Abstract
The paper analysis the incorporation of the source term in the advection-diffusion equation for the BGK Lattice Boltzmann Method (LBM). The problem is the coupled energy and species conservation equations with the Soret term. The problem is extremely important for people using LBM in simulating multi-physics, because multi-physics effect added as a source term to LB. A Few BGK LBM models were used, namely D1Q2, D1Q3, D2Q4 and D2Q5 to solve advection-diffusion-reaction problems. The aim of this work is to demonstrate that the lattice Boltzmann method is able to simulate Soret effect, where the source term is the curvature of the temperature field. Theoretical analysis of the force inclusion is also presented in the paper. To insure that the predictions are correct and consistent with the traditional methods, comparison of LBM predictions with the finite difference method (FVM) predictions were illustrated. Also, the results show that prediction of D1Q2 may suffer from oscillation.
©2012 by De Gruyter
Articles in the same Issue
- Frontmatter
- Investigations of Evaluating Energy of Blast-induced Seismic Wave by Pressure in Elastic Zone
- Dynamic Growth and Coalescence of Drilled Voids in Pure Copper Sheets
- Energy Absorption Characteristics of Closed-cell AZ91 Magnesium Alloy Foam
- The Expansion Model of Debris Cloud Induced by Oblique Hypervelocity Impact
- Study on Dynamic Response of Visco-elastic Plate Under Transverse Periodic Load
- Ballistic Impact Characteristics of Flat-nose Projectile Penetrating Concrete and Soil Compound Target
- Non-linear Mathematical Model for Peristaltic Motion of Bio-fluids in a Channel and Tube
- Mass Loss and Nose Shape Change on Ogive-nose Steel Projectiles During Concrete Penetration
- Homotopy Perturbation Method for Flow of a Third-grade Fluid Through a Vertical Concentric Annulus
- The Soret Effect with the D1Q2 and D2Q4 Lattice Boltzmann Model
- Error Estimates of Homogenization Theory
- Complex Population Dynamics in Heterogeneous Environments: Effects of Random and Directed Animal Movements
Articles in the same Issue
- Frontmatter
- Investigations of Evaluating Energy of Blast-induced Seismic Wave by Pressure in Elastic Zone
- Dynamic Growth and Coalescence of Drilled Voids in Pure Copper Sheets
- Energy Absorption Characteristics of Closed-cell AZ91 Magnesium Alloy Foam
- The Expansion Model of Debris Cloud Induced by Oblique Hypervelocity Impact
- Study on Dynamic Response of Visco-elastic Plate Under Transverse Periodic Load
- Ballistic Impact Characteristics of Flat-nose Projectile Penetrating Concrete and Soil Compound Target
- Non-linear Mathematical Model for Peristaltic Motion of Bio-fluids in a Channel and Tube
- Mass Loss and Nose Shape Change on Ogive-nose Steel Projectiles During Concrete Penetration
- Homotopy Perturbation Method for Flow of a Third-grade Fluid Through a Vertical Concentric Annulus
- The Soret Effect with the D1Q2 and D2Q4 Lattice Boltzmann Model
- Error Estimates of Homogenization Theory
- Complex Population Dynamics in Heterogeneous Environments: Effects of Random and Directed Animal Movements