Abstract
Polycrystalline pellets of Bi1·75Pb0·35Sr2-x La x Ca2Cu3O10 (x = 0.00, 0.02, 0.06, 0.08) have been synthesized using a solid-state reaction technique. The structural characterization carried out by X-ray diffraction confirms tetragonal phase and a shift in peak positions due to incorporation of La at Sr sites. Scanning electron micrographs reveal a decrease in grain size with La doping. The electrical resistivity data indicate a superconducting transition at about 106 K for pristine (Bi, Pb)-2223 pellet which is suppressed on La doping in Bi1·75Pb0·35Sr2-x La x Ca2Cu3O10. Apart from that an increase in resistivity and metallic to semiconducting transition has also been observed at higher La concentration (for x = 0.08). Hole-type conduction has been confirmed for each sample through thermopower measurement. The thermopower of investigated pellets has been explained in the light of various theoretical models and correlations as a function of temperature. Amongst them, the Mott–Jones model provides a satisfactory explanation of experimental result. An improvement in power factor of Bi1·75Pb0·35Sr2-x La x Ca2Cu3O10 doped with 8 wt.% of La has been observed in a specific temperature range which indicates that thermoelectric performance may be improved by optimizing La concentration.
Acknowledgments
Authors acknowledge CSTUP for providing research funding as well as INUP i2i (IIT Delhi) for providing some characterization facilities.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Mohd Saif: The sample synthesis, electrical resistivity and Thermopower measurement, data analysis and draft of the manuscript were prepared by Mohd Saif. D. Tripathi: D. Tripathi provided the valuable inputs in result analysis and drafting the manuscript.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interests: The authors state no conflict of interest.
-
Research funding: Council of Science and Technology (CSTUP).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Fergus, J. W. Oxide Materials for High Temperature Thermoelectric Energy Conversion. J. Eur. Ceram. Soc. 2012, 32 (3), 525–540; https://doi.org/10.1016/j.jeurceramsoc.2011.10.007.Search in Google Scholar
2. Shelly, C. D.; Matrozova, E. A.; Petrashov, V. T. Resolving Thermoelectric “Paradox” in Superconductors. Sci. Adv. 2016, 2 (2), e1501250. https://doi.org/10.48550/arXiv.1508.07249.Search in Google Scholar
3. Fee, M. Peltier Refrigerator Using a High Tc Superconductor. Appl. Phys. Lett. 1993, 62 (10), 1161–1163; https://doi.org/10.1063/1.108774.Search in Google Scholar
4. Rodríguez, J.; Moreno, L. LaxSrxCuO3-δ Ceramics as New Thermoelectric Material for Low Temperature Applications. Mater. Lett. 2011, 65 (1), 46–48; https://doi.org/10.1016/j.matlet.2010.09.034.Search in Google Scholar
5. Saif, M.; Tripathi, D. Thermoelectric Properties of Sr-doped LSCO for Energy Harvesting Applications below Room Temperature. Energy Storage 2023, 5 (2), e393. https://doi.org/10.1002/est2.393.Search in Google Scholar
6. Rodriguez, J. YBCO Samples as a Possible Thermoelectric Material. Phys. Status Solidi. (c) 2005, 2 (10), 3605–3608; https://doi.org/10.1002/pssc.200461769.Search in Google Scholar
7. Rodríguez, J. Ag-YBCO Compounds as Thermoelectric Material. Phys. Status Solidi (a) 2008, 205 (5), 1173–1176; https://doi.org/10.1002/pssa.200723480.Search in Google Scholar
8. Cassart, M.; Issi, J.-P. Thermoelectric Properties of High-Temperature Superconductors. In CRC Handbook of Thermoelectrics; New York: CRC Press, 2018; pp. 349–372.Search in Google Scholar
9. Gridin, V. V.; Pernambuco-Wise, P.; Trendall, C.; Datars, W.; Garrett, J. Magnetic Field Dependence of the Thermoelectric Power of Superconducting BiSrCaCuO. Phys. Rev. B 1989, 40 (13), 8814; https://doi.org/10.1103/PhysRevB.40.8814.Search in Google Scholar PubMed
10. Pignon, B.; Veron, E.; Noudem, J.; Ruyter, A.; Ammor, L.; Monot-Laffez, I. Comparison of Solid-State Reaction and Modified Citrate Process for Bi-2212 Ceramics Synthesis. Phys. C: Supercond. Its Appl. 2006, 434 (1), 45–52. https://doi.org/10.1016/j.physc.2005.11.015.Search in Google Scholar
11. Khalil, S. Influence of Isothermal Hot Pressing-Doping Treatment on the Electrical and Mechanical Properties of Bulk BiSrCaCuO. AIP Adv. 2012, 2 (4). https://doi.org/10.1063/1.4773095.Search in Google Scholar
12. Gündoğmuş, H.; Özçelik, B.; Sotelo, A.; Madre, M. Thermal Conductivity and Thermoelectric Power of Yb-Substituted Bi-2212 Superconductor. J. Phys.: Conf. Ser. 2016, 667, 012001; https://doi.org/10.1088/1742-6596/667/1/012001.Search in Google Scholar
13. Dhami, A.; Basak, S.; Ghatak, S.; Dey, T. Thermoelectric Power of Samarium Substituted Y1−xSmxBa2Cu3O7−δ Superconducting Pellets. Mater. Res. Bulletin 2001, 36 (5–6), 971–980. https://doi.org/10.1016/S0025-5408(01)00539-6.Search in Google Scholar
14. Funahashi, R.; Barbier, T.; Combe, E. Thermoelectric Materials for Middle and High Temperature Ranges. J. Mater. Res. 2015, 30 (17), 2544–2557; https://doi.org/10.1557/jmr.2015.145.Search in Google Scholar
15. Funahashi, R.; Shikano, M. Bi2Sr2Co2Oy Whiskers with High Thermoelectric Figure of Merit. Appl. Phys. Lett. 2002, 81 (8), 1459–1461. https://doi.org/10.1063/1.1502190.Search in Google Scholar
16. Abdeen, W.; Marahba, S.; Awad, R.; Abou Aly, A.; Ibrahim, I.; Matar, M. Electrical and Mechanical Properties of (Bi, Pb)-2223 Substituted by Holmium. J. Adv. Ceram. 2016, 5, 54–69. https://doi.org/10.1007/s40145-015-0173-x.Search in Google Scholar
17. Liu, Y.; Lin, Y. H.; Zhang, B. P.; Zhu, H. M.; Nan, C. W.; Lan, J.; Li, J. F. High-Temperature Thermoelectric Properties in the LaxRxCuO4 (R: Pr, Y, Nb) Ceramics. J. Am. Ceram. Soc. 2009, 92 (4), 934–937; https://doi.org/10.1111/j.1551-2916.2009.02952.x.Search in Google Scholar
18. Androulakis, J.; Migiakis, P.; Giapintzakis, J. La0.95Sr0.05CoO3: An Efficient Room-Temperature Thermoelectric Oxide. Appl. Phys. Lett. 2004, 84 (7), 1099–1101. https://doi.org/10.1063/1.1647686 (accessed 2024-04-17).Search in Google Scholar
19. Yamanaka, S.; Kobayashi, H.; Kurosaki, K. Thermoelectric Properties of Layered Rare Earth Copper Oxides. J. Alloys and Compd. 2003, 349 (1–2), 321–324. https://doi.org/10.1016/S0925-8388(02)00917-9.Search in Google Scholar
20. Rodrigues, V. D.; Souza, G. A. d.; Carvalho, C. L.; Zadorosny, R. Effect of la doping on the crystal structure, electric, magnetic and morphologic properties of the BSCCO system. Mater. Res. 2017, 20, 1406–1413; https://doi.org/10.1590/1980-5373-mr-2016-0754.Search in Google Scholar
21. Shi, X.-L.; Wu, H.; Liu, Q.; Zhou, W.; Lu, S.; Shao, Z.; Dargusch, M.; Chen, Z.-G. SrTiO3-based Thermoelectrics: Progress and Challenges. Nano Energy 2020, 78, 105195; https://doi.org/10.1016/j.nanoen.2020.105195.Search in Google Scholar
22. Kothawale, R.; Dole, B.; Shah, S. Effect of Substitution of Ce on Superconducting Properties of Bi1.7Pb0.3Sr2Ca2−xCexCu3O10+δ System. Pramana 2002, 58, 871–875. https://doi.org/10.1007/s12043-002-0185-2.Search in Google Scholar
23. Bilgili, O.; Kocabaş, K. Effects of Gd Substitution on Magnetic, Structural and Superconducting Properties of Bi1.7−xPb0.3GdxSr2Ca2Cu3Oy. J. Mater. Sci.: Mater. Electron. 2015, 26, 1700–1708. https://doi.org/10.1007/s10854-014-2596-5.Search in Google Scholar
24. Nagarjuna, C.; Dharmaiah, P.; Kim, K. B.; Hong, S.-J. Grain Refinement to Improve Thermoelectric and Mechanical Performance in N-type Bi2Te2. 7Se0. 3 Alloys. Mater. Chem. Phys. 2020, 256, 123699; https://doi.org/10.1016/j.matchemphys.2020.123699.Search in Google Scholar
25. Lohani, K.; Nautiyal, H.; Ataollahi, N.; Maji, K.; Guilmeau, E.; Scardi, P. Effects of Grain Size on the Thermoelectric Properties of Cu2SnS3: An Experimental and First-Principles Study. ACS Appl. Energy Mater. 2021, 4 (11), 12604–12612. https://doi.org/10.1021/acsaem.1c02377.Search in Google Scholar
26. Narducci, D.; Selezneva, E.; Cerofolini, G.; Frabboni, S.; Ottaviani, G. Impact of Energy Filtering and Carrier Localization on the Thermoelectric Properties of Granular Semiconductors. J. Solid State Chem. 2012, 193, 19–25; https://doi.org/10.1016/j.jssc.2012.03.032.Search in Google Scholar
27. Rodríguez, J. E. LSCO Ceramics as Possible Thermoelectric Material for Low Temperature Applications. MRS Online Proc. Libr. (OPL) 2007, 1044, 1044-U1006–U1019. https://doi.org/10.1557/PROC-1044-U06-19.Search in Google Scholar
28. Tripathi, D.; Dey, T. Critical Current Density of MgB2 Superconductor with (Bi, Pb)-2223 Addition. J. Alloys and Compd. 2014, 607, 264–273; https://doi.org/10.1016/j.jallcom.2014.04.057.Search in Google Scholar
29. Rowe, D. M. CRC Handbook of Thermoelectrics; Boca Raton: CRC Press, 2018.10.1201/9781420049718Search in Google Scholar
30. Akamatsu, M.; Chen, L.-x.; Ikeda, H.; Yoshizaki, R. Superconducting Properties in Bi-2201 Single Crystals. In Advances in Superconductivity VII: Proceedings of the 7th International Symposium on Superconductivity (ISS’94), November 8–11, 1994, Kitakyushu. Volume 1 & 2; Tokyo: Springer, 1995; pp. 125–128.10.1007/978-4-431-68535-7_27Search in Google Scholar
31. Dura, O. J.; Andujar, R.; Falmbigl, M.; Rogl, P.; de la Torre, M. L.; Bauer, E. The Effect of Nanostructure on the Thermoelectric Figure-Of-Merit of La0.875Sr0.125CoO3. J. Alloys Compd. 2017, 711, 381–386. https://doi.org/10.1088/2053-1591/aac1e3.Search in Google Scholar
32. Ghosh, N.; Robler, U.; Nenkov, K.; Hucho, C.; Bhat, H.; Muller, K. Low Temperature Transport and Specific Heat Studies of Nd1−xPbxMnO3 Single Crystals. J. Phys.; Condens. Matter 2008, 20 (39), 395219. https://doi.org/10.1088/0953-8984/20/39/395219.Search in Google Scholar
33. Das, A. S.; Roy, M.; Roy, D.; Bhattacharya, S. DC Electrical Transport Properties and Non–adiabatic Small Polaron Hopping Conduction in Semiconducting Vanadate Glasses. Int. J. Eng. Technol. Manag. Appl. Sci. 2017, 6, 11–19.Search in Google Scholar
34. Rudra, M.; Halder, S.; Saha, S.; Dutta, A.; Sinha, T. Temperature Dependent Conductivity Mechanisms Observed in Pr2NiTiO6. Mater. Chem. Phys. 2019, 230, 277–286; https://doi.org/10.1016/j.matchemphys.2019.03.075.Search in Google Scholar
35. Hira, U.; Ali, S. S.; Latif, S.; Pryds, N.; Sher, F. Improved High-Temperature Thermoelectric Properties of Dual-Doped Ca3Co4O9. ACS omega 2022, 7 (8), 6579–6590. https://doi.org/10.1021/acsomega.1c05721.Search in Google Scholar PubMed PubMed Central
36. Gottwick, U.; Gloss, K.; Horn, S.; Steglich, F.; Grewe, N. Transport Coefficients of Intermediate Valent CeNix Intermetallic Compounds. J. Magn. Magn. Mater. 1985, 47, 536–538. https://doi.org/10.1016/0304-8853(85)90487-1.Search in Google Scholar
37. Forro, L.; Lukatela, J.; Keszei, B. Thermoelectric Power of Bi2Sr2CaCu2O8 Single Crystals with Varying Oxygen Stoichiometry. Solid State Commun. 1990, 73 (7), 501–505. https://doi.org/10.1016/0038-1098(90)90372-I.Search in Google Scholar
38. Senaris-Rodriguez, M.; Goodenough, J. LaCoO3 Revisited. J. Solid State Chem. Fr. 1995, 116 (2), 224–231. https://doi.org/10.1006/jssc.1995.1207.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston