Home Numerical study of the energy efficiency of the building envelope containing multi-alveolar structures under Tunisian weather conditions
Article
Licensed
Unlicensed Requires Authentication

Numerical study of the energy efficiency of the building envelope containing multi-alveolar structures under Tunisian weather conditions

  • Nour Lajimi EMAIL logo , Nour Ben Taher and Noureddine Boukadida
Published/Copyright: January 12, 2022

Abstract

The study of the thermal inertia of buildings is a subject of major interest. The thermal insulation and the nature of the wall sensitively modify the inertia of the building and are the solutions to improve the energy efficiency of the envelope. The roof is well exposed to solar radiation in summer and contributes to significant losses in winter due to convective exchanges. To lead to a thermal comfort, a thermal insulation is necessary. In this context, we carry out a numerical study of the thermal behavior of a building with two zones in variable meteorological conditions for a Tunisian climate (region of Sousse) based on the thermoelectric analogy and using the nodal method as a numerical method. The object of this work is to study the effect of the thermal inertia of the roof equipped with a multi-alveolar structure on the thermal behavior of the air inside the room and on its energy consumption. Taking into account the energy input of occupant, a complete model was established to increase the accuracy of the calculations. The results show that the multi-alveolar structure placed on the outside of the roof reduces energy consumption during the winter period when the alveolar structure is placed in the conductive direction and during the summer period when the alveolar structure is placed in the insulate direction.


Corresponding author: Nour Lajimi, Ecole Nationale d’Ingénieurs de Monastir, Laboratoire de Métrologie et des Systèmes Energétiques, Université de Monastir, Rue Ibn El Jazzar, 5000 Monastir, Tunisia, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] G. Barrios, G. Huelsz, and J. Rojas, “Thermal performance of envelope wall/roofs of intermittent air-conditioned rooms,” Appl. Therm. Eng., vol. 40, pp. 1–7, 2012. https://doi.org/10.1016/j.applthermaleng.2012.01.051.Search in Google Scholar

[2] A. D. Granja and L. C. Labakiny, “Influence of external surface color on the periodic heat flow through a flat solid roof with variable thermal resistance,” Int. J. Energy Res., vol. 27, no. 8, pp. 771–779, 2003. https://doi.org/10.1002/er.915.Search in Google Scholar

[3] A. Boursas and M. zine labidine, “Etude comparative de l’impact de l’isolation thermique sur la performance énergétique des bâtiments résidentiels : Cas de la Tunisie, l’Algérie et le Maroc,” in International Conference on Green Energy and Environmental Engineering (GEEE), 2014.Search in Google Scholar

[4] N. Daouas, Z. Hassen, and H. Ben Aissia, “Analytical periodic solution for the study of thermal performance and optimum insulation thickness of building walls in Tunisia,” Appl. Therm. Eng., vol. 30, pp. 319–326, 2010. https://doi.org/10.1016/j.applthermaleng.2009.09.009.Search in Google Scholar

[5] D. V. Guittierez, “Contribution to the theoretical and experimental study of the aero thermal phenomena in parallelepiped cavities with walls thesis,” No 134, University of Poitiers, France, 1980.Search in Google Scholar

[6] N. Seki, S. Fokosako, and A. Yamagushi, “An experimental study of free convective heat transfer in a parallelogrammic enclosure,” J. Heat Transfer, vol. 105, pp. 433–439, 1983.10.1115/1.3245603Search in Google Scholar

[7] K. Cho Chung and L. M. Trefethen, “Natural convection in a vertical stack of inclined parellelogrammic cavities,” Int. J. Heat Mass Tran., vol. 25, pp. 277–2844, 1982. https://doi.org/10.1016/0017-9310(82)90013-8.Search in Google Scholar

[8] A. Bairi, “Contribution to the experimental study of parellelogrammic sections,” Thesis N° 199, University of Poitiers, France, 1984.Search in Google Scholar

[9] N. Lajimi and N. Boukadida, “Numerical study of the thermal behavior of bi-zone buildings,” Compt. Rendus Phys., vol. 16, no. 8, pp. 708–720, 2015. https://doi.org/10.1016/j.crhy.2015.08.010.Search in Google Scholar

[10] N. Sisman, E. Kahya, N. Aras, and H. Aras, “Determination of optimum insulation thickness of the external walls and roof (ceiling) for Turkey’s different degreeday regions,” Energy Pol., vol. 35, pp. 5151–5155, 2007. https://doi.org/10.1016/j.enpol.2007.04.037.Search in Google Scholar

[11] J. Yu, L. Tian, C. Yang, X. Xu, and J. Wang, “Optimum insulation thickness of residential roof with respect to solar–air degree-hours in hot summer and cold winter zone of China,” Energy Build., vol. 43, pp. 2304–2313, 2011. https://doi.org/10.1016/j.enbuild.2011.05.012.Search in Google Scholar

[12] H. Ramin, P. Hanafizadeh, and M. A. Akhavan-Behabadi, “Determination of optimum insulation thickness in different wall orientations and locations in Iran,” Adv. Build. Energy Res., vols. 1–23, 2015. https://doi.org/10.1080/17512549.2015.1079239.10.1080/17512549.2015.1079239Search in Google Scholar

[13] K. C. K. Vijaykumar, P. S. S. Srinivasan, and S. Dhandapani, “A performance of hollow tiles clay (HTC) laid reinforced cement concrete (RCC) roof for tropical summer climates,” Energy Build., vol. 39, no. 1, pp. 886–892, 2007. https://doi.org/10.1016/j.enbuild.2006.05.009.Search in Google Scholar

[14] A. L. S. Chan and T. T. Chow, “Evaluation of overall thermal transfer value (OTTV) for commercial buildings constructed with green roof,” Appl. Energy, vol. 107, pp. 10–24, 2013. https://doi.org/10.1016/j.apenergy.2013.02.010.Search in Google Scholar

[15] K. M. Al-Obaidi, M. Ismail, and A. M. Abdul Rahman, “Design and performance of a novel innovative roofing system for tropical landed houses,” Energy Convers. Manag., vol. 85, pp. 488–504, 2014. https://doi.org/10.1016/j.enconman.2014.05.101.Search in Google Scholar

[16] N. Daouas, “Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model,” Appl. Energy, vol. 117, pp. 136–148, 2016. https://doi.org/10.1016/j.apenergy.2016.05.079.Search in Google Scholar

[17] N. K. Sahar and A. Yahyah, “Upgrading the building envelope to reduce cooling loads,” Energy Build., vol. 55, pp. 389–396, 2012.10.1016/j.enbuild.2012.09.006Search in Google Scholar

[18] S. Artemisia, D. Kolokotsa, T. Tsoutsos, and I. Zacharopoulos, “Assessing the passive cooling effect of the ventilated pond protected with a reflecting layer,” Appl. Energy, vol. 123, pp. 273–280, 2014.10.1016/j.apenergy.2014.02.040Search in Google Scholar

[19] A. P. Haghighi, S. S. Golshaahi, and M. Abdinejad, “A study of vaulted roof assisted evaporative cooling channel for natural cooling of 1-floor buildings,” Sustain. Cities Soc., vol. 14, pp. 89–98, 2015. https://doi.org/10.1016/j.scs.2014.08.005.Search in Google Scholar

[20] L. R. Pablo and B. Umberto, “Comfort and energy savings with active green roofs,” Energy Build., vol. 82, pp. 492–504, 2014.10.1016/j.enbuild.2014.07.055Search in Google Scholar

[21] M. A. Karam, M. Ismail, and A. M. Abdul Rahman, “A review of the potential of attic ventilation by passive and active turbine ventilators in tropical Malaysia,” Sustain. Cities Soc., vol. 10, pp. 232–240, 2014.10.1016/j.scs.2013.10.001Search in Google Scholar

[22] S. Lee, K. Biswas, W. Miller, and S. Kriner, “Field thermal performance of naturally ventilated solar roof with PCM heat sink,” Sol. Energy, vol. 86, pp. 2504–2514, 2009.10.1016/j.solener.2012.05.020Search in Google Scholar

[23] L. Dong, Z. Yumeng, L. Changyu, Q. Hanbing, and L. Xiaoyan, “Numerical analysis on thermal performance of naturally ventilated roofs with different influencing parameters,” Sustain. Cities Soc., vol. 22, pp. 86–93, 2016.10.1016/j.scs.2016.02.004Search in Google Scholar

[24] K. Saafi and N. Daouas, “A life-cycle cost analysis for an optimum combination of cool coating and thermal insulation of residential building roofs in Tunisia,” Energy, vol. 152, pp. 925–938, 2018. https://doi.org/10.1016/j.energy.2018.04.010.Search in Google Scholar

[25] D. Antonio, H. Domínguez-Torres, and C.-A. Domínguez-Torres, “Energy and economic life cycle assessment of cool roofs applied to the efurbishment of social housing in Southern Spain,” Sustainability, vol. 12, p. 5602, 2020. https://doi.org/10.3390/su12145602.Search in Google Scholar

[26] H. Jianen, S. Wang, F. Teng, and W. Feng, “Thermal performance optimization of envelope in the energy-saving renovation of existing residential buildings,” Energy Build., vol. 247, pp. 2–27, 2021.10.1016/j.enbuild.2021.111103Search in Google Scholar

[27] F. Thellier, “Modélisation du comportement thermique de l’homme et de son habitat. Une approche de l’étude de confort,” Thesis, Thermics, Université Paul Sabatier - Toulouse III, 1989.Search in Google Scholar

[28] A. Mavroulakis and A. Trombe, “A new semi analytical algorithm for calculating diffuse plane view factors,” J. Heat Tran., vol. 120, no. 1, pp. 279–282, 1998. https://doi.org/10.1115/1.2830054.Search in Google Scholar

[29] L. Serres, A. Trombe, and J. Miriel, “Flux solaires absorbés par l’occupant d’un local vitré. Prise en compte dans l’équation du confort thermique,” Int. J. Therm. Sci., vol. 40, pp. 478–488, 2001. https://doi.org/10.1016/s1290-0729(01)01236-4.Search in Google Scholar

[30] P. Tulumoglu, A. Nutin, S. Giuliana, and V. Feldheim, Modélisation et évaluation détaillée du comportement thermique du corps humain et intégration du modèle dans un bureau, Lyon, France, Congrès Français de Thermique (SFT), 2014.Search in Google Scholar

[31] B. Moujalled, “Modélisation dynamique du confort thermique dans les bâtiments naturellement ventilés,” Thesis N° d’ordre 2007-ISAL-0005, Ecole Nationale des Tavaux Publics de l’Etat, Lyon, 2007.Search in Google Scholar

[32] C. Voelker, S. Hoffmann, O. Kornadt, and E. Arens, “Heat and moisture transfer through clothing,” in Eleventh International IBPSA Conference Glasgow, Scotland, 2009.Search in Google Scholar

[33] J.-C. Deval, “Le confort thermique en climat tempéré,” Rev. Phys. Appl., vol. 19, no. 7, pp. 513–531, 1984.10.1051/rphysap:01984001907051300Search in Google Scholar

[34] EN ISO 7730, “Moderate thermal environments,” in Determination of PMV and PPD Indices and Specifications of Thermal Comfort Conditions, Genève, Bruxelles ISO et CEN, 1994.Search in Google Scholar

[35] N. Lajimi and N. Boukadida, “Thermal behavior of premises equipped with different alveolar structures,” J. Therm. Sci., vol. 19, no. 3, pp. 929–938, 2015.10.2298/TSCI130204160LSearch in Google Scholar

[36] J.-J. Vullierme and N. Boukadida, “Experimental study of the performance of a structure with effect of thermal diode,” Rev. Gen. Therm., vol. 324, pp. 645–651, 1988.Search in Google Scholar

[37] H. Boyer, J.-P. Chabriat, C. Tourr, and J. Brau, “Thermal building simulation and computer generation of nodal models,” Build. Environ., vol. 31, no. 3, pp. 207–214, 1996.10.1016/0360-1323(96)00001-7Search in Google Scholar

Received: 2021-03-05
Revised: 2021-11-16
Accepted: 2021-12-24
Published Online: 2022-01-12
Published in Print: 2022-10-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2021-0090/html
Scroll to top button