Abstract.
This article proves a conjecture by S.-C. Liu and J. C.-C. Yeh about Catalan numbers, which states that odd Catalan numbers can take exactly distinct values modulo
, namely the values
.
Received: 2010-05-30
Revised: 2011-05-23
Accepted: 2011-08-29
Published Online: 2012-03-27
Published in Print: 2012-April
© 2012 by Walter de Gruyter Berlin Boston
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Masthead
- Odd Catalan Numbers Modulo
- Variations of the Poincaré Map
- Diophantine Equations of Matching Games I
- Norm Euclidean Quaternionic Orders
- A New Proof of Winquist's Identity
- Counting Depth Zero Patterns in Ballot Paths
- Codes Associated with and Power Moments of Kloosterman Sums
- Subprime Factorization and the Numbers of Binomial Coefficients Exactly Divided by Powers of a Prime
- Generalized Nonaveraging Integer Sequences
- The Robin Inequality for 7-Free Integers
- On 3-adic Valuations of Generalized Harmonic Numbers
Articles in the same Issue
- Masthead
- Odd Catalan Numbers Modulo
- Variations of the Poincaré Map
- Diophantine Equations of Matching Games I
- Norm Euclidean Quaternionic Orders
- A New Proof of Winquist's Identity
- Counting Depth Zero Patterns in Ballot Paths
- Codes Associated with and Power Moments of Kloosterman Sums
- Subprime Factorization and the Numbers of Binomial Coefficients Exactly Divided by Powers of a Prime
- Generalized Nonaveraging Integer Sequences
- The Robin Inequality for 7-Free Integers
- On 3-adic Valuations of Generalized Harmonic Numbers