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Abstract: Reliable process models are a valuable asset in
polymer extrusion to reduce downtimes and rejects, to
improve process efficiency, and to accelerate the develop-
ment of new screw designs. With ongoing progress in
computational capabilities, increasing attention is paid to
modeling techniques that infer predictions directly from the
process data. Out of these, symbolic regression is an attrac-
tive option for process engineers, since it provides infor-
mation as ready-to-use analyticalmathematical expressions.
However, extensive workload for data curation and model
generation impedes obtaining regression models of high
precision and general validity. In polymer extrusion, inte-
grating domain knowledge into the regression data is
already known to support the search for accurate prediction
models. To assess this benefit systematically and quantita-
tively, we developed symbolic regression models for the
pumping characteristics of single-screw extruders from
three-dimensional fluid dynamics simulations, including
different modules of domain knowledge at data pre-
processing: Initially, models are created (i) using theory of
similarity only, followed by models that further (ii) accept
derived physical parameters as additional input features,
(iii) combine additional input features with logarithmic
scaling, and (iv) correct a theoretical approximation equa-
tion. For each case of data preprocessing, the regression
models are evaluated in terms of their interpolation and
extrapolation capabilities, their structural complexities, and
their required training times. This study demonstrates that

symbolic regression is most efficient on the original
dimensionless data if nonlinear trends in dimensionless
space remain below second order or within one decade.
Once stronger nonlinearities occur, however, capturing
these nonlinearities with prior theoretical approximations
substantially enhances extrapolation capability and
computational efficiency, albeit at the price of largermodels.
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Nomenclature

Symbol Parameter
cos cosine function
D inner barrel diameter
e axial flight width
ETT expected training time
exp natural exponential function
h channel depth
h/wb channel aspect ratio
K power-law consistency
L screw (segment) length
ln natural logarithm
ṁ mass flow rate
MAE mean absolute error
n power-law index
Nruns number of runs (symbolic regressions)
Ndisc number of discarded models
R2 coefficient of determination
sin sine function
t screw pitch
TT training time
wb outer channel width
γ̇ shear rate
η shear viscosity
ΔΠV dimensionless flow rate residual
Πp dimensionless down-channel pressure gradient
ΠV dimensionless flow rate
Π i( )
V , pred predicted dimensionless flow rate for design point i

ΠV,scaled scaled dimensionless flow rate
Π i( )
V , sim simulated dimensionless flow rate for design point i

φb outer pitch angle
√ square root
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1 Introduction

Extrusion is a key manufacturing process for the plastics,
food, and pharmaceutical industries, being involved in at
least one processing step along the value chain. Steadily
growing demands on productivity, product quality and
process efficiency fuel the need for mathematical models
that predict extruder performance fast and reliably. Yet this
performance is influenced by multiple complex and inter-
linked physical phenomena, which are difficult to capture
altogether by purely analytical or numerical approaches. In
the era of “big data” and continuous progress in computa-
tional power, data-basedmodeling techniques can overcome
this challenge (Roland et al. 2022).

In the recent two decades, several data-based ap-
proaches have been applied to describe extrusion processes,
including support vector machines (Chitralekha and Shah
2010), decision trees (Ronowicz et al. 2015), and artificial
neural networks (Kowalski et al. 2021). Polychronopoulos
et al. (2025) assessed the capabilities of these machine
learning algorithms for predicting the process performance
of single-screw extruders. Despite their high predictive po-
tential, all these approaches are “blackboxes” with little
insight into their internal behavior. Lack of transparency
and interpretability may discourage the adoption of such
black-box algorithms for extrusion engineering, where un-
derstanding the relations between design and process vari-
ables is important. Increasing and ongoing efforts are taken
to gain more insight into the reasoning of classical machine
learning algorithms. Examples are permutation feature
importance, function decomposition, partial dependency
plots, penalizing large structures of tree-based models, or
testing neural networks on abstract concepts (Molnar 2020;
Rudin et al. 2022).

Another attractive alternative is given by symbolic
regression, as it provides interpretable analytical mathe-
matical expressions to relate decision variables (Makke and
Chawla 2024; Roland et al. 2021). Unlike traditional regres-
sion procedures, symbolic regression optimizes model
structure and coefficients simultaneously, usually by
means of genetic algorithms. This high flexibility allows for
nonlinear and coupled effects to be captured even beyond
the dataspace provided for model creation (Roland et al.
2021) without the need to know the underlying functional
relationships a priori. The expressive power of symbolic
regression is increasingly acknowledged in various scien-
tific disciplines, such as materials science (Versino et al.
2017), earth science (Li et al. 2024), astronomy (Matchev et
al. 2022), medicine (La Cava et al. 2023), and process engi-
neering (Scheffold et al. 2021). In the field of polymer

processing, symbolic regression has been successfully
employed for modeling single-screw (Herzog et al. 2024)
and twin-screw extruders (Stritzinger et al. 2023), melt
filtration units (Pachner et al. 2021), multilayer die flow
(Hammer et al. 2021), and shaping of corrugated pipes
(Albrecht et al. 2022).

Without supporting information, however, symbolic
regression tends to propose unphysical solutions, since
model accuracy is optimized based on a finite set of
elementary functions and training samples only. In general,
such solutions will lead to poor predictions for unseen cases,
especially in sparsely sampled subspaces and in the
extrapolation regime. Simultaneously, genetic algorithms
for symbolic regressions are computationally very expen-
sive (Roland et al. 2021), while symbolic regressions based on
neural networks can handle only a limited library of ex-
pressions (Makke and Chawla 2024). Hence, a sufficiently
generalizable model can only be obtained at the price of
laborious data collection and training, with possibly multi-
ple rejections of useless models.

To compensate for the weaknesses of symbolic
regression, several strategies have been devised to inte-
grate domain knowledge into the model development
process. One option involves considering shape constraints
on the model functions, such as monotonicity, during
model selection within the regression algorithm. These
constraints can be strictly enforced, as investigated by
Kronberger et al. (2022), or balanced against prediction
accuracy, as proposed by Kubalík et al. (2020). As the con-
straints can be evaluated only approximately on a discrete
number of samples, however, no supporting information
for extrapolation is available, and dense data coveragewith
considerable computational overhead is required to mini-
mize the portion of poorly interpolating models. Alterna-
tively, domain knowledge can be provided to the regression
algorithm at the stage of data preprocessing: Versino et al.
(2017) introduced user-defined input features and artificial
sample points from known solutions, while Zhou et al.
(2023) combined user-defined features with logarithmic
scaling of the targets. For single-screw extrusion modeling,
Marschik et al. (2023) and Herzog et al. (2024) determined
residuals of the target quantities with respect to theoretical
approximations, and employed a classical genetic pro-
gramming scheme to fit a symbolic expression to the re-
siduals. All these data preprocessing strategies have proven
to yield generallymore accuratemodels across an extended
design space. However, a comprehensive cost-benefit
analysis of knowledge-based data preprocessing on sym-
bolic regression modeling has not been performed to date,
which compares and quantifies the impact of different
knowledge modules.
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This paper provides information on the numerical and
statistical significance of domain knowledge for symbolic
regression, taking simulated pressure-throughput charac-
teristics for metering channels in single-screw extruders as
use case. The main objective is to quantify the added value
of knowledge-based data-preprocessing on both the ob-
tained extrusion models and the model development pro-
cess. Adding to the high cost-saving potential of generalized
analytical equations compared to full-scale numerical
simulations or experiments, the gained insights shall
remove barriers for developing and implementing sym-
bolic regression models for real-world engineering tasks.
For this purpose, we start with describing the modeling
task and the database in Section 2, followed by the strate-
gies for knowledge integration and the regression analysis
in Section 3. Section 4 is dedicated to the key results of the
study. Based on these results, we finally give recommen-
dations for model developers and applicants in industry
and research.

2 Use case

This paper focuses on the melt conveying characteristics of
single-flighted screw channels for two reasons: (i) they are
practically relevant formost polymer processing operations,
and (ii) they are alreadywell studied (Campbell and Spalding
2013; Marschik et al. 2022; Rauwendaal 2014). These melt
conveying characteristics link the local melt flow rate to the
down-channel pressure gradient and serve as surrogate
models for a segmented calculation of extruder perfor-
mance, offering a quick alternative to full-scale three-
dimensional simulations. For a given operating point,
these models already allow conclusions on the standalone

behavior of the melt conveying zone. The actual operating
conditions in this zone, however, are affected by the
conveying performance of the upstream zones, as well as by
the flow resistance of the downstream shaping die. As most
extruders are fed with solidmaterial, at least four additional
sub-processes need to be modeled alongside melt conveying
to assess global extruder performance – (i) solids conveying,
(ii) mixed-phase conveying, (iii) plastication, and (iv)
die flow.

For deriving functional expressions for the melt
conveying characteristics, symbolic regression is embedded
in a hybrid modeling approach that combines analytical,
numerical, and data-driven techniques, as illustrated in
Figure 1: Initially, the extrusion process is analytically
described as a mathematical problem of reasonable
complexity, defining inputs and targets for themodels and the
governing equations behind the relevant physical phenom-
ena. Next, the governing equations are solved numerically in
an extensive parametric study to generate a representative
database for all extrusion setups of interest. Finally, the nu-
merical data points are approximated by continuous func-
tions that can be implemented in extruder calculation
routines, leveraging the expressive power of symbolic
regression. Within this framework, domain knowledge is
provided to the symbolic regression at two stages: (i) during
the analytical problem formulation using theory of similarity,
and (ii) optionally during data preprocessing. The hybrid
modeling approach is applicable to any natural process or
system that is fully described by continuous numerical data. It
has been successfully employed to predict other polymer
processing operations such as twin-screw extrusion, coex-
trusion die flow, and shaping of corrugated pipes. More
detailed information on the hybrid modeling approach is
given by Roland et al. (2022).

Figure 1: Hybrid modeling approach to derive
generalized expressions for melt conveying
characteristics in single-screw extruders. All
steps that integrate domain knowledge in this
study are highlighted in yellow.
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2.1 Problem description

Applying domain knowledge to preprocess data on the use
case investigated requires familiarity with the underlying
physical principles. Figure 2 schematically illustrates the
basic configuration of the melt conveying process in single-
screw extruders: A helical screw segment with channel
depth h, pitch t and axial flight width e is turning at angular
speed ω inside a cylindrical barrel with inner diameter D.
From these variables, the outer pitch angle φb, outer channel
width wb, and relative screw velocity vb at the barrel
perimeter can be computed as

φb = arctan
t

Dπ
( ) (1)

wb = t − e( ) cos φb (2)

vb = D
2
ω (3)

While rotating, the active flight flank pushes the molten
polymer forward at a certainmass flow rate ṁ. The net mass
flow rate results from two combined effects: (i) the viscous
drag exerted by the stationary barrel wall, and (ii) the
pressure difference p2-p1 along the screw segment. The
extent and interplay of these two effects are again subject to
multiple interlinked influences related to screw channel
structure, polymer melt properties, and operating
conditions.

A full consideration of all influencing factors on the flow
would create a high-dimensional design space. Since the
required number of design points for good approximation
models grows exponentially with the number of factors, the
effort for both data generation and model creation quickly
becomes unaffordable. Furthermore, the resulting regres-
sion model, if achievable, would be too complex for an effi-
cient implementation in an extrusion calculation. For
reasons of practical utility, the regression models are based

on a (reasonably) simplified physical representation of the
melt conveying process: The flow is assumed to be steady,
isothermal and fully developed, with inertia and gravity
effects being neglected. Furthermore, the clearance between
the barrel and flight tip is ignored. The polymer melt is
treated as an incompressible, inelastic, and wall-adhering
fluid, and its shear thinning nature is considered by a power-
law model that relates shear viscosity η and shear rate
magnitude γ̇ according to:

η γ̇( ) = K γ̇n−1 (4)

Both the isothermal hypothesis and the omitted flight
clearance do not match real extrusion processes and hence
deserve further discussion. Indeed, as polymer melts are
highly viscous and thermally insulating, pronounced tem-
perature gradientsmay arise in the screw channel that affect
the pumping capability via the temperature-dependent
polymer properties. Moreover, the leakage across the
screw flights notably diminishes the flow rate in pressure-
generating zones and enhances the flow rate for strongly
overridden zones.When relating thematerial properties to a
mass-flow weighted mean temperature, however, trans-
verse temperature gradients play a minor role, as convec-
tion is the main source of heat transfer in polymer extrusion
(Potente et al. 2005). Down-channel temperature variations
can be considered by subdividing the metering zone into
sufficiently short segments with locally evaluated material
properties (Roland et al. 2020). Two approaches are available
to include the contribution of the leakage flow: (i) applying
analytical correction factors on the linearized melt
conveying characteristics (Tadmor and Klein 1970), or (ii)
modeling the melt conveying zone as network of inter-
connected flow passages (Marschik et al. 2018). The
remaining assumptions are justified for the majority of
single-screw extrusion processes. More detailed information
and a discussion on the physical modeling can be found in
Marschik and Roland (2023b) and Herzog et al. (2024).

For developing the regression models, the governing
equations of viscous fluid flow are further converted into
dimensionless form using the theory of similarity. This
procedure already integrates domain knowledge into the
regression analysis by identifying the independent influ-
encing parameters on the flow. In the language of machine
learning, theory of similarity thus serves as a tool for feature
selection. The major advantages are a reduced dimension-
ality of the data space, more uniform ranges of values for the
variables, and more general models that cover similar pro-
cesses at different scales. For the melt-conveying problem
under consideration, the five independent influencing pa-
rameters (features) are according to Herzog et al. (2024):

Figure 2: Basic configuration for the melt conveying process in a single-
screw extruder.
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– the channel depth ratio h/D,
– the screw pitch ratio t/D,
– the axial flight width ratio e/D,
– the power-law index n,
– and the dimensionless down-channel pressure gradient

Πp = p2 − p1( )hn+1 sin φb

K vb cos φb( )n L (5)

with p1 and p2 denoting the respective average pressures at
the inlet and outlet of the screw segment according to
Figure 2. This process parameter relates the pressure dif-
ference along the channel to the viscous stress under simple
shear flow.

The target variable to be predicted is the dimensionless
flow rate ΠV of the extruder, which is the ratio of the
observed mass throughput ṁ to the ideal drag flow rate at a
constant polymer melt density ρ:

ΠV = 2 ṁ
ρwb h vb cos φb

(6)

2.2 Database

The database for this study consists of 21,069 numerical
simulation results from Herzog et al. (2024) for the dimen-
sionless flow rate ΠV through metering screws with a fixed
axial flight width ratio e/D = 0.1. The results for each design
point were computed using the finite-volume method within
the commercial software package ANSYS Fluent, version
2022R2 (Ansys Inc. 2022). A representative dimensional setup
of D = 50mm, K = 500 Pa sn and vb cos φb = 1m/s was specified
to calculate the required input parameters for the solver using
Equations (3)–(5) and to convert the obtained volumetric flow
rate into dimensionless form using Equation (6). The simula-
tions were performed in a rotating reference frame attached
to the screw segment and with periodic boundary conditions
at the open ends. On the mathematical level, a coupled solver
with second-order interpolation was employed alongside a
uniform hexahedral grid. Convergence was checked by
tracking the standard deviation of the volumetric flow rate
within the latest iterations. For details on the numerical so-
lution process, the reader is referred to Herzog et al. (2024).

For an unbiased evaluation of the models, this database
was partitioned into disjoint subsets for (i) model creation
(training), (ii) interpolation, and (iii) extrapolation. The dis-
tribution of values in the respective datasets is highlighted in
Figure 3. All datasets have fixed levels assigned to h/D, t/D and
n, while the values for Πp were sampled continuously. For
training and interpolation, an identical subspace was chosen
that covers most conventional extrusion processes. The

vertices of this subspace were exclusively reserved for
training, while the remaining design points within the sub-
space were randomly assigned to the training and interpo-
lation datasets. As a result, the data points for training and
interpolation are almost evenly spreadwithin their sub-range
(the sharp peaks are related to the fixed levels for h/D, t/D and
n). The extrapolation set spans the complete value range of the
simulations outside the subspace for training and contains
design points for high-performance extrusion. Though
leaning towards higher h/D, smaller n and larger negative Πp,
the levels of the interpolation range are still significantly
represented and well-balanced in the extrapolation set
(i.e., extrapolation is considered equally along all parameter
axes). Moreover, the transition between the interpolation and
extrapolation region is seamless in all dimensions. The sizes
and value ranges of the datasets are additionally listed in
Table 1. Although the polymer melt never flows backwards in
the screw channel, samples with slightly negative flow rates
(−0.1 < ΠV < 0) were intentionally considered in this study to
support the approximation of the dam-up pressure.

To reveal inherent patterns in the data, Figure 4 high-
lights the dimensionless pressure-throughput relationship
for two distinct extruder screw designs and various polymer
melts. Two striking trends are evident: The dimensionless
flow rate (i) monotonically decreases with the dimensionless
down-channel pressure gradient Πp, and (ii) the character-
istics become steeper and increasingly nonlinear at lower
power-law indices n. For the lowest power-law index of 0.2,
the dimensionless flow rate becomes highly sensitive on Πp,
attaining values one decade above the more common range
for interpolation (Table 1). As all simulations have been
properly executed and are fully converged, these excep-
tional data points must be considered valid. For the limiting
case of a flat and infinitely wide channel, Roland et al. (2019)
also validated this behavior with an analytical approxima-
tion solution. This approximation solution follows a pro-
gressive power law in the limit of large Πp. A generally
applicable regression model for single-screw extrusion
should capture this asymptotic behavior and, simulta-
neously, closely predict more common extrusion settings.
Mathematically speaking, a both well-interpolating and
reasonably extrapolating model is required.

3 Methodology

3.1 Data preprocessing: integration of
domain knowledge

The inspection of the database leads to two key observations:
First, the dimensionless flow rate is primarily and
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monotonically influenced by the dimensionless down-
channel pressure gradient, which grows progressively at
lower power-law indices. Second, strongly negative dimen-
sionless pressure gradients combined with low power-law
indices cause dimensionless flow rates up to one decade
above the common range. Based on domain knowledge about
the extrusion process, both observations can be explained by
pressure-driven flow of shear-thinning fluids (Roland et al.

2019). When contributing this knowledge to symbolic regres-
sion,we expect pumpingmodels of improved general validity,
which capture the extrapolated exceptional flow rate regime
more realistically without compromising prediction accuracy
for the interpolated common flow rates. To assess the added
value of this contribution, four separate regressions were
performed that integrated different modules of domain
knowledge at the stage of data preprocessing:

Figure 3: Distribution of values in the datasets for training (yellow), interpolation (green) and extrapolation (blue). The density plots along the diagonal
show the relative frequency of values for each independent influencing parameter. The off-diagonal scatter plots indicate the pair-wise distribution of the
parameter values.
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– Case 1 – The original (dimensionless) data is considered
without any further domain knowledge:

ΠV = ΠV
h
D
,
t
D
, n,Πp( ) (7)

This case serves as a baseline to which the outcomes for
the other cases are referred.

– Case 2 – Three dependent input features are added that
are known to characterize pure pressure flow:

ΠV = ΠV
h
D
,
t
D
, n,Πp ;

h
wb

,
1
n
, Πp
⃒⃒⃒⃒ ⃒⃒⃒⃒1/n( ) (8)

The parameter h/wb represents the aspect ratio of the
unwound screw channel and describes the rate-limiting
effect of the screw flights. It is uniquely defined from the
other geometrical quantities as

h
wb

= h
D

̅̅̅̅̅̅̅̅̅̅
π2 + t/D( )2√
t/D − e/D( )π (9)

– Case 3 – The dimensionless flow rates are scaled by a
binary logarithmic function to

ΠV , scaled = log2 ΠV
h
D
,
t
D
, n,Πp ;

h
wb

( ) + 1[ ], (10)

considering the channel aspect ratio as only dependent
feature. This transformation substantially reduces the
absolute differences between the dimensionless flow
rates in the datasets, while the important reference
cases ofΠV = 0 (no output) andΠV = 1 (simple shear flow)
are unaffected. Furthermore, the monotonic relation-
ship between ΠV and Πp is retained.

– Case 4 – The dimensionless flow rates are shifted by a
theoretical approximation equation ΠV,app proposed by
Marschik and Roland (2023a), given as linear super-
position of unidirectional drag and pressure flow in
rectangular ducts,

ΠV , app n,Πp ;
h
wb

( ) = …… fd
h
wb

, n( )
− fp

h
wb

, n( ) sgn Πp( ) 31/n n
2n + 1

Πp
⃒⃒⃒⃒ ⃒⃒⃒⃒1/n

(11)

with correction factors fd and fp that describe the flow
retardation by the screw flights. The regression analysis
is performed on the residual values

ΔΠV
h
D
,
t
D
, n,Πp ;

h
wb

( ) = …… ΠV
h
D
,
t
D
, n,Πp ;

h
wb

( )
− ΠV , app n,Πp ;

h
wb

( ) (12)

which correct the theoretical approximation by
(initially uncaptured) three-dimensional and coupled
effects on the flow.

3.2 Regression analysis and evaluation

Next, symbolic regression was performed on each pre-
processed database to develop generalized analytical model

Table : Composition of the individual datasets.

Dataset: Train Interpolation Extrapolation

Design points , , ,
h/D range [.; .] [.; .] [.; .]
t/D range [.; .] [.; .] [.; .]
n range [.; ] [.; ] [.; ]
Πp range [−.; .] [−.; .] [−.; .]
ΠV range [−.; ] [−.; ] [−.; ]

Figure 4: Exemplary dimensionless pressure-throughput characteristics for a conventional metering zone (a) and a high-performance screw design
(b) for a wide range of power-law indices of the polymermelt. The boundary of the interpolation region is highlighted by the black dashed lines in (a). The
curves only serve to better visualize the trends and do not represent a model fit.
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equations. For this purpose, an Offspring Selection Genetic
Algorithm (OSGA) was applied within the open-source soft-
ware HeuristicLab, version 3.3.16 (Wagner et al., 2014). This
computational scheme tries to optimize model accuracy
heuristically by mimicking mechanisms of natural evolu-
tion, as illustrated in Figure 5: Starting from a small initial
population of simple models, certain model pairs are
selected as “parents” and recombined by crossover opera-
tions, yielding offspring models of different nature. These
offspring models are subject to random mutation, and then
selected to replace some of the former models with a certain
probability depending on their coefficient of determination
(Kronberger et al., 2025):

R2 = 1 −∑i Π
i( )
V , pred − Π i( )

V , sim( )2
∑i Π

i( )
V , sim − ΠV , sim( )2 (13)

This procedure was repeated for at most 50 generations,
and the best model from the final population was returned
as result. Within the OSGA algorithm, each symbolic
expression is represented as a parse tree (Figure 6), the
length of which is given by the number of symbols (“nodes”)
and whose depth is defined by the highest level of nesting
(“longest branch”).

The settings for the symbolic regression are summa-
rized in Table 2. As an extensive hyperparameter optimiza-
tion would have been unaffordable, these settings were
chosen based on common choices and educated guesses. To

avoid unnecessarily complex models, the tree length and
depth were both limited to a maximum value of 100, and the
mathematical building blocks were restricted to the most
common expressions in fluid dynamics theory. Further-
more, within the special functions, only sums and products
of constants and variables were allowed as arguments.
However, the limits for the tree length and depth are located
generously high, favoring sophisticated models that capture
the complex feature interactions in a three-dimensional
curved channelflow. Amutation rate of 25 %was expected to
yield quick improvements at the early stage of genetic pro-
gramming, while preservingmost high-qualitymodels at the
final stage. By allocating an extreme value of 100 for the
maximum selection pressure, the evolutionary algorithm
was exploited as long as possible, avoiding premature
termination at the price of model quality.

Since the algorithm contains random operations at
several stages, even identical settings will yield models of
different structure and quality. Thus, 36 runs were per-
formed for each case to account for the statistical variations
of the final models, using four desktop computers with 9
cores at 2.16 GHz clock frequency and 31.8 GB of RAM. The
following properties of the regression models were
evaluated:
– the coefficient of determination R2 on all datasets,
– the mean absolute error MAE = Π i( )

V, pred − Π i( )
V , sim

⃒⃒⃒⃒⃒ ⃒⃒⃒⃒⃒
on all

datasets,
– the required training time,

Figure 5: Flowchart of the genetic algorithm (adapted from Roland et al.
2021).

Table : Settings for the genetic algorithm.

Max. tree length 

Max. tree depth 

Constants All real numbers
Variables All input features
Basic operations +, *, /, 
Special functions without nesting √, exp, ln, sin, cos
Population size ,
Crossover Subtree swapping (% probability)
Mutation rate %
Max. selection pressure 

Max. generations 

Figure 6: Example of a symbolic expression tree.
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– model length and depth as measures of structural
complexity.

The raw models were subsequently refined by an iterative
pruning procedure in HeuristicLab to yield simpler ex-
pressions of similar prediction quality. During this process,
redundant tree nodes were replaced with constants and the
constants of the new model structure were optimized. Both
steps were executed alternately for a maximum of 10 cycles
until the model structure remained intact. In all cases, the
coefficient of determination on the training set was virtually
preserved, changing only beyond the sixth decimal digit.

Prior to the statistical evaluation, models with disconti-
nuities or negative R2 in the extrapolation regime were dis-
carded, as those predicted physically completely implausible
trends. Suchmodels typically showedpoles fromadivision by
zero or high-amplitude oscillations from trigonometric ex-
pressions. Moreover, samples were removed if their values
were located further than three times the standard deviation
away from the group mean (which again corresponded to
exceptionally poor predictions). These two filtering steps led
to more representative distributions of the model properties.
The expected training time (ETT) for the first acceptable
model was then estimated to

ETT =
∑

Nruns

i=1
TT( )i

N runs − Ndisc
(14)

with (TT)i as training time for each individual model, Nruns

as the number of runs (36 per stage), and Ndisc as the total
number of discarded models.

The impact of domain knowledge on each model prop-
erty was finally assessed by two criteria: (i) the median
effects of each knowledge module compared to Case 1, and
(ii) the statistical significance of each effect for a confidence
level of 95 %. The corresponding p-values and confidence
intervals were obtained from a two-sided Mood’s median
test (Mood et al. 1974) within the statistical software package
Minitab 22.1 (Minitab 2024). Comparisons between medians
were preferred overmeans due to the highly variablemodel
structures evolved by the genetic algorithm, which gener-
ally led to differently broad and up. In this case, the median
is a more meaningful measure of an average model
property.

4 Results and discussion

4.1 Prediction quality – interpolation

Figure 7a and Figure 8a compare the distributions of mean
absolute errors and coefficients of determination,

respectively, for all acceptable regression models on the
interpolation dataset, as obtained for each case of data
preprocessing. In general, all cases lead to excellent inter-
polation capability, with coefficients of determination
greater than 0.9997 and mean absolute errors well below
0.01, which is in the order of≤1 %ofmost dimensionlessflow
rates. Though the additional input features yield a statisti-
cally significant improvement in interpolation quality, as
indicated by the confidence bars in Figure 7b and Figure 8b,
the degree of improvement is rather small. The close match
of the model predictions to the interpolation data can be
attributed to the good coverage of the design space in the
training dataset, which includes the boundary values of the
chosen sub-range and a balanced distribution of design
points in the interior with at least two intermediate levels
for each parameter. Furthermore, only moderate non-
linearities exist in the interpolation dataset (Figure 3, Figure
4), which can be easily handled by the symbolic regression.
Interpolation capability refers, in this study, to reliably
predicting common settings for single-screw extrusion of
polymers. As a result, if the regression models are intended
exclusively for application in this common range, domain
knowledge does not seem to bring a noteworthy benefit.

4.2 Prediction quality – extrapolation

A different picture emerges when analyzing the prediction
quality on the extrapolation dataset, as displayed in Figure 9
for the mean absolute error and Figure 10 for the coefficient
of determination. Above all, the extrapolation accuracies
are considerably lower compared to interpolation, which is
not surprising, since the extreme nonlinearities in the
extrapolation regime are not reflected in the training data
(Figure 3, Figure 4). Furthermore, the model metrics fluc-
tuate more intensely.

When comparing the quality metrics for each case of
data preprocessing, larger median effects of each knowledge
module are observed in the extrapolation regime. How-
ever, a statistically significant improvement was only
achieved in Case 4, when the theoretical approximation
equation was incorporated (Figure 9b, Figure 10b):
Combining the approximation equation with symbolic
regression models for the residuals reduced the median
mean absolute error by 0.024 (−36 %) and raised the me-
dian coefficient of determination by roughly 0.1. As shown
in Figure 9a and Figure 10a, both quality metrics also
improved for the best models in Case 4, and the corre-
sponding interquartile ranges became narrower, indi-
cating higher robustness of the regression. None of these
improvements could be observed for the other two cases.
The superior performance of Case 4 is rooted in the fixed
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Figure 7: Impact of knowledge-driven data preprocessing on the mean absolute errors (MAE) of the symbolic regression models on the interpolation
dataset: (a)MAE distribution across all acceptablemodels for each case of knowledge integration. (b) Effect on themedianMAE compared to the baseline
regression (case 1). Statistically significant effects are indicated by confidence intervals at a distance from the zero line.

Figure 8: Impact of knowledge-driven data preprocessing on the coefficients of determination (R²) of the symbolic regression models on the
interpolation dataset: (a) R² distribution across all acceptablemodels for each case of knowledge integration. (b) Effect on themedian R2 compared to the
baseline regression (case 1). Statistically significant effects are indicated by confidence intervals at a distance from the zero line.

Figure 9: Impact of knowledge-driven data preprocessing on the mean absolute errors (MAE) of the symbolic regression models on the extrapolation
dataset: (a)MAE distribution across all acceptablemodels for each case of knowledge integration. (b) Effect on themedianMAE compared to the baseline
regression (case 1). Statistically significant effects are indicated by confidence intervals at a distance from the zero line.
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structure of the theoretical approximation, which encodes
important interactions between the derived input features
as opposed to Case 2 and reflects the asymptotic power-law
behavior in contrast to Case 3. The theoretical approxima-
tion thus anticipates the main interrelations between the
dimensionless extrusion variables and helps the regression
procedure to generalize beyond the usual design space.

4.3 Prediction quality – localized accuracy

Besides a good overall prediction quality, the regression
models should also achieve consistently high accuracy
across different regions of the design space. To provide in-
formation on how the prediction accuracies vary locally,
Figure 11 highlights themean absolute errors, averaged over
all acceptable models at each stage, for different bins of the
power-law index n and the dimensionless down-channel
pressure gradient Πp.

The interpolation region for these two variables is
indicated by the thick black margin. Within this region,
where the models extrapolate only along the h/D axis, all
data preprocessing cases consistently lead to close ap-
proximations (1–5% of the target values). This can be
explained by the minor influence of the channel depth
ratio h/D on the dimensionless flow rate ΠV in absolute
terms. Hence, the training data represents the unseen
design range for h/D quite well, and the benefits of domain
knowledge are limited for these cases.

In the extrapolation regime, the prediction quality suc-
cessively deteriorates with further distance from the inter-
polation boundary, providing large errors for bins with
largest negative Πp and smallest n. These bins in the upper
left corner contain data points with large ΠV values, repre-
senting cases of dominant pressure flow, which strongly

deviate from the training samples. The additional input
features (Case 2) slightly improve the extrapolation capa-
bility for negative pressure gradients at the expense of ac-
curacy for power law indices close to 0.2, while the opposite
behavior is achieved by logarithmic scaling (Case 3). The
high errors for the combined extrapolation remain almost
unchanged in both cases. Including the theoretical approx-
imation equation (Case 4), in contrast, drastically reduces
the combined extrapolation error compared to Case 1 by a
factor of two or three, and the errors within the remaining
bins are also largely improved or maintained at low level.
This effect is clearly visible by the lowest proportion of red
color in the sub-figure. The models with the theoretical
approximation equation thus achieve a considerably better-
balanced performance on the entire design space and give
substantially more robust predictions for the least familiar
use cases.

The local error analysis further underlines the reasoning
from the statistical evaluations why the theoretical approxi-
mation proves most beneficial for extrapolation: The key
trends within the data, including the strong nonlinearities for
the extreme cases in the upper left corner, are already rep-
resented in the approximation. As the regression algorithm
no longer needs to infer these major trends but merely cor-
rects the approximation for smaller influences on single-
screw extrusion, there is an increased likelihood for models
that capture the most important trends and thus provide a
better overall explanation of the extrusion process.

4.4 Procedural efficiency and robustness

For a consistent usability of domain knowledge integration
in symbolic regression analyses, the gain in accuracy should
be achieved consistently within an acceptable processing

Figure 10: Impact of knowledge-driven data preprocessing on the coefficients of determination (R²) of the symbolic regression models on the
extrapolation dataset: (a) R² distribution across all acceptablemodels for each case of knowledge integration. (b) Effect on themedian R2 compared to the
baseline regression (case 1). Statistically significant effects are indicated by confidence intervals at a distance from the zero line.
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time. As an indicator for the efficiency of the data-based
modeling, Figure 12a plots the achieved R2 on the extrapo-
lation dataset over the time for training the models. The
ideal scenario is represented by the upper left corner of the
figure – high yield in low time. Moreover, persistent high
yields at low scattering indicate robustness.

The scatter plot reveals that Case 2 occasionally yields
models of higher quality but may also produce some low-
quality instances or prolong the time for model creation.
Consequently, the impact of the additional input features is
highly sensitive with respect to the fluctuations in the
regression algorithm. For Case 3, no clear improvement is

Figure 11: Heatmap of the model-averaged mean absolute error (MAE) for each level of n and sub-intervals for Πp, considering different cases of
integrated domain knowledge. Poorer predictions are highlighted by higher numbers and a transition in background color from green to red. The thick
black margin indicates the interpolation region for these two variables.

Figure 12: Computational efficiency of the symbolic regression for each case of domain knowledge integration: (a) Scatter plot of training times and
coefficients of determination for each individual model and (b) bar chart showing the expected training times and fractions of discarded models for
each case.
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evident either. Case 4, in contrast, consistently improves
model quality at a similar distribution of training times:
Almost all data points (light blue rhomboids) are clustered
above those for Case 1 (dark blue circles). This again highlights
the contribution of the theoretical approximation to an
overall superior and more robust extrapolation capability.

The benefits of Case 4 become even more evident when
factoring in the fraction of discarded models, as shown in
Figure 12b: Both the number of bad-quality models and the
expected training time are lowest if the theoretical approxi-
mation equation is included. Cases 2 and 3 even complicate
the regression procedure compared to Case 1 by proposing
more unrealistic solutions. Consequently, additional compu-
tational resources and longer expected training times are
required for satisfactory model quality in those cases. With
the theoretical approximation equation (Case 4), however,
unrealistic solutions become less likely, making the regres-
sion analysis more robust and efficient.

4.5 Structural complexity

If critical decisions are to be inferred frommodel predictions,
especially for industrial design or troubleshooting, too com-
plex models may become impractical as they are hard to
interpret. Each step of knowledge integration, in principle,
adds a certain complexity to the total model. Concerning the
practical utility of knowledge-based symbolic regression, the
resulting complexity increase needs to be addressed along-
side improvements in prediction quality.

To assess the added complexity of domain knowledge
into the regression models, Figure 13 compares the
expression tree lengths of the complete models for each
case. It is striking that the median tree length increases by
more than a factor of two when the theoretical

approximation equation (Case 4) is applied to the data. This
results from the high added complexity of the approxima-
tion equation itself, combined with the tendency of the
OSGA to develop equally complex models for the residuals
as for the complete target. Applying NSGA-II as an alter-
native algorithm would favor more simplistic models for
the residuals; the sacrificed accuracy, however, turned out
to be inacceptable in preliminary test runs. For the other
cases, the tree lengths settled close to the upper limit of 100
for the regression, with similar medians and distributions.
Hence, as expected, none of the integrated knowledge
modules investigated guided the regression algorithm to-
wards shorter models.

The tree depth, as shown in Figure 14a, is similar for all
cases. Notably, no knowledge module attained a statistically
significant effect (Figure 14b), which may appear counter-
intuitive at first glance. This is because Case 3 methodically
introduced two supplementary levels of nesting through the
exponential back-transformation, and Case 4 nearly doubled
the total model size. However, as the complexity bias in Case
3 is only slight, it is obscured by the statistical variation of the
algorithm. For Case 4, the theoretical approximation equa-
tion is generally less deep than the residual expression.
Hence, the added length of the former does not inflate the
total expression tree in depth.

In general, with more sophisticated data preprocessing,
larger models will be obtained on average. If the respective
preprocessing operations are sufficiently simple, however,
the increase in complexity remains marginal compared to
the inherent fluctuation of the algorithm. This is not the case
for the theoretical approximation equation, where a double
model sizemust be accepted for improved generalization. To
increase the attractiveness of knowledge-based symbolic
regression for polymer extrusion, lower tree length limits
should be considered for the residual term in further studies.

Figure 13: Impact of knowledge-driven data preprocessing on the expression tree lengths of the symbolic regressionmodels: (a) Tree length distribution
across all acceptable models for each case of knowledge integration. (b) Effect on the median tree length compared to the baseline regression (case 1).
Statistically significant effects are indicated by confidence intervals at a distance from the zero line.
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Although model depth and length omit certain aspects of
model complexity, such as order and frequency of mathe-
matical operations, these two measures already allow a
conclusive assessment of the knowledge integration strate-
gies investigated.

A visual impression of typical model structures is given
in the appendix of this paper, showing the mathematical
expressions of the best models for each case of integrated
knowledge. The rating of the models was based on the co-
efficient of determination on the combined interpolation
and extrapolation data, favoring shorter expressions in case
of a tie. Each model consists of a main equation with 9–12
operators and 9–12 subfunctions that accept 35–55 co-
efficients in total, depending on the case. In any case, each
input feature appears at least five times in the model equa-
tion, enters at least one nonlinear function, and feature
interactions are considered up to third order. This largely
explains the excellent interpolation capability of the
regression models (Figure 8). At the same time, operators of
constrained validity (e.g., divisions) are rare and well-
conditioned, leading to reasonable extrapolation behavior
(Figure 10). Admittedly, the model structures are generally
highly sophisticated, and the parameter impacts are not
clearly evident from the symbolic expressions alone. Due
to the limitations explained in Section 2.1, however, the
regression models in this study are not intended for stand-
alone application; they rather serve as fast-computing sub-
models in a superordinate extrusion calculation. In this
setting, perfectly interpretable equations are of secondary
importance, as engineering decisions will be based on nu-
merical results from the global analysis. Although lower
complexity limits are worth considering for further
modeling efforts, theymust be definedwith caution to retain
the predictive potential of the symbolic regression.

5 Conclusions

This study was intended to quantify the impact of domain
knowledge integration on symbolic regression modeling of
single-screw extrusion processes. The chosen database
comprised more than 10,000 simulated design points for the
dimensionless pumping characteristics of single-screw ex-
truders, whichwas divided into three independent subsets: a
(i) training and (ii) interpolation dataset covering common
process settings, and (iii) an extrapolation subset including
high-performance extrusion conditions. Aside from dimen-
sional analysis, the training samples were preprocessed
applying four cases of knowledge integration: (i) no further
knowledge, (ii) additional input features derived from the
independent flow parameters, (iii) logarithmic scaling of the
dimensionless flow rate with one derived feature, and (iv)
subtracting a theoretical approximation equation for uni-
directional duct flow. The transformed dimensionless flow
rate values were then approximated by symbolic regression
using genetic programming with OSGA algorithm, yielding
four sets of 36 analytical models for the dimensionless
flow rate.

Statistical analysis of the models revealed that excellent
interpolation capability was achievable in all cases, without
a significant benefit of domain knowledge. Simultaneously,
including the theoretical approximation equation led to
significantly more robust and accurate extrapolations,
especially in the region of strong nonlinearities. The theo-
retical approximation equation further reduced the ex-
pected training time for a physically reasonable model,
rendering the regression analysis more efficient. These im-
provements, however, came at the price of increased model
complexity.When deciding on a proper data-basedmodeling
strategy for engineering tasks, such as screw design or

Figure 14: Impact of knowledge-driven data preprocessing on the expression tree depths of the symbolic regressionmodels: (a) Tree depth distribution
across all acceptable models for each case of knowledge integration. (b) Effect on the median tree depth compared to the baseline regression (case 1).
Statistically significant effects are indicated by confidence intervals at a distance from the zero line.
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process troubleshooting, the added complexity of the theo-
retical approximation must be weighed against the
improved ability of the combined model to generalize.

To conclude, we recommend the following knowledge
integration strategy for symbolic regression modeling in
polymer extrusion: Initially, utilize the theory of similarity
to identify the relevant physical features and harmonize the
scales. In case of only modest nonlinearities in the dimen-
sionless dataset that are below second-order or bounded
within one decade, directly proceed with symbolic regres-
sion. If regions with more pronounced nonlinearities can be
observed, approximate these nonlinear dependencies with a
problem-related theoretical approximation, and determine
symbolic regression models for the residuals.

A suggestion for future research would be to create re-
sidual models of reduced complexity, such that the total
complexity remains similar, and to reassess the benefit of
theoretical approximations under that circumstance. This
measure could overcome the generalization-complexity
trade-off introduced by the theoretical approximation
equation. Another interesting research question concerns
the impact of synthetic data from exact solutions and prior
constraints on the function set. Both concepts represent
additional pieces of domain knowledge that are likely to
further enhance predictive power and efficiency of symbolic
regression modeling in polymer extrusion.
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Appendix: Symbolic expressions

Best model for case 1

ΠV = D0

D1
+ D2 D3 + D4( )2

+ D5 D6 + D7( )2 + D8 + D9 (A.1)

D0 = 0.1727 Πp
t
D
... ...

− 0.8839 + n + h
D

1.274 − 0.6340
t
D

( )[ ] (A.2)

D1 = n2 + 0.1545
t
D
− 0.01085 (A.3)

D2 = 0.3998
h
D

− 1.265 + t
D

( )2

− 3.834 + t
D

( ) (A.4)

D3 = 0.2685 + h
D
− 0.2475Πp − 0.5590Πp

3 − 0.1310
t
D

(A.5)

D4 = − 0.2915 h
D
n + 0.6976 Πp + 0.01243

t
D
…

… +1.003 sin 7.513 + 0.3693n − 0.1102
t
D

( ) (A.6)

D5 = −0.6802Πp (A.7)

D6 = − 1.078 + 1.005n − 0.07936Πp + 1.106
h
D
…

… − 0.1004
h
D

t
D
+ 0.1204

t
D

(A.8)
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D7 = 2.813Πp + n 0.1670 − 2.667Πp …{{
… − 0.07444

t
D
+ 0.008151

t
D

( )2}2⎫⎬⎭ (A.9)

D8 = 1.309Πp
h
D

− 0.496 + h
D

( ) (A.10)

D9 = −0.0186 + 0.3732n2 Πp − 0.4531Πp
2 (A.11)

Best model for case 2

ΠV = E0 E1 E2 + E3 + E4( )2 + E5( )2 + E6 + E7 + E8

E9
…

… + 1.314 (A.12)

E0 = − 63.10 h
wb

Πp −0.1547 + Πp
2( ) …

…
1
n2 −

2.057
n

Πp
⃒⃒⃒⃒ ⃒⃒⃒⃒1/n + 0.9898 Πp

⃒⃒⃒⃒ ⃒⃒⃒⃒2/n( ) (A.13)

E1 = − 1.764 + 2.990
h
D
+ h
wb

…{
… + 0.7073 n − 0.3628Πp}2 (A.14)

E2 = h
D
− 0.6366n − 0.05770

n
+ 1.233Πp

2 + 0.09153
t
D

(A.15)

E3 = 3.200 0.2275 + h
D
− 1.381

h
wb

+ 0.1599n( )2

(A.16)

E4 = 0.2562 + 1.804
h
D
− 0.6801 n − 0.1474Πp (A.17)

E5 = − 1.605 + 1.194
h
wb

− 0.6480n + 1.105Πp (A.18)

E6 = h
D

154.5 − 0.1736 28.55 + 0.8244
h
wb

…{{
… + n − 1.682Πp}2}

(A.19)

E7 = 9.972 0.2399 + h
D

( )Πp − 4.428 + n + 0.3029
t
D

( ) (A.20)

E8 = − 4.024 − 5.777
h
wb

− 4.721n − 0.7005 Πp
⃒⃒⃒⃒ ⃒⃒⃒⃒1/n (A.21)

E9 = 3.891 + 9.115
h
wb

+ 9.307n − 0.9769
t
D
…

… + Πp
0.5259

n
− 1.445 Πp

⃒⃒⃒⃒ ⃒⃒⃒⃒1/n + 0.4020
t
D

( ) (A.22)

Best model for case 3

ΠV = 2
F0 F1+F2+F3+F4( )2+F5+F6

F7
+0.9039 − 1 (A.23)

F0 = 0.7218Πp −1.024 + sin2 1.510n( )[ ] (A.24)

F1 = − 2.450 − 6.080
h
D
Πp − 1.729Πp

2 … …

− 0.2867
h
wb

+ 2.576
h
wb

Πp … …

+ sin2 0.9224 − 1.104 n + 2.436Πp( ) (A.25)

F2 = 0.03424
h
wb

− 1.494
h
D
+ 0.9745

h
D
n (A.26)

F3 = −1.727n + 0.5539Πp + 0.1010Πp
2 + sin2 1.162n( ) (A.27)

F4 = 0.7893 + 0.2184
t
D
− 0.03566

t
D
n − sin 0.1239

t
D

( ) (A.28)

F5 = − 5.494 + 0.6305
h
wb

+ 1.265Πp …

… − 0.4758
h
D
+ 0.4993

h
D

t
D

(A.29)

F6 = 5.259 cos −1.542Πp + 1.577nΠp( ) …

… − 1.033 sin 1.957n( ) + 1.108 sin 1.975n( ) (A.30)

F7 = 0.7320 cos2 0.3274
h
D
+ 0.1454

t
D
+ 0.8096

h
wb

…{{
⋯ + 0.3462 n + 0.03258 Πp}2}
− 2.416 + 2.110

h
D

(A.31)

Best model for case 4

ΠV = fd + fpΠV , p⏟̅̅̅̅ ⏞⏞̅̅̅̅ ⏟
ΠV , app

…

…+ G0 G1 G2 + G3( )2 + G4 + G5[ ] + G6 G7 − 0.001851⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
ΔΠV

(A.32)

fd = 1−
0.7484 h

wb
0.6474+ h

wb
+1.237 n( )

0.05060+0.2113 h
wb
+ h

wb
( )2

+2.691n+0.3728 h
wb
n

(A.33)

fp = 1+
18.38 h

wb

1−25.75 h
wb
+15.18n−2.936 1−8.652 h

wb
+26.90n

1+0.8229 h
wb

+0.1311n +0.5796n

(A.34)

ΠV ,p =−sgn Πp( )31/n n
2n+1 Πp

⃒⃒⃒⃒ ⃒⃒⃒⃒1/n (A.35)

G0 = 1.141 −0.9968+n( )…
… 1.269Πp+nΠp

2+0.04209 t
D

( ) (A.36)

G1 =−0.4153 h
wb

−0.1524 t
D
+cos2 1.264

h
D

( ) (A.37)
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G2 = h
D

2.709−4.724n( )+0.2055 t
D
…

…+0.8032cos2 1.604Πp( ) (A.38)

G3 = 0.6830−0.9832n( )2−0.5637Πp+0.1386 tD[ ]2 (A.39)

G4 = 0.6568−1.017n+ h
D

−4.538+6.123n( ) …{
…+cos2 2.295Πp( )}2 (A.40)

G5 =0.2635+1.466hD−0.2955Πp (A.41)

G6 = h
D

1.759+0.09834 −2.306Πp+Πp
2−0.1218 t

D
( ) …{

… 4.527n+ t
D

( )}
(A.42)

G7 =−0.4508hD−0.9582n+0.3115n
2−0.4407Πp …

…−0.2494 t
D
+cos2 0.5558Πp( ) (A.43)
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