Home Experimental and Theoretical Study of Polymer Melting in a Co-rotating Twin Screw Extruder
Article
Licensed
Unlicensed Requires Authentication

Experimental and Theoretical Study of Polymer Melting in a Co-rotating Twin Screw Extruder

  • B. Vergnes , G. Souveton , M. L. Delacour and A. Ainser
Published/Copyright: March 1, 2022
Become an author with De Gruyter Brill

Abstract

The flow of molten polymers in corotating twin screw extruders has been largely studied, but little attention has been paid until now to the melting process. In the present work, we develop an experimental study of melting in twin screw extruders, including pressure and temperature measurements, dead-stop experiments and sampling, observation of cross sections and quantification of solid fraction. The influences of process parameters (screw speed and feed rate), screw profile, pellets size and extruder size are also investigated. An original model of the melting process is proposed, deduced from these observations. This model allows one to calculate the evolution of mean shear rate, pressure gradient, dissipated energy, pellet radius and both solid and liquid temperatures along the screws, for a sequence of right- and left-handed screw elements and blocks of kneading discs. The results of the model are in good agreement with the experiments.


* Mail address: B. Vergnes, CEMEF, Ecole des Mines de Paris, UMR CNRS 7635 BP 207, 06904 Sophia-Antipolis Cedex, France


References

1 White, J. L.: Twin Screw Extrusion, Technology and Principles. Hanser, Munich (1990)Search in Google Scholar

2 Potente, H., Ansahl, J., Klarholtz, B.: Int. Polym. Process 1, p. 11 (1994)10.3139/217.940011Search in Google Scholar

3 Vergnes, B., Della Valle, G., Delamare, L.: Polym. Eng. Sci. 38, p. 1781 (1998)10.1002/pen.10348Search in Google Scholar

4 Tadmor, Z., Klein, I.: Engineering Principles of Plasticating Extrusion. Van Nostrand Rheinhold, New York (1970)Search in Google Scholar

5 Todd, B. D.: Int. Polym. Process 2, p. 113 (1993)10.3139/217.930113Search in Google Scholar

6 Curry, J.: SPE Antec Tech. Papers, p. 92 (1995)Search in Google Scholar

7 Chan, H. T., Dufresne D. A.: SPE Antec Tech. Papers, p. 302 (1995)Search in Google Scholar

8 Busby, F., Mc Cullough, T. W., Hugues, K. R., Kirk, R. O.: SPE Antec Tech. Papers, p. 3571 (1996)Search in Google Scholar

9 Esseghir, M., Yu, D. W., Gogos, C. G., Todd, D. B.: SPE Antec Tech. Papers, p. 3684 (1997)Search in Google Scholar

10 Gogos, C. C., Tadmor, Z., Kim, M. H.: Adv. Polym. Tech. 17, p. 285 (1998)10.1002/(SICI)1098-2329(199824)17:4<285::AID-ADV1>3.0.CO;2-NSearch in Google Scholar

11 Bawiskar, S., White, J. L.: Int. Polym. Process 2, p. 105 (1995)10.3139/217.950105Search in Google Scholar

12 Bawiskar, S., White, J. L.: Intern. Polym. Process 2, p. 131 (1997)Search in Google Scholar

13 Potente, H., Melish, U.: Int. Polym. Process 2, p. 101 (1996)10.3139/217.960101Search in Google Scholar

14 Hashimoto, N., Kakizaki, J.: JPS Technical Rev. 16, p. 48 (1994)Search in Google Scholar

15 Sakai, T.: Adv. Polym. Tech., 14, p. 277 (1995)10.1002/adv.1995.060140402Search in Google Scholar

16 Wong, A. C. Y., Zhu, F., Liu, T.: Plast. Rubber Comps. Proc. Appl. 26, p. 271 (1997)Search in Google Scholar

17 Zhu, L., Geng, X.: SPE Antec Tech. Papers, p. 3684 (1997)Search in Google Scholar

18 Vergnes B., Delacour M. L., Souveton G., Bouvier J. M.: Paper presented at the PPS 15th Annual Meeting, s'Hertogenbosh The Netherlands, June (1999)Search in Google Scholar

19 Bawiskar, S., White, J. L.: Polym. Eng. Sci. 38, p. 727 (1998)10.1002/pen.10238Search in Google Scholar

20 Huang, H. X., Peng, Y. C.: Adv. Polym. Tech. 12, p. 343 (1993)10.1002/adv.1993.060120402Search in Google Scholar

21 Zhu, L., Nanh, K. A., Geng, X.: Paper presented at the PPS 17th Annual Meeting, Montreal, Canada (2001)Search in Google Scholar

22 Noé, I.: Ph. D. dissertation, Ecole des Mines de Paris Sophia-Anti-polis (1992)Search in Google Scholar

23 Rutgers, R.: Rheol. Acta 2 (1962)10.1007/BF01976051Search in Google Scholar

24 Mewis, J., Macosko, C. W., in: Rheology, Principles, Measurements, and Applications. C. W. Macosko (Ed.), Wiley, New York (1994)Search in Google Scholar

25 Carreau, P. J., De Kee, D. C. R., Chabra, R. P.: Rheology of Polymeric Systems, Principles and Applications. Hanser, Munich (1997)Search in Google Scholar

26 Krieger, I. M., Dougherty, T. J.: Trans. Soc. Rheol. 3, p. 137 (1959)10.1122/1.548848Search in Google Scholar

27 Roscoe, R., in: Flow Properties of Disperse Systems. Hermans, J. J. (Ed.), Interscience, New York (1953)Search in Google Scholar

28 Carneiro, O. S., Covas J. A., Vergnes, B.: J. Appl. Polym. Sci. 78, p. 1419 (2000)10.1002/1097-4628(20001114)78:7<1419::AID-APP130>3.0.CO;2-BSearch in Google Scholar

29 Booy, M. L.: Polym. Eng. Sci. 18, p. 973 (1978)10.1002/pen.760181212Search in Google Scholar

30 Werner, H. Dissertation, Munich University (1976)Search in Google Scholar

31 Szydlowski, W., Brzoskowski, R., White, J. L.: Int. Polym. Process 2, p. 207 (1987)10.3139/217.870207Search in Google Scholar

32 Delamare L.: Ph.D. dissertation, Ecole des Mines de Paris Sophia-Antipolis (1995)Search in Google Scholar

33 Carslaw, H. S., Jaeger, J. C.: Conduction of Heat in Solids. Clarendon Press, Oxford (1959)Search in Google Scholar

Received: 2001-08-28
Accepted: 2001-11-04
Published Online: 2022-03-01
Published in Print: 2022-03-01

© 2001 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ipp-2001-0006/html
Scroll to top button