical nature, involving regulatory, societal as

well as ethical aspects.1

A major driver in the implementation of trustworthy

AI is research in the field of Explainable Artificial Intelli-

gence (XAI) [16]. One of its primary objectives is to con-

tribute to trustworthy AI by developing techniques that

allow users to understand and trust AI decisions [3]. Over

the past years, the XAI community has proposed a vari-

ety of theoretical frameworks, methodologies, metrics, and

experimental approaches to develop interpretable, explain-

able, interactive and robust AI methods [16]. The following

section introduces key terminologynecessary to understand

how the combination of various XAImethods can contribute

to an integrative framework and, consequently, to trust-

worthy AI.

2.1 XAI terminology and examples from
digital healthcare

Explainable Artificial Intelligence (XAI) is a research field

dedicated to developing methods that either provide inher-

ent interpretability within machine learning models or

make opaque “black box” models, such as neural networks,

explainable [17]. XAI aims to bridge the gap between the

complexity of advanced AI models and the need for human

stakeholders to comprehend, control and ultimately trust

these models. For that purpose a multitude of methods has

1 Here, Transparency as a challenge rather than a technical character-

istic of trustworthy AI is referred to as having open access AI internals,

e.g., as open-source code, and therefore categorized as a socio-technical

challenge.
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been developed so far with distinct characteristics and spe-

cialized terminology describing them (see for example [3],

[16], [18] for a detailed overview).

The concept of explanation is at the core of XAI

research. The word explanation is etymologically derived

from the Latin verb explanare, containing the adjective

plānus, which means intelligible or clear in Latin [19]. The

act of explanation is thus a form of communication that

is about conveying, processing and exchanging informa-

tion between communication partners about a subject of

matter with the purpose of providing reasons, uncovering

how things work or giving instructions [20]–[23]. The com-

munication partner that provides an explanation is called

explainer, the receiving party is called explainee and the sub-

ject of matter is generally termed the explanandum, which

is explained by the explanans [16], [22], [24].

In the context of XAI, the term explainer refers to a

tool or method used to generate explanations for the deci-

sions made by an AI model. An explainer works by ana-

lyzing the model’s inputs, processes or outputs to provide

insights that help humans (the explainees) understand the

reasons behind a specific prediction or behavior [12], [16].

Explainees may be experts, non-experts or developers that

each have a unique information need [12]. In general, they

are stakeholders of explanation outcomes. For example, in

digital healthcare, explainees may be regulators in medical

law, clinicians and medical experts, non-experts like insur-

ers as well as affected end-users, the patients.

The main purpose of an explanation is seen in the

literature as answering “Why?” and “How?” questions [23].

These go beyond asking “What is this? What does this do?”

(for example, the answer “rain” to the question “What is

that falling from the sky?” would not be considered an

explanation). Instead, the question “Why does it fall from

the sky?” could be explained with a reference to the for-

mation of clouds in the atmosphere and gravity as reasons

for rain, while the question “How does rain form?” could be

answered with an explanation of the chemistry and physics

of cloud formation and gravity, that is how rain works.

The question “Why do you take an umbrella?” asks for a

different explanation than the question “How do you open

an umbrella?”. While the first question asks for a reason as

in the rain example (here an intent or a motivation rather

than a mechanical cause), the second question is about

instructions (how to open an umbrella). In general, humans

tend to ask for reasons in explanations by posing the “Why?”

question [22] in order to gain an understanding about the

explanandum’s purpose (which is referred to as functional

understanding [10]). Explanations to the question “How?”

depend on whether it is a request for how something works

(mechanistic understanding [10]) or whether it is a question

of how something is done (instructional explanations [20]).

The following tabular overview introduces the key terms

characterizing explanationmethods and gives examples for

the domain of digital healthcare (see Tables 1–3).

The aim of all these explanation methods is to provide

the human explainee with a tool to explore AI models and

have them explained in order to increase understanding of

the model and its decisions. Another goal is to make trans-

parent how models can be adapted and possibly improved

in terms of performance, interpretability and robustness.

However, providing explanations is not enough for model

evaluation. Models should be scrutinized using XAI-based

evaluation methods.

2.2 XAI-based model evaluation methods

XAI-based model evaluation can be performed based on

methods and techniques that assess the efficiency, effective-

ness, reliability, and trustworthiness of explanations gener-

ated for givenmodels [3], [67], [68]. The goal is to ensure that

the explanations provided for AImodels are not only under-

standable but also meaningful and aligned with human

expectations and technical requirements [12], [16], [68], [69].

In the following paragraphs, a selection of methods is intro-

duced that support human-centered evaluation as well as

the assessment of a model’s robustness.

2.2.1 Human study

The term human study is an umbrella term for all studies

that involve a human person, being either an evaluator

or interaction partner. Human studies aim for gaining evi-

dence for the quality of and trust in models and explana-

tions [67], [69], [70]. Theymay include expert interviews and

questionnaires [69] as well as controlled and randomized

experiments with experts and end-users [66], [67], [71]. The

overall goal is to measure how explanations are perceived,

understood and used by explainees [12], [71]. Surprisingly,

although the human plays a crucial role in evaluating the

quality of XAI methods, a recent review by Suh et al. [72]

revealed that less than 1 % of works from a surveyed collec-

tion of 8254 XAI papers validate explainability with the help

of human studies.

2.2.2 Evaluation metrics

In the aforementioned human studies as well as in tech-

nical experiments, metrics help to measure the quality

of the model, the explanations and the interaction within
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Table 1: Part I of the overview on common XAI terminology with definitions and example use cases, primarily from digital healthcare scenarios. Part I

presents the basic terminology to characterize XAI methods.

Term Definition Example usage in digital healthcare

Inherent interpretability Denotes the characteristic of a model to be naturally

interpretable without needing external explanation

methods. Interpretability is a core feature, allowing

users to understand the reasoning behind predictions

directly from the model’s structure or behavior [9], [16],

[25].

In digital pathology, a rule-based model that directly maps

patient features (such as the presence of tumor tissue in

other tissues) to invasion depth and severity of cancer

would be inherently interpretable, as its decision path is

considered clear and understandable to the human

recipient [24], [26].

Post-hoc explanation Refers to explanations generated after a model’s

prediction, usually applied to “black-box” models like

deep neural networks. These explanations attempt to

reveal the decision-making logic of the model or

data-specific features that influenced the model’s

output [3], [16], [18].

In digital pathology, a post-hoc explanation might clarify

why a model predicted a certain tissue being present in a

sample by highlighting the most relevant features in the

tissue’s morphology, even if the internal workings of the

model are not inherently interpretable [27].

Global explanation Refers to an explanation that describes the overall

behavior of a model. This type of explanation helps to

understand the general decision-making process of a

model across all possible inputs [3], [16], [18], [28], [29].

In digital pathology, a global explanation might reveal

how a model diagnoses tumor tissue across all given

samples based on general factors such as the occurrence

of tumor cells, specific tissue textures or the localization

and spatial constellation of relevant areas in tissue

samples [12], [24], [26], [30].

Local explanation Focuses on explaining individual predictions made by a

model. It seeks to explicate why the model produced a

particular output for a given input [3], [16], [18], [28],

[29].

In the context of digital pathology, if an AI model predicts

that a patient has a tumor of certain severity, a local

explanation can highlight the specific factors, such as

tumor cells detected in a specific tissue sample, that

influenced the prediction for this patient [27]. It may also

explicate the spatial constellation of different tissues, for

example, to explain the resulting invasion depth of a

tumor for a specific patient [26], [31].

Model-agnostic explanation Refers to techniques that can be applied to any model,

regardless of its underlying architecture. These

methods are independent of the model’s internal

workings and provide insights based on the

input-output behavior of the model [3], [16], [18].

In malaria diagnostics, model-agnostic explanations may

explicate which areas in blood smear images are

considered relevant for the detection of infected cells,

regardless of the model in use [32]. Similarly, they can be

used for explainable (clinical) facial expression recognition,

although they may not be sufficiently fine-grained [33].

Model-specific explanation Describes methods designed for specific types of

models, such as deep neural networks. These

techniques leverage the architectural characteristics

and internal workings of a model to provide insights

into its decision making [3], [16], [18].

In clinical facial expression recognition, model-specific

explanations may explicate what facial characteristics a

model has considered relevant to predict certain states in

patients such as pain [34]. Compared to model-agnostic

approaches, they may provide more fine-grained

explanations [33] as well as the means to generate

explanations from different layers of an architecturally

complex model, such as demonstrated for digital

pathology [27].

Example-based explanation Summarizes methods that provide insights into a

model’s decision by comparing the model’s behavior

and output for a given instance with that of similar or

dissimilar examples.

Several approaches fall under this category: Contrastive

explanations [35], [36], prototype-based explanations [18],

[37]–[40] and case-based reasoning approaches [40], [41].

Their application in AI-driven digital healthcare is

mentioned in the respective rows of Table 2.

a human-AI system. Doshi-Velez and Kim [73] distinguish

three categories of metrics based on the level of human

involvement and technical or application maturity. They

refer to functionally-groundedmetrics, when a human judg-

ment is not involved, to human-grounded metrics, when

subjective judgments, alignment with human knowledge,

or human behavioral patterns are measured), and to

application-grounded metrics, when a model and expla-

nations are evaluated against application-specific require-

ments or when the performance or the full human-AI-

system is evaluated in a real-world setting [16]. Examples

for functionally grounded metrics are fidelity, compactness
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Table 2: Part II of the overview on common XAI terminology with definitions and example use cases, primarily from digital healthcare scenarios. Part

II presents explanation approaches that may cover various characteristics as introduced in Part I of the overview (see Table 1).

Term Definition Example usage in digital healthcare

Contrastive explanation Refers to approaches which emphasize the differences

between an instance of one category being explained

in contrast to other similar instances from another

category, showing what features in the examples led to

the prediction being different [35], [36].

In clinical facial expression recognition, a contrastive

explanation could show why a patient, who cannot

articulate their subjective sensation, shows a facial

expression of pain (e.g., after a surgery) rather than the

very similar facial expression of disgust, highlighting

the key changes in the patient’s facial features

influencing the model’s decision [42], [43].

Prototype-based

explanation

Helps in understanding which representative

characteristics in the data lead to a prediction by

comparing an instance to typical or prototypical cases

that the model has learned [37], [38], [44], [45].

Prototypes offer an aggregated view on model

decisions and provide relatable examples [18], [39],

[40], [46]–[48].

In clinical facial expression recognition, prototypes can

be derived from clusters over sequences of similar

facial expressions detected by a model [46]. They can

be used to illustrate typical facial expressions of pain or

of other emotional states that have led to the model’s

decision [46]. Prototypes can be selected from the input

data [31], [49] or generated based on identified

general, representative key features important to the

model [40], [42], [46].

Case-based reasoning Involves explaining a model’s decision by referring to

previously seen, similar cases [40]–[42].

If a patient’s mammography is predicted as possibly

indicative of breast cancer, the model’s prediction can

be explained by pointing to a similar historical case

where the patient’s symptoms and imaging features

closely matched the current case [50].

Attribution-based

explanation

Focuses on identifying and quantifying the contribution

of each feature or input to the model’s prediction. They

usually visually highlight the most influential features

or inputs for improved interpretability of attributions

[3], [16], [18].

For clinical facial expression recognition based on

analyzing images from video records in patient

surveillance, the contribution of individual pixels to

detecting real facial expressions can be made

transparent. This is performed by explicating and

visualizing the relevance a model has computed for all

pixels in the form of heatmaps [34].

Concept-based

explanation

Aims for explaining model decisions by relating learned

features to higher-level, human-understandable

concepts or categories, rather than raw data or abstract

properties [30], [51].

In digital pathology, mapping human-understandable

concepts onto attributions computed by a model, e.g.,

for features that represent morphological structures

[12], [27], can help to explain and evaluate a model’s

output in a domain-specific way [30].

Rule-based explanation Describes or approximates a model’s decision-making

process through a set of logical rules. These rules often

take the form of ”if-then” statements that reflect the

conditions under which a model produced its output

[16], [52], [53]. The goal is either to explicate individual

decision steps of a model or to uncover complex,

relational patterns in the data that influenced the

model’s output [3], [30].

In digital pathology, rule-based explanations can

reveal, whether a model (either interpretable or

opaque) has learned valid generalizations from input

data. For example, for the purpose of cancer invasion

depth classification, learned rules can be evaluated

against established medical classification systems that

define spatial relations between cancerous and other

tissue types [12], [26]. In clinical facial expression

recognition, rule-based explanations can add a layer of

expressiveness by considering the occurrence of facial

expressions and their temporal relatedness [42], [43].

Probabilistic explanation Denotes explanations that provide insights into the

uncertainty or likelihood of a model’s prediction, rather

than offering deterministic outputs [54]–[56].

In cognitive impairment diagnostics, a bayesian

network could explain the risk for developing dementia

dependent of risk factors such as the age of a person or

existing brain injuries [57]. Similarly, probabilistic rules

could express uncertainty in tumor invasion depth

computation [30].
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Table 3: Part III of the overview on common XAI terminology with definitions and example use cases, primarily from digital healthcare scenarios. Part

III presents explanation approaches that usually combine characteristics and methods as introduced in Part I and Part II of the overview (see Table 1

and Table 2).

Term Definition Example usage in digital healthcare

Multimodal explanation Refers to approaches that integrate multiple types of

information (e.g., text, visualizations, or sensor data) to

provide a more comprehensive and multifaceted

explanation [58].

In digital pathology, a multimodal explanation, for example,

based on verbalized rules for invasion depth and visual

explanations for highlighting morphological structures,

supports a more holistic understanding of a model’s decision

making in experts as well as non-experts [12], [30], [31].

Multiscope explanation Combines local and global explanations [28], either as

complementary units [12], [59] or by taking a glocal

perspective [60], which can be achieved by aggregating

local explanations [30], [46] or by leveraging local

explanations that are representative on a global scale

[60].

In digital pathology, explaining the tumor invasion depth

either for individual tissue samples or with respect to the

overall (global) set of classification rules, provides

complementary, multiscope explanations [31]. In clinical facial

expression recognition, glocal explanations can be derived

from clustering local explanations computed for individual

facial expressions (e.g., prototypes [46]).

Explanatory dialogue Refers to an interactive explanation process [49], where

humans and AI engage in a conversation to receive,

clarify and refine the explanations provided [21], [26],

[61]. This iterative process allows the human to ask

follow-up questions or request further details, making

the explanation more comprehensive and tailored to

the explainee’s information need [12], [61], [62].

Explanatory dialogues may benefit from integrating

multimodal, multiscope and different example-based

explanations [12], [61].

In digital pathology, a medical expert or non-expert can

engage in an explanatory dialogue with a model through an

integrative explanation interface, for example, to learn about

a model’s tumor invasion depth classification outcomes [12],

[31]. The explainee may ask for a global explanation about the

model’s overall classification or for a local explanation to

explicate the reasons behind the invasion depth classification

for a specific tissue sample. The explainee may also request

more detailed explanations (e.g., by navigating logic proofs

for the model’s reasoning steps [31], [49]). These may be

complemented by example-based explanations such as

prototypical tissue samples [31]. Medical experts as well as

non-experts can guide the explanation process and may thus

achieve a better understanding of and trust in the model [12],

[31], [49].

Corrective feedback Refers to a change initiated and performed by the

explainee in order to adapt a model, an explanation or

the input itself (with the goal to correct and possibly

improve the model) [63]. Corrective feedback enables

explanatory interactive machine learning [64].

In digital pathology, balanced annotated data is often

unavailable, may be noisy, sparse or prone to limited

reliability as well as validity [12], [65], [66] leading to false

model outcomes. For example, in invasion depth

classification, corrective feedback can help to adapt a model

by introducing constraints in subsequent model updates and

may uncover noisy example to be re-labeled [12], [26].

or stability of an explanation [68]. Typical human-grounded

metrics are the degree of alignmentwith human knowledge

(e.g., the match between the content of an explanation and

human expert knowledge [38], [74]) and the degree of under-

standing usually measured by a proxy task to be solved by

the human [12], [16]. Application-grounded metrics may be

criteria such as the end-user satisfaction, costs and perfor-

mance of human-AI systems [16], [68].

2.2.3 Data augmentation and adversarial attacks

These techniques involve modifying the input data to test

how the model and its explanations behave under various

conditions. Data augmentation introduces slight variations

in the input data, while adversarial attacks generate subtle

but intentional perturbations to test the model’s and the

explanations’ robustness [68]. The evaluation focuses on

whether the model’s predictions and explanations improve

[42] or remain consistent and robust despite these changes

[75].

2.2.4 Constrained loss functions

This approach modifies the training process of a model by

incorporating constraints into the loss function to regular-

ize the model toward generating more general, accurate or

explainable outcomes [64], [76]. For example, a constrained

loss function can penalize the model for making decisions
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that do not adhere to feature or class correlations present in

the given ground truth. Correlation lossesmay thus improve

themodel’s performance and resulting explanations, when-

ever they are based on valid expert knowledge [12], [77].

2.2.5 Constrained feature extraction

In this approach, the model is designed to only extract

features that satisfy given constraints and are considered

important for the model’s decision-making process [26],

[64]. After guiding the model toward these key features

during the training process, the evaluation step measures

whether the model performs well in comparison to the

unconstrained predecessor and whether generated expla-

nations highlight the most relevant and interpretable fea-

tures, accordingly [26], [30].

2.2.6 Concept suppression and ablation studies

These methods involve systematically removing or “sup-

pressing” certain features, concepts or architectural com-

ponents in the model to evaluate how each of them con-

tributes to the model’s decision-making process [58]. Abla-

tion studies help identify which relevant building blocks

most influenced the model’s predictions [58] and whether

the explanations refer to these important factors [30]. Sup-

pressing irrelevant features or concepts can be considered

constrained feature extraction as described above. Gradual

or repeated applications of such techniques can help to

assess the robustness of the model or explanations.

2.3 How XAI is contributing
to trustworthy AI

To summarize the previous paragraphs, XAI methods

encompass the aspects of trustworthy AI, namely inter-

pretability, explainability, interactivity, and robustness, by

leveraging a diverse range of techniques. Interpretability

is given under the use of inherently interpretable mod-

els. Explainability is supported by explanations of vary-

ing scope (local to global), model-specificity (agnostic or

specific), modality, complexity (attribution-based, concept-

based or relational information), determinism (probabilis-

tic or not), with different kinds of example-based expla-

nations available. Interaction is covered through different

interaction modes (explanatory dialogues and corrective

feedback) and robustness can be assessed through specific

evaluation and improvement techniques (mostly based on

constraints imposed on themodel andadaptions to the input

data).

Fusing these aspects and complementary XAI methods

is the goal of integrative XAI frameworks, which will be

introduced subsequently.

3 Integrative XAI frameworks

The following subsections shortly introduce the concept and

constituents of integrative XAI frameworks in advance to

describing an actual implementation.

3.1 Definition

Integrative XAI frameworks combine multiple XAI tech-

niques to provide a holistic understanding and evaluation

of AI models. They aim to improve the trustworthiness of AI

by leveraging a broad spectrum of complementary expla-

nation methods and XAI-based evaluation techniques while

aiming for human-centeredness and possibly the combi-

nation of symbolic and subsymbolic AI methods for com-

plex models and knowledge domains [12], [59], [62], [78].

Their constituents provide interpretability, explainability,

interactivity as well as robustness by integrating methods

and evaluation procedureswith characteristics that support

these aspects.

3.2 Constituents

An integrative XAI framework cannot be based on a single

XAI method. It benefits most from a combination of tech-

niques that complement each other rather than introducing

redundancy for the sake of comprehensiveness in exchange

of expressiveness and interoperability. The constituents are

therefore chosen such that they each address the distinct

technical and cognitive trustworthy AI aspects.

3.2.1 Interpretable base model and Ad-hoc explanation

generation

This constituent trains or applies an inherently inter-

pretable model on given data to provide explanations gen-

erated directly from the model’s reasoning process. It is

considered as a base model as long as it is applied directly

on the given data.

3.2.2 Opaque base model and post-hoc explanation

This constituent trains or applies an opaque and possibly

complex model, such as a deep neural network, on given

data. Explainability can only be achieved by combining it
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with an explainer that provides post-hoc explanations for

predictions of the model on the given data.

3.2.3 Opaque base model and interpretable surrogate

model

An opaque base model can be approximated using an

interpretable surrogate approach to explanation. The inter-

pretable surrogate model is not applied to the original data.

The inputs it gets stem from the opaque base model’s inter-

nals or post-hoc explainer outputs that serve as interme-

diate representations suitable to be processed and inte-

grated into subsequent explanations by the chosen inter-

pretable surrogate model. Intermediate representations

may be derived from attributions, human-understandable

concepts, relational information and possibly probabilities.

3.2.4 Example-based explanation

Example-based explanation supports explainability

through the comparison of representative examples, that

illustrate model behavior, with examples the predictive

behavior was exhibited on. These methods can include

contrastive explanations, prototype-based explanations as

well as explanations derived from case-based reasoning

as constituents of a framework. By presenting concrete

instances rather than abstract reasoning processes and

outputs, example-based explanations relate a model’s

predictive behavior to real-world features.

3.2.5 Unimodal and multimodal explanation

Unimodal explanation as a constituent focuses on a single

modality, whereas multimodal explanation provides mul-

tifaceted insights into a model’s decision-making process

and outputs by utilizing various modalities. Combining uni-

modal as well as multimodal explanation approaches as

framework constituents offers the possibility to tailor the

explanation generation to varying information needs of

human recipients.

3.2.6 Corrective feedback and constraints

Corrective feedback and constraints as constituents provide

the means to the base model’s as well as surrogate model’s

evaluation. They can serve as tools for model improvement,

explanation adaption as well as user feedback. They may

target input data, model parameters, predictive features as

well as explanations.

3.2.7 Explanatory dialogue

The explanatory dialogue serves as a crucial constituent

in integrative XAI frameworks enabling human users to

engage in interactive conversations with AI models. It sup-

ports inquiries about different explanations, revision of

explanations as well as providing feedback and corrections,

such as constraints, to the model.

4 Implementation of integrative

XAI frameworks

As motivated earlier, critical applications that require trust-

worthy AI could benefit from the implementation of more

integrative XAI frameworks. Example applications include

digital healthcare [66], [79], [80] and service robotics for

object recognition and object manipulation in care centers

[81], both illustrated in Figure 2.

These applications have in common thatmodels need to

undergo rigorous evaluation in advance to deployment and

that the data used to train and test models may stem from

a complex knowledge domain [82]. In complex knowledge

domains, data is highly interrelated, meaning that knowl-

edge is not expressed by individual, independent concepts

but rather through manifold relationships between con-

cepts [82]. Models trained on tasks such as tumor classifica-

tion based on spatial tissue relations, pain assessment based

ondynamic facial expressions, object classification based on

composed object parts and context understanding frompos-

sibly ambiguous real-world scenarios, require expressive

explanatory and evaluation approaches. In tumor classifica-

tion, healthy tissue invaded and surrounded by cancerous

tissue may be considered as part of the tumor, while still

resembling normal healthy tissue [83]. Without consider-

ation of spatial relations, like containment and proximity

(healthy tissue mixed up with cancerous tissue) such clas-

sification would be limited [27]. In pain assessment, dis-

tinguishing similar individual facial expressions based on

temporal sequences of certain muscle movements may be

the key to separability compared to mere consideration of

occurrences of expressions [43], [46]. In object classification

performed, for example, by a service robot, expressing spa-

tial relations between concepts can provide the means for

distinguishing similar object classes. For example, teapots

and vases can be considered similar objects froma cognitive

perspective [84]. The occurrence of flowers in the presence

of a bowl shaped vessel may not be sufficient to distinguish

a vase from a teapot. It may make a difference, whether

the flowers are located as ornaments on a teapot’s vessel or
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Figure 2: Applications in complex knowledge domains such as digital healthcare and service robotics can benefit from integrative XAI frameworks.

Local (possibly concept-based) explanations can help to validate a models output (e.g., the correct recognition of mucosa tissue [27], of a facial action

like brow raisers [46], and of object parts like handles and spouts on teapots [30]). Rule-based global explanations can put these concepts into context

(if a small mucosa region is surrounded by tumor tissue, it is probably part of the cancerous area and should add to it in quantity [12], [27]). Contrastive

explanations can contribute to distinguishing similar cases (e.g., a handle and a spout can be present both in teapots and vases, however, more often

the spout is right of the handle in teapots oriented to the right compared to vases [30]). Prototypes can help to find or generate representative

instances that allow for information aggregation and comparison based on typical characteristics (e.g., raising the brows and parting the lips is a

process in facial expression that is typical for surprise and temporal prototypes can explicate this change, for example, visually with aggregated

attributions [46]). The combination of multiscope (global and local) explanations as well as multiple modalities (e.g., visualizations and verbal

explanations) within a human-AI dialogue allows for bi-directional, more expressive and comprehensible interaction in these application areas [12],

[31], [49].

placed inside a vase [30]. Similarly, for teapots oriented to

the right it usually holds that themajority of cases has a han-

dle right of the spout compared to vases that may also have

a handle and a spout, however, in different spatial constel-

lation [30]. The characteristics of instances from different

subgroups can be compared to instances from contrastive

classes [30], [42], [43]. They also can be aggregated in the

form of prototypical, concept-based and rule-based (rela-

tional) explanations for increased usefulness and compre-

hensibility of model decisions [30], [46]. Integrating uncer-

tainty, e.g., in the form of probabilities, can provide the

means tomore nuanced and realistic explanations [30], [85].

This is especially important for the assessment of risks

resulting from the usage of an AI system. The consequences

of mistakes such as false diagnostic decisions or incorrect

object manipulations (imagine a service robot bringing the

vase instead of the teapot to fill a cup) could be fatal [8].

Although, no AI system is allowed to make critical deci-

sions on behalf of humans [1], a holistic approach to eval-

uation is needed to avoid, for example, human confirma-

tion bias [12], [29], [66] and biased models or “Clever Hans”

learning [86], [87] interfering with trustworthiness. Expres-

sive explanations and rigorous evaluation as intended

by the design of integrative XAI frameworks can act as

countermeasures.

4.1 Architectural overview

Figure 3 presents part I of the architectural overview, focus-

ing on different types of models and explainers in integra-

tive XAI frameworks. The architecture proposes three dif-

ferent integration paths. Path A illustrates the approach of

combining an opaque base model with a post-hoc explainer,

e.g., an attribution-based explanation method that high-

lights features relevant to amodel’s predictive behavior (red

if representative for a class, blue otherwise). Path B illus-

trates the approach of using either an interpretable base

model or by combining an opaque basemodel with an inter-

pretable surrogate model, e.g., a rule-basedmethod capable

to express relational information. In addition, path C illus-

trates an approach that complements explainability and

interpretability by expressing probabilities for the occur-

rence of concepts and consequently relations computed

based on top of extracted concepts.

Figure 4 presents part II of the architectural overview.

On the left, it is illustrating example-based explanations, in

particular contrastive and similarity-based explanations,

for all proposed integration paths as introduced in Figure 3.

On the right, it is illustrating an explanatory dialogue

that provides explainability, interpretability as well as

interaction in the form of a conversation between the AI

system and a human.
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Figure 3: Part I of the architectural overview for the proposed integrative XAI framework. Path A: Combination of an opaque base model, such as a

neural network, support vector machine or other non-linear model with a post-hoc explanation method such as relevance propagation, probabilistic

models, or clustering among others. Path B: Combining an opaque base model with an interpretable surrogate model, such as a decision tree,

inductive logic programming or other rule-based models. Also path B: Providing an interpretable base model. Path C: Enhancing path B by

computation of probabilities for concepts, their occurrences as well as relations in interpretable models. Illustrated for the teapot versus vase

classification problem adapted from Finzel et al. [30], where attributions may be translated by a human or automated agent into concepts like “lid” (c1)

and “flower” (c2) and where relations may be computed by an expressive interpretable model. Such relations may express spatial constellations like

“the lid is on top of the pot” as a means to characterize a teapot in contrast to a vase. Probabilistic methods may account for heterogeneity in objects

of a target class that may share characteristics with objects in the contrastive class (e.g., a teapot may not have a lid, which also holds for a vase). The

combination of different constituents is denoted by a logic or (∨) and reasoning that takes place in constituents of the framework is expressed by
implication (←) and logical entailment (⊧) as well as logical connectives (∧, ∨). Relations are denoted by upper case R indexed to distinguish different
relations in logical expressions. Similarly, concepts are denoted by lower case c indexed to distinguish different concepts in logical expressions.

Probabilities are expressed by the parameter 𝜃.

Figure 5 presents part III of the architectural overview.

It primarily illustrates the aspects of evaluation and human

control inside integrative XAI frameworks denoted as

concept-based and relational model correction and evalu-

ation here.

As mentioned before, model quality may be harmed by

bias, leading to mistakes in predictive outcomes. In classifi-

cation tasks, this may include misclassification of examples

or classifications for thewrong reasons (false concepts, false

relations and false probabilities in particular, leading to

false explanations [88]). The human decision-maker (usu-

ally a domain expert, for example, a doctor) may intro-

duce constraints in the opaque basemodel, possibly through

the interface and integration of an interpretable surrogate

model. As introduced earlier, such corrective feedback may

include countermeasures like concept suppression in abla-

tion studies, constrained feature extraction, constraining

the loss(es) of involved model(s) as well as broadening the

feature basis throughdata augmentation. In general, correc-

tive feedback in the form of constraints provides guidance

to the base model by weakening undesired and strengthen-

ing desired concepts and relations. Consequently, guidance

provides the means to explore and change model decisions

and explanations [89], [90]. Spanning the evaluation over

opaque base models integrated with post-hoc explainers

and interpretable surrogate models, extends performance-

based evaluation by knowledge-based evaluation.

An overall illustration of the information flow between

the human user and the AI system as well as within the inte-

grative XAI framework is provided in Figure 6. Emphasis is

put on the aspect that the human can explore, evaluate and

may even learn from model decisions. This may be espe-

cially supported by multimodal and multiscope explana-

tions gathered from post-hoc explanations and inherent or

surrogate explanations [30], [71]. The human is furthermore

empowered to provide constraints in the form of domain

knowledge to the interpretable base or surrogatemodel and

in the form of various constraints and augmentations, as

introduced earlier, to adapt the opaque base model, its attri-

butions and concepts, respectively. The information flow
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Figure 4: Part II of the architectural overview for the proposed integrative XAI framework. All three proposed integration paths from Figure 3 can be

enhanced by example-based explanations (left side) and explanatory dialogues (right side) build on top. Contrastive explanations may primarily serve

the comparison of different instances (e.g., teapots and vases in object classification tasks). Constrasts can be generated based on attributions (red if

representative for a class, blue otherwise), concepts extracted from attributions and rules generated on top of concepts. Likewise, similarity-based

explanations, e.g., prototype-based explanations, can be generated based on attributions, concepts and relations present in similar instances (e.g.,

two teapots and with similar features). Reasoning that takes place in constituents of the framework is expressed by implication (←) and logical

entailment (⊧). In the logical expressions, instances from different classes are denoted as e+ and e−, whereas instances from same classes are both

denoted as e+. Probabilities are expressed by the parameter 𝜃. Relations are denoted by upper case R indexed to distinguish different relations in

logical expressions. Similarly, concepts are denoted by lower case c indexed to distinguish different concepts in logical expressions. Logic rules are

denoted by upper case C indexed to distinguish alternative rules. The dialogue is built on top of the pipeline (instances are classified by a model, the

model’s predictive behavior gets explained and prepared for being interpreted by a human, who is then involved in conversation with an explanation

interface built on top of the AI system). The conversational interaction includes inquiries about the prediction (What), requests for reasons behind a

prediction (Why) and the reasoning leading to that prediction (How) as well as requests for example-based explanations (prototype-based, contrastive).

The explanatory dialogue provides verbal interaction as well as pictorial illustrations showing instances and attributions of concepts upon request

(multimodal explanations). In principle, such an explanatory dialogue can provide global as well as local insights for model-specific as well as

model-agnostic explainers, making it a focal point of integrative XAI frameworks.

also illustrates the role of data as input to the model, to

attribution computation and visualization and as a basis for

probability computation that determines attribution and

that serves as a basis for expressing the likelihood of con-

cepts and relations in interpretable models. The informa-

tion flow also illustrates that integrative XAI frameworks

provide the means to inject human knowledge at different

parts of the process (in the form of concepts, domain knowl-

edge or data).

4.2 Methods

Individual building blocks of the proposed integrative XAI

framework have already been implemented for realistic

and real-world data. The realization has partially taken

place within two related research projects, the Transpar-

ent Medical Expert Companion and the PainFaceReader as

introduced by Schmid & Finzel [26] and reported by Finzel

[12]. Experiments and evaluations have been conducted in

collaboration with different research groups and medical

institutes. Tissue samples for the use case of digital pathol-

ogy were collected and curated at the University Hospital

Erlangen (collaboration with Dr. med. Carol Geppert, Dr.

med. Markus Eckstein, and Prof. Dr. Arndt Hartmann, insti-

tute of pathology) and partially analyzed at Fraunhofer IIS

with the help of deep learningmodels (in collaborationwith

Dr. Volker Bruns, Dr. Michaela Benz, research group for

medical image analysis). Explanatory approaches, opaque

base models and interpretable models were developed and

applied at the University of Bamberg (the author of this
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Figure 5: Part III of the architectural overview for the proposed integrative XAI framework. The explanatory dialogue can be enhanced by

constrained-based correction and evaluation of concepts and relations utilized by the AI model in its decision-making process or as generated by

integrated explainers. The AI model may base its decision (e.g., the classification of an object as a vase) on wrong reasons (e.g., it considers flowers

painted on the vessel as relevant to the target class). The human may provide corrective feedback to change the model’s reasons for a decision (e.g.,

by stating that the spatial relation of flowers being contained by the vessel is the relevant information that has to be considered by the model). This

feedback may be translated into constraints or augmentation measures to improve the model and its outcomes (here, the correction is transformed

into logic constraints, which are propagated through an interpretable surrogate model that adapts it decision first, before providing guidance to the

underlying opaque base model). The opaque base mode (e.g., a neural network) may receive the guidance as a form of concept suppression,

constrained feature extraction, constrained loss or may be enhanced through data augmentation. The ultimate goal of this process is, to adapt the

model’s decision process and output t, such that a new version t′ results from provided human feedback. This may result in reclassification of

instances (e.g., the vase is now recognized as a teapot) or a different attribution of concepts (e.g., the flowers inside the vase are more relevant than

the flowers painted on the vase’s vessel). This performance- and knowledge-based evaluation may result in more robust AI systems by mitigating false

and inconsistent model decisions. It thus contributes to another important aspect of trustworthy AI complementing the explanatory dialogue as

introduced in part II of the integrative XAI framework. Note that reasoning that takes place in constituents of the framework is expressed by

implication (←) here. Probabilities are expressed by the parameter 𝜃. Relations are denoted by upper case R indexed to distinguish different relations

in logical expressions. Similarly, concepts are denoted by lower case c indexed to distinguish different concepts in logical expressions.

article under the supervision of Prof. Dr. Ute Schmid, chair

of Cognitive Systems). Records for clinical facial expres-

sion recognition were provided by Prof. Dr. Stefan Lauten-

bacher (chair of Physiological Psychology at the University

of Bamberg) and Prof. Dr. Miriam Kunz (chair of Medical

Psychology and Sociology at the University of Augsburg).

Explanatory approaches for facial expression recognition

were developed and applied in collaboration with Fraun-

hofer IIS (Jens Garbas, Smart Sensing and Electronics). Out-

side of the scope of the two research projects, benchmarks

for (human) concept learning were reviewed and tested

in collaboration with BOKU University (Prof. Dr. Andreas

Holzinger, head of HCAI Lab).2

In this article, the underlying XAI framework is devel-

oped, conceptualized, extended and described as part of

a dissertation by the first author of this work. The meth-

ods characterized in the following paragraphs have been

combined to realize individual constituents of the pro-

posed framework and to answer related research questions.

Detailed results can be found in the referenced works.

2 See for example a survey on benchmarks for concept learning [91]

and an investigation of explaining graph neural networks with rele-

vant sub-graphs [92].

4.2.1 Inductive logic programming (ILP) for inherent

and surrogate explanation

ILP is a machine learning approach that generates inher-

ently interpretable models from input examples using sym-

bolic first-order-logic expressions [13], [93]–[95]. Due to its

expressiveness and safety properties [96] it is well-suited

for learning and explaining models in complex knowledge

domains. ILP’s inherent interpretability stemsnot only from

its declarative programming paradigm but also from the

fact that input examples, background knowledge describ-

ing them, learned theories (rules) and ILP algorithms are

altogether based on first-order logic [24], [26], [93], [94]. This

integrative nature supports comprehensibility as demon-

strated in human studies [13], [30] and allows for traceable

and verifiable reasoning [49], [96].

Critical decision scenarios requiring high interpretabil-

ity, such as medicine [13], [24], may benefit from this

property. For example, in digital pathology, ILP can clarify

the conditions under which certain tissue structures are

classified, using relational rules that are easy for domain

experts to verify [12], [26] and easy to understand by non-

experts [12], [13], [71].

Although the birth year of ILP dates back to 1991, inter-

est in the formal properties and interpretability of this
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Figure 6: An overview of the information flow in the proposed integrative XAI framework, connecting the human with the AI system via an

explanation interface that provides an explanatory dialogue and the means for constraint-based model correction and evaluation.

approach has not waned. In the course of research into

neuro-symbolic AI and explainability, it is enjoying renewed

popularity [93], [97], [98]. State-of-the-art implementations

provide libraries and extensions in other programming

languages such as Python [30], [99], [100]. This makes it

easy to couple ILP with neural networks [26], [30], [100],

[101].

In an integrative XAI framework, ILP can serve as an

interpretable base model or as a surrogate model to opaque

base models. The surrogate model can either be used to

imitate and approximate the base model’s behavior [102]

or to analyze an opaque base model’s output from the per-

spective of conceptual and relational information with the

purpose of data and domain-specific explainability [3], [24],

[26], [30], [101].

This approach provides both local and global explana-

tions and can be integrated with other techniques, such as

multimodal explanations, example-based explanations and

explanatory dialogues [30], [31], [42], [49] and constraints

to refine model behavior [26], [30], [42]. For example, in

digital pathology, experts can use constraints to help the

model distinguish between closely related tissue typesmore

accurately, especially when the data contains noise. Such

constraints can improve model performance but require

some form of quality control to avoid biases in adaptation

[26].

It is further suitable for generating either determinis-

tic or probabilistic concept-based as well as relation-based

explanations [30]. ILP is available in different variants, for

example, as probabilistic ILP [101], [103], [104] as well as in
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frameworks providing abductive reasoning for explanation

besides induction [105]. It further supports constraint-based

corrective feedback [26], [105]. ILP is therefore a suitable

method to cover many important aspects of integrative XAI

frameworks, provided that input data is available in corre-

sponding logical representations.

4.2.2 Convolutional Neural Networks (CNNs) as opaque

base models

Computer vision and image classification in particular, are

important areas of research in digital healthcare due to

the growing amount of image data as a foundation to

visual diagnostics [12]. The proposed integrative XAI frame-

work was therefore mainly tested for image classification

(for opaque base models) and related use cases (for inter-

pretable models).

CNNs are a type of artificial neural network designed

for deep learning-based image classification tasks (com-

puter vision). They learn in a multi-layered fashion due

to their architecture consisting of a backbone with mul-

tiple subsequent convolutional layers combined with an

additional classification head. Each layer in the backbone

provides a collection of convolutional filters. These filters

perform abstraction on the input to derive features of var-

ious complexity and expressiveness (ranging from simple

concepts like dots or lines to rather complex shapes like cell

structures). These features are assigned more or less rele-

vance during a training procedure using learnable weights

and activation functions. The occurrence of features and

their relevance ultimately determines the classification of

an input image in the end. The foundations of Convolu-

tional Neural Networks were introduced by LeCun et al.

[106].

In an integrative XAI framework, a CNN takes the role

of the opaque base model due to its model complexity. It is

suitable for end-to-end learning (requiring no or less fea-

ture engineering compared to traditional machine learn-

ing approaches, while showing high classification perfor-

mances) and has excelled in many computer vision tasks,

including the digital healthcare use cases, presented in this

work. Still, as outlined earlier, there remains a need for

explainability to trust in the models outputs for the right

reasons.

4.2.3 Gradient-weighted class activation mapping

(Grad-CAM) for local post-hoc explanations

Grad-CAM computes and visualizes which image areas have

been considered important in an classification task by a

CNN. Grad-CAM generates class-specific activation maps by

computing the gradient of the target class scorewith respect

to a CNN’s feature maps derived from convolution filter

operations. These gradients indicate pixel-wise contribu-

tions to the class score. Spatially averaging the gradients

yields weights, which are used to linearly combine feature

maps and to produce the final activation map (a heatmap)

for the respective target class [107].

In an integrative XAI framework, Grad-CAM can pro-

vide local, attribution-based, post-hoc explanations for

opaque base model CNNs. While Grad-CAM is only appli-

cable to CNNs (model-specific), its advantage is that it

provides class-specific visual explanations (expressing pos-

itive relevance) across different convolutional layers of

a CNN. Furthermore, the activation information can be

aggregated across individual layers of a CNN, to derive

the most influencial layers for a specific classification task

such as tissue classification [27]. This allows for an approx-

imate, layer-wise relevance analysis with class-specific

importance scores. Grad-CAM can be combined with ILP

[100] to realize a neuro-symbolic system. A concept-based

variant of Grad-CAM uses pooled concept activation vec-

tor values as weights instead of the globally averaged

gradients to produce human-understandable explanations

[108].

In pathology, visual explanations generated with Grad-

CAM can be evaluated by pathologists to see how differ-

ent model layers see relevant morphological structures in

tissue classification [27]. By showing experts which tissue

areas in the image are most influential for the model’s

decision, Grad-CAM helps practitioners better understand

the significance of various tissue structures in the model’s

classification and to evaluate its correctness, accordingly

[27].

4.2.4 Relevance propagation for local and

concept-based post-hoc explanations

In general, relevance propagationmethods assign relevance

scores to input features (e.g., individual pixels) by propa-

gating a model’s prediction backward through its layers,

following structured redistribution rules. These relevance

scores, visualized as heatmaps, quantify each feature’s con-

tribution to the output. The most prominent method to

date is Layer-wise Relevance Propagation (LRP) [109]. Its

advantage is that it conserves total relevance across lay-

ers to ensure faithful attribution. It distinguishes posi-

tive relevance (supporting the target output) from nega-

tive relevance (contradicting it). Being model-specific, LRP

directly leverages the network’s structure and parame-

ters, enhancing fidelity but reducing flexibility compared

to model-agnostic methods. A concept-level extension to
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LRP, called Concept Relevance Propagation (CRP), allows for

the approximation of human-understandable concepts in

learned features [110], [111].

In integrative XAI frameworks relevance propagation

can serve as a local, attribution-based, post-hoc explana-

tion technique for opaque base models and is applicable

to a large variety of tasks (rather model-specific for non-

linear learning approaches like deep learning; not lim-

ited to CNNs). Similar to Grad-CAM it allows for a multi-

layer insight into a model’s learned representations. Its

concept-based variant CRP, that tests for semantic, human-

understandable concepts, has been combined with ILP in

a recent work to realize a neuro-symbolic approach to

concept-based and relational explanation [30]. A human

study with experts supports the findings that the com-

bined, multimodal explanations are superior in useful-

ness in comparison to unimodal explanations (heatmaps or

rules) for the complex knowledge domain of ornithology

[30].

4.2.5 t-Distributed stochastic neighbor embedding

(t-SNE) for global post-hoc explanations

The method t-SNE provides visualizations for a set of high-

dimensional data points, by mapping them into a 2D or

3D space that preserves local neighborhoods (pairwise sim-

ilarities in the data), meaning that points that are close

in the high-dimensional space tend to remain close in

the lower-dimensional representation [112]. It was intro-

duced by van der Maaten and Hinton [112]. t-SNE can

be used to derive more global explanations by aggregat-

ing local explanations such as done by the Spectral Rele-

vance Analysis (SpRAy) technique. SpRAy identifies overall

patterns in a model’s attributions by clustering relevance

maps.

In integrative XAI frameworks t-SNE and SpRAy can be

used to detect potentially misleading “Clever Hans” effects

[113] in models. Furthermore t-SNE applied to local expla-

nations serves the purpose of aggregating information and

reducing the information load for human explainees [12].

For example, in facial expression classification, clustering

attributions with the help of t-SNE can reveal that a model

has learned certain subgroups of expressions that are rep-

resentative of a certain emotion. This way, prototypes can

be derived as introduced earlier [46]. t-SNE may also help

to identify small clusters (potentially anomalies or samples

underrepresented in the data). This is especially of inter-

est, if the model may be heavily weighting random, irrele-

vant image features that do not correlate with actual facial

expressions (such as the background) [12], [46].

4.3 Explanatory approaches

4.3.1 Contrastive explanations as an example-based

approach

This approach compares similar instanceswith distinct clas-

sifications to clarify boundaries between categories, usually

based on minimal differences [42], [114].

The implemented integrative XAI framework leveraged

contrastive explanations, for example, in distinguishing

facial expressions of pain and disgust, using both attribute-

based and relational near-miss and far-miss examples for

explaining an ILP model’s decision [43]. Near misses are

instances that are most similar to an example that is to

be explained, but belong to the opposite class [114]. Far

misses are the most dissimilar contrastive examples. The

underlying explanation is based on a request like “Why is

this pain and not disgust?” (see also the request presented

in Figure 4).

Experimental results showed that contrastive explana-

tions were generally shorter than exhaustive ones for all

experimental settings, focusing only on the most critical

distinguishing features [43]. This supports interpretability

and improves efficiency, making them particularly useful in

classification tasks with subtle differences. The experimen-

tal evaluation further highlighted the role of near misses,

which shared many similarities with explained instances

but differed in key attributes, for generating shorter expla-

nations compared to far misses. The findings suggest that

contrastive explanations, especially near misses, are help-

ful when structural differences need to be emphasized for

highly similar instances [42], [43].

Another implementation of contrastive explanations

within the integrative XAI framework based on concept-

based and relational explanations (CoReX) combining CRP

and ILP [30] aimed for explaining misclassifications instead

of obtaining the shortest possible explanations (which

could, however, also be integrated as formalized in [42]).

The CoReX approach showed that contrastive explanations

for ILP-based surrogate models can reveal which concepts

havenot been sufficiently assignedwith relevance by a CNN.

This insufficiency was logically proven by tracing the back-

ground knowledge of a misclassified example and finding

insufficient support as a cause for not fulfilling the rules of

the interpretable surrogate model [30].

4.3.2 Prototype-based explanations as an

example-based approach

As motivated earlier, prototypes can be helpful, where data

is highly complex and cannot be generalized into one single
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rule, function or even model [12]. Prototype-based explana-

tions canprovide amore global viewon themodel’s decision

behavior compared to other example-based explanations,

especially if they are based on aggregating most influential

features [46].

In the integrative XAI framework, prototype-based

explanations were used to aggregate local explanations to

reduce the information load put on explainees. In partic-

ular, local explanation aggregation for deriving prototypes

from temporal sequences of video frames was successfully

applied for facial expression recognition [46]. Respective

temporal prototypes were extracted from t-SNE (SpRAy)

clusters generated based on local explanations of similar

video frames. The temporal prototypes further enhanced

interpretability by illustrating typical changes in facial

expressions over time for different emotional states, e.g.,

surprise, while achieving a considerable information com-

pression [46].

In another experiment, prototype-based explanations

were derived from clustering ILP rules to identify structures

in concepts learned by the model that could be generalized

from individual example subsets [30]. The qualitative anal-

ysis revealed that examples covered by such prototypical

rule sets may exhibit a biased distribution of features (e.g.,

smiling faces and long hair in female persons [30]).

4.3.3 Concept-based and relational explanations as a

hybrid and human-centered approach

Concept-based and relational explanations provide a novel

approach to explaining opaque base models. They can com-

bine local and global explainability, may be realized in

a model-specific or model-agnostic way and provide mul-

timodal and possibly also example-based explanations to

explainees.

For the proposed integrative XAI framework, a rele-

vance propagation method, CRP in particular, was used as a

concept extractor and combined with ILP to derive expres-

sive concept-based and relational explanations for CNNs

applied to complex knowledge domains [30].

Experiments showed that for the opaque base model

CNNs, fine-tuned onbinary classification tasks, ablating con-

cepts in CNNs that have been integrated into rules by an

ILP-based surrogate model, supports the concepts’ impor-

tance as well as the fidelity of the ILP model by consider-

able drops in each CNN’s performance. The experiments

showed that concept-based ablation studies allow for a

clearer understanding of how relevant and irrelevant con-

cepts influence CNN predictions and that relational infor-

mation may be superior to absolute relevance in concepts.

Furthermore, a human study, particularly involving experts

fromornithology, showed that combined,multimodal expla-

nations (concept-based visualizations and verbalized rela-

tional rules) were considered more useful than purely

visual or verbal explanations for distinguishing similar

birds. The human evaluation also showed that descriptions

from experts themselvesmay still be perceived asmore use-

ful than explanations from the proposed CoReX approach.

The CoReX approach was also provided with user-defined

constraints allowing for adaptation of ablations as well as

exploration and control of model and explanation outputs

[30].3

4.3.4 Multimodal, multiscope and example-based

explanations in Human-AI dialogues

At the heart of every integrative XAI framework is the

explanatory dialogue (see Figure 6). This is where all com-

ponents flow together bi-directionally via an explanatory

interface (from the AI model to the human and back) [26],

[49]. As motivated earlier, integrating multimodal, multi-

scope and example-based explanations into explanatory

dialogues, enables explainees to explore different aspects of

a model’s decision-making process and outputs by benefit-

ing from multifaceted views and intuitive interaction [12],

[21], [71].

For the particular integrative XAI framework, an

explanatory dialogue was implemented for digital pathol-

ogy [31] with the functionality to answer requests from

explainees about classification outcomes and to provide typ-

ical examples of healthy and diseased tissues as prototypes.

4.4 Summary

In summary, the methods used for the implementation of

the integrative XAI frameworkswere found to provide vary-

ing levels of transparency, complementing each other rather

than producing redundant explanations. They have been

evaluated as beneficial for validating and improving inter-

pretable as well as opaque models and their decisions in

complex knowledge domains, such as digital healthcare.

Integrating such methods for explanations may facilitate

the use of AI-assisted systems in other healthcare scenar-

ios and beyond, while strengthening user trust [3], [12],

[70].

3 The concept-based and relational explanation approach (CoReX) is

currently extended and will allow for probabilistic explanation as well

as dialogue-based interaction in the near future.
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5 Interdisciplinary collaboration,

combined reasoning and AI

evaluation as drivers of

integrative XAI frameworks

A major lesson learned from the development of the pro-

posed integrative XAI framework was, that it benefits

from being based on a strong interdisciplinary collabora-

tion. This surely holds for future integrative frameworks.

Experts from the research fields of explainable artificial

intelligence, cognitive science, human-computer interac-

tion, ethics and the respective application domain (e.g.,

medicine) should work together to ensure that these frame-

works are not only technically reliable but also intuitively

comprehensible and usable for humans [21]. Computer sci-

entists contribute technical expertise, while domain experts

use their knowledge to ensure that model decisions and

explanations are relevant and helpful for the application

context. Cognitive and interaction insights are particularly

helpful for the design of human-centered explanations to

address the varying requirements of experts and non-

experts [12], [71]. The inclusion of ethical considerations

contributes to beneficial and trustworthy AI solutions, cov-

ering socio-technical aspects besides purely technical and

cognitive ones [3].

An aspect not discussed in detail in this work is

the fact that integrative XAI frameworks combine differ-

ent reasoning approaches, either in models or in human

explainees. In particular, they integrate abductive, deduc-

tive and inductive explanation processes that together may

support the iterative achievement of better generalization

capabilities in human-AI collaboration [115]–[117]. In such

processes abduction can foster discovery (e.g., of prelimi-

nary hypotheses to be tested), deduction can provide con-

firmation (e.g., by automated proofs) while induction sup-

ports generalization from observations for the purpose of

explanation (e.g., based on representative concepts and

relations found in model outputs [118]), leading to an inte-

gration of exploration, evaluation (optimization) and learn-

ing in an overall reasoning framework (see Figure 7). Such

approaches are considered to be contributing to trustwor-

thy AI [119].

For the technical part, integrative XAI frameworks as

the one proposed and implemented, are developed at the

intersection of three major research areas: explainabil-

ity research (XAI), neuro-symbolic AI and human-centered

research. A synthesis of all aspects relevant to realizing

integrative XAI frameworks is illustrated in Figure 8

Abduction Deduction Induction

Exploration Evaluation Learning

Explanation fosters
discovery

Explanation provides
confirmation

Explanation supports
generalization

Integration

Figure 7: Integrative XAI frameworks should integrate abductive,

deductive as well as inductive explanation processes. This way they could

fuse knowledge discovery, confirmation and generalization as introduced

by Pierce [117]. Ultimately, the goal is, to integrate exploration, evaluation

(optimization) and learning to create holistic frameworks.

summarizing the contribution of the approach proposed,

described and discussed in this work.

Under the hood, abduction, deduction and induction

is supported by various functionalities and methods. Multi-

modal and multiscope explanations offer different perspec-

tives on the system facilitating the creation, confirmation

or revision of hypotheses about an AI model’s behavior.

Interactive explanations allow for control and guidance

during the process. Both, control and guidance can be imple-

mented through explanatory dialogues and constraints, pos-

sibly complemented by example-based explanations that

map abstract reasoning artifacts or attributions to concrete

and realistic cases. This may include contrastive explana-

tions, prototypes or case-based reasoning. The basic build-

ing blocks of such integrativeXAI frameworks, especially for

complex knowledge domains, are concepts, relations and

relevance information (either in the form of attribution or

probability [120]).

In such frameworks, inherently interpretable models

can serve as more transparent alternatives to opaque mod-

els (especially if their performance and runtime are com-

parable). They may further be used as a contextual super-

structure on top of opaque models and post-hoc explainers

(recall the case, where recognizing a mucosa tissue sample

correctly for the right reasons is not enough if the spatial

context, the containment in a cancerous area, is not con-

sidered for the final outcome and thus the domain-specific

evaluation of an AI model). Interpretable models can also

serve as surrogate models that approximate the decision-

making processes of an opaque model or, for the purpose

of data explainability [3], [121], providing information about

which characteristics were prevalent in the data and could

therefore have led to a certain decision by the opaque base

model.
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Figure 8: The proposed integrative XAI framework heavily relies on concepts and methods from the field of explainable Artificial Intelligence (XAI),

abbreviated as explainability, from neuro-symbolic AI as well as human-centered AI research. Integrative XAI frameworks fuse abductive, deductive

and inductive explanation processes. They provide multimodal explanations, multiscope explanations (also called multilevel explanations), they

combine example-based explanations with explanatory dialogues and constraint-based guidance. The building blocks of explanations are concepts,

relations and relevance (such as probabilities).

In this work, (Inductive) Logic Programming in particu-

lar was presented as an inherently interpretable approach

that not only enables machine learning on logical expres-

sions, but also supports multimodal explanations through

verbalized rules andmultiscope explanations through inter-

actively navigating deductive proofs in explanatory dia-

logues. It further provides the means to corrective feedback

through user-defined logical constraints.

With regard to the opaque base model, the instan-

tiation of the integrative XAI framework presented here

focused on image classification with Convolutional Neural

Networks (CNNs) [106]. An implementation with other non-

linear machine learning approaches would also be conceiv-

able, especially if suitable post-hoc approaches or alterna-

tive interpretable models exist for these [16].

For CNNs there are a variety of post-hoc explanation

methods. The presentwork has focused on relevance propa-

gationmethods and gradient-weighted class activationmap-

ping, as these support model-specific explanations as well

as recognition and extraction of human-understandable

concepts from CNNs. In particular, they play a role in the

generation of relevance-based, local explanations as well

as for example-based explanations. It has been demon-

strated that these methods can be enhanced in their eval-

uative power by performing concept-based ablation stud-

ies, in particular, from rules learned by an interpretable

surrogate model. This paves the way for applying user-

defined constraints on surrogatemodels to explore or revise

underlying opaque base models with the help of human

knowledge.

At this point, it is worth mentioning that the methods

used here to instantiate the framework were also employed

for the purpose of XAI-based model evaluation as intro-

duced in Subsection 2.2. As such methods are suitable to

evaluate a models explanatory performance and robust-

ness, they can be considered drivers of the framework’s

trustworthiness and are therefore a crucial part of it. Fur-

ther evaluation methods as presented, for example, in
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Nauta et al. [68] and motivated by [73], could be integrated

in the future.

6 Synthesis and limitations

In summary, the realized framework has advantages over

unimodal, purely visual explanation methods in that it

relies on explainability through human-understandable

concepts as well as human-centered multimodal represen-

tations and multiscope perspectives [12]. It differs from

purelymechanistic [10], unidirectional explanations by con-

sidering and focusing on the human being as the explainee

involved in a bi-directional exchange. In contrast to single-

model approaches, it offers a holistic integration of different

forms of reasoning through the neuro-symbolic approach

combining an opaque deep-learning model with post-hoc

explanations and an inherently interpretable surrogate

model for the purpose of exploration, evaluation and learn-

ing in general. It is therefore argued that integrative XAI

frameworks allow for a comprehensive evaluation and

improvement of human-AI systems. As demonstrated in this

work, this is particularly interesting for critical applications

such as digital healthcare. Further medical fields, such as

physiology, where unimodal explanatory methods for AI

models are predominantly used [121], could benefit from

such a framework in the future.

The limitations of the proposed integrative XAI frame-

work stem from the individual imperfections of themethods

involved. For example, ILP excels in learning from rela-

tional data but may not scale well for data set sizes utilized

by deep-learning approaches, unless these opaque base

models are fine-tuned for specific small data set use cases,

such as binary image classification [30], [42]. ILP is well

suited for integrating knowledge into the learning process

of a neural networks and for knowledge-based evaluation

[122].

Post-hoc explanation methods suffer from the het-

erogeneity and redundancy of concepts in CNNs [123],

[124]. Furthermore, it may be impossible for some features

learned by opaque base models to be mapped to human

understandable concepts and relational information [125],

[126], be it, due to a difference between the digital world and

mentalmodels or due to high levels of abstraction in opaque

models (such as the property of translation invariance in

CNNs with large amounts of layers [127], [128]).

Furthermore, combining several methods requires a

major integration effort and thus collaboration between

experts from different (technical and non-technical) fields,

which may not always be feasible.

While all the mentioned methods have already been

evaluated with respect to their utility, either in technical

experiments or human studies, an evaluation of the whole

integrative XAI model has been, so far, conducted just par-

tially for the combination of concept-based and relational

explanations as a foundation tomultimodal explanations in

the complex knowledge domain of ornithology [30].

There are some aspects that remain as general chal-

lenges and are therefore a limitation of the current imple-

mentation of the integrative XAI framework. For example,

emphasizing on the importance of explicating reasoning

behind explanation generation may be a first step towards

more global explanation methods rather than focusing on

symbols and concept relevance, which was found to not

correspond to abstract reasoning itself [129].

Explanations derived from multiple explainers for the

same underlying model may suffer from the Rashomon

effect as do different models applied to the same data [130],

meaning that explainers may produce differing explana-

tions for which it may be hard to decide, which of them is

faithful to the underlying model. Ablation studies as pre-

sented in this work may be a first step toward measuring

the Rashomon effect with the help of performance drops for

suppressed concepts stemming from relevant explanations

and consistency in performance for the suppression of con-

cepts from irrelevant explanations.

7 Conclusions

This article introduced Explainable Artificial Intelligence

(XAI) as a field contributing to trustworthy AI, in particu-

lar by fostering explainability, interpretability, interactivity

and robustness. It presented important XAI concepts and

methods and provided examples for their application in

digital healthcare. As the core contribution, an integrative

XAI framework was proposed, combining complementary

XAI methods, human-AI interaction and suitable evaluation

techniques to address the four mentioned trustworthy AI

dimensions. This article showcased the implementation of

individual framework constituents with the help of differ-

ent XAI methods and justified their suitability based on

findings from experiments conducted in realistic and real-

world applications in digital healthcare. This work empha-

sized the importance of integrative XAI frameworks for

complex knowledge domains and for human-centered eval-

uation of AI models. It further discussed drivers of trust-

worthy AI with respect to (1) interdisciplinary collabora-

tion among AI developers, practitioners and cognitive scien-

tists for more human-centered integrative XAI frameworks,
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(2) combined logical reasoning for integrative XAI frame-

works that support knowledge discovery, confirmation and

generalization through abductive, deductive and induc-

tive approaches to explanation, (3) rigorous AI evaluation

toward optimizing such integrative XAI frameworks with

respect to application-grounded, functional and human-

centered requirements.

This article has introduced the fundamental terminol-

ogy and key components necessary for defining and imple-

menting integrative XAI frameworks. By illustrating poten-

tial applications and discussing the architectural realization

of such a framework, I have demonstrated how various XAI

methods can be systematically combined to enhance inter-

pretability, explainability, interactivity, and robustness in

trustworthy AI systems. Furthermore, the interdisciplinary

nature of the proposed approach highlights the importance

of collaboration across domains to ensure the develop-

ment of trustworthy AI solutions that are both technically

sound, human-centered and aligned with socio-technical

requirements.

In comparison to specialized XAI methods, the inte-

grative framework presented in this work offers a more

holistic approach to trustworthy AI, addressing multiple

dimensions as presented in my synthesis. In particular,

it was stressed that integrative XAI frameworks heav-

ily rely on explainable approaches, neuro-symbolic AI

and human-centered evaluation. Several drivers for inte-

grative frameworks were identified, particularly regard-

ing the (1) interdisciplinary collaboration and the socio-

technical implications of trustworthy AI in real-world

deployment, (2) the implementation of a full reasoning

lifecycle that supports discovery, confirmation of exist-

ing knowledge as well as generalization of models and

explanations across different tasks and (3) the rigorous

evaluation of AI ensuring that integrative XAI frame-

works are adaptable to and useful in diverse application

domains.

Adopting and extending the proposed integrative XAI

framework to overcome limitations in concept extraction,

integration effort, high-level evaluation and the Rashomon

effect could pave theway to tackle remaining challenges and

to provide truly trustworthy AI.
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