Article
Licensed
Unlicensed
Requires Authentication
On the Iteration of a Function Related to Euler's φ-Function
-
Joshua Harrington
Published/Copyright:
November 5, 2010
Abstract
A unit x in a commutative ring R with identity is called exceptional if 1 − x is also a unit in R. For any integer n ≥ 2, define φe(n) to be the number of exceptional units in the ring of integers modulo n. Following work of Shapiro, Mills, Catlin and Noe on iterations of Euler's φ-function, we develop analogous results on iterations of the function φe, when restricted to a particular subset of the positive integers.
Received: 2009-02-23
Revised: 2010-03-29
Accepted: 2010-05-12
Published Online: 2010-11-05
Published in Print: 2010-November
© de Gruyter 2010
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Some Divisibility Properties of Binomial Coefficients and the Converse of Wolstenholme's Theorem
- On the Iteration of a Function Related to Euler's φ-Function
- An Explicit Evaluation of the Gosper Sum
- On the Frobenius Problem for {ak, ak + 1, ak + a, . . . , ak + ak−1}
- Generalizing the Combinatorics of Binomial Coefficients via -Nomials
- Finding Almost Squares V
- On Relatively Prime Subsets and Supersets
- Reformed Permutations in Mousetrap and Its Generalizations
- On Ternary Inclusion-Exclusion Polynomials
- Sums and Products of Distinct Sets and Distinct Elements in ℂ
Keywords for this article
Exceptional units;
units;
the ring of integers modulo n;
Euler's φ-function
Articles in the same Issue
- Some Divisibility Properties of Binomial Coefficients and the Converse of Wolstenholme's Theorem
- On the Iteration of a Function Related to Euler's φ-Function
- An Explicit Evaluation of the Gosper Sum
- On the Frobenius Problem for {ak, ak + 1, ak + a, . . . , ak + ak−1}
- Generalizing the Combinatorics of Binomial Coefficients via -Nomials
- Finding Almost Squares V
- On Relatively Prime Subsets and Supersets
- Reformed Permutations in Mousetrap and Its Generalizations
- On Ternary Inclusion-Exclusion Polynomials
- Sums and Products of Distinct Sets and Distinct Elements in ℂ