Home The influences of sintering temperature on structural, morphological, optical properties, and magnetoresistance of tin oxide (SnO2) nanomaterials
Article
Licensed
Unlicensed Requires Authentication

The influences of sintering temperature on structural, morphological, optical properties, and magnetoresistance of tin oxide (SnO2) nanomaterials

  • Archana Verma ORCID logo EMAIL logo , Kartikey Shriram and Balak Das
Published/Copyright: August 22, 2025
Become an author with De Gruyter Brill

Abstract

During the last few years, nanomaterials have sparked a lot of attention due to their properties. Therefore the fundamental goal of this paper, we analyze the impact of sintering temperature (450–750) °C on structural, optical properties, and magnetoresistance of tin oxide nanomaterial via the co-precipitation method. X-ray diffraction and RAMAN reveal a tetragonal crystal structure without the presence of any impurities. Further, we found the growth of crystallinity with higher sintering temperatures of pellets. The morphology studies reveal the inhomogeneity of particles and they are closely packed together. UV–Vis spectroscopy results show that tuning the bandgap suggested the improvement of optical properties in tin oxide in the role of optoelectronic devices, sensors, etc. We found a reduction in resistivity (ρ) and an increment in magnetoresistance as the sintering temperature of pellets rises.


Corresponding author: Archana Verma, Department of Physics, University of Lucknow, Babuganj, Hasanganj, Lucknow, 226007, Uttar Pradesh, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Dr. Balak Das- Review and editing Supervision, and investigation. Archana Verma- Conceptualization, writing original draft preparation, data curation, methodology. Kartikey Shriram- Editing the manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: No conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Ye, Q.; Zhang, X.; Yao, R.; Luo, D.; Liu, X.; Zou, W.; Guo, C.; Xu, Z.; Ning, H.; Peng, J. Cryst 2021, 11 (12), 1479; https://doi.org/10.3390/cryst11121479.Search in Google Scholar

2. Karmaoui, M.; Jorge, A. B.; McMillan, F. P.; Aliev, A. E.; Pullar, C. R.; Labrincha, J. A.; Tobaldi, D. M. ACS Omega 2018, 3 (10), 13227–13238; https://doi.org/10.1021/acsomega.8b02122.Search in Google Scholar PubMed PubMed Central

3. Kharbanda, J.; Priya, R. Mater. Today 2022, 68, 916–921. https://doi.org/10.1016/j.matpr.2022.07.131.Search in Google Scholar

4. Kima, P. S.; Choib, Y. M.; Choi, C. H. Mater. Res. Bull. 2016, 74, 85–89. https://doi.org/10.1016/j.materresbull.2015.10.024.Search in Google Scholar

5. Masuda, Y. Sens. Actuators: B. Chem. 2022, 364, 131876. https://doi.org/10.1016/j.snb.2022.131876.Search in Google Scholar

6. Deng, K.; Chen, Q.; Li, L. Adv. Funct. Mater. 2020, 30 (46), 2004209; https://doi.org/10.1002/adfm.202004209Search in Google Scholar

7. Wu, S. D.; Han, Y. C.; Wang, Y. S.; Wu, N. L.; Rusakova, I. A. Mater. Lett. 2002, 53 (3), 155–159; https://doi.org/10.1016/s0167-577x-01-00468-2.Search in Google Scholar

8. Lou, W. X.; Li, M. C.; Archer, L. A. Adv. Mater. 2009, 21, 2536–2539; https://doi.org/10.1002/adma.200803439Search in Google Scholar

9. Pan, X.; Zhang, T.; Lu, Q.; Wang, W.; Ye, Z. RSC Adv. 2019, 9 (64), 37201–37206; https://doi.org/10.1039/c9ra03999f.Search in Google Scholar PubMed PubMed Central

10. Acarbas, O.; Suvacı, E.; Dogan, A. Ceram. Int. 2007, 33 (4), 537–542; https://doi.org/10.1016/j.ceramint.2005.10.024.Search in Google Scholar

11. Ayeshamariam, A.; Vidhya, V. S.; Sivaranjani, S.; Bououdina, M.; Samy, M. P. R.; Jayachandran, P. J. Nanoelectron. Optoelectron 2013, 8 (3), 273–280; https://doi.org/10.1166/jno.2013.1471.Search in Google Scholar

12. Tazikeh, S.; Akbari, A.; Talebi, A.; Talebi, E. Mater. Sci. Pol. 2014, 32, 98; https://doi.org/10.2478/s13536-013-0164-y.Search in Google Scholar

13. Asaithambi, S.; Sakthivel, P.; Karuppaiah, M.; Murugan, R.; Yuvakkumar, R.; Ravi, G. J. Electron. Mater. 2019, 48 (4); 2183–2194. https://doi.org/10.1007/s11664-019-07061-5.Search in Google Scholar

14. Lu, G.; Huebner, L. K.; Ocola, L. E.; Josifovska, M. G. J. Chen: J. Nanomater. 2006, 1–7; https://doi.org/10.1155/JNM/2006/60828Search in Google Scholar

15. Pan, Z.; Ao, S.; Jia, J. Appl. Mech. Mater. 2014, 670, 26–39; https://doi.org/10.4028/www.scientific.net/AMM.670-671.26Search in Google Scholar

16. Pi, S.; Zhang, X.; Cui, H.; Chen, D.; Zhang, G.; Xiao, S. J. Tang: Front. Chem. 2019, 7, 476; https://doi.org/10.3389/fchem.2019.00476.Search in Google Scholar PubMed PubMed Central

17. Tao, Y.; Pescarmona, P. P. Catalysts 2018, 8 (5), 212; https://doi.org/10.3390/catal8050212.Search in Google Scholar

18. Billik, P.; Čaplovičová, M. Pow. Technol. 2009, 191 (3), 235–239; https://doi.org/10.1016/j.powtec.2008.10.017.Search in Google Scholar

19. Nehru, L. C.; Swaminathan, V.; Sanjeeviraja, C. Am. J. Mater. Sci. 2012, 2 (2), 6–10; https://doi.org/10.5923/j.materials.20120202.02Search in Google Scholar

20. Arularasu, M. V.; Anbarasu, M.; Poovaragan, S.; Sundaram, R.; Kanimozhi, K.; Magdalane, C. M.,; Kaviyarasu, K.; Thema, F. T.; Letsholathebe, D.; Mola, G. T.; Maaza, M. J. Nanosci. Nanotechnol. 2018, 18 (5), 3511–3517; https://doi.org/10.1166/jnn.2018.14658Search in Google Scholar PubMed

21. Naz, S.; Javid, I.; Konwar, S.; Surana, K.; Singh, K. P.; Sahni, M.; Bhattacharya, B. SN Appl. Sci. 2020, 2, 975. https://doi.org/10.1007/s42452-020-2812-2.Search in Google Scholar

22. Cukrov, M. L.; McCormick, G. P.; Galatsis, K.; Wlodarski, W. Sens. Actuator 2001, 77 (1–2), 491–495; https://doi.org/10.1016/s0925-4005-01-00751-1.Search in Google Scholar

23. Reddy, N. N. K.; Akkera, H. S.; Sekhar, M. C.; Park, S. H. Appl. Phys. A 2017, 123 (761), 1–7; https://doi.org/10.1007/s00339-017-1391-6.Search in Google Scholar

24. Awasthi, R. R.; Das, B. J. Aust. Ceram. Soc. 2019, 56 (1), 243–250. https://doi.org/10.1007/s41779-019-00381-zSearch in Google Scholar

25. Kurian, M.; Kunjachan, C. Int. Nano Lett. 2014, 4, 73–80; https://doi.org/10.1007/s40089-014-0122-7Search in Google Scholar

26. Deshpande, S.; Patil, S., Kuchibhatla, S.; Seal, S. Appl. Phys. Lett. 2005, 87 (13), 133113. https://doi.org/10.1063/1.2061873Search in Google Scholar

27. Sebayang, K.; Aryanto, D.; Simbolon, S.; Kurniawan, C.; Hulu, F. S.; Sudiro, T.; Ginting, M.; Sebayang, P. Mater. Sci. Eng. 2018, 309 (1), 012119; https://doi.org/10.1088/1757-899X/309/1/012119Search in Google Scholar

28. https://www.researchgate.net/post/Why-do-the-XRD-diffraction-peaks-shift-towards-larger-angle-higher-theta-instead-of-smaller-angle/5537a6d8d11b8b8f3a8b45a0/citation/download.Search in Google Scholar

29. Gupta, S.; Yadav, B. C.; Dwivedi, K. P.; Das, B. Mater. Res. Bull. 2013, 48 (9), 3315–3322. https://doi.org/10.1016/j.materresbull.2013.05.001Search in Google Scholar

30. Awasthi, R. R.; Asokan, K.; Das, B. Appl. Phys. A 2019, 125, 338. https://doi.org/10.1007/s00339-019-Ǻ2560-610.1007/s00339-019-2560-6Search in Google Scholar

31. Makuła, P.; Pacia, M.; Macyk, W. J. Phys.Chem. Lett. 9 (23), 2018, 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892.Search in Google Scholar PubMed

32. Akazawa, H. Ceram. Inter. 2022, 489 (1), 624–631. https://doi.org/10.1016/j.ceramint.2021.09.141.Search in Google Scholar

33. Singh, M.; Taele, M. B.; Goyal, M. Chin. J. Phy. 2021, 70, 26–36. https://doi.org/10.1016/j.cjph.2021.01.001.Search in Google Scholar

34. Anuar, M. F.; Fen, Y. W.; Zaid, M. H. M.; Omar, N. A. S.; Khaidir, R. E. M. Mater. 2020, 13 (11), 2555. https://doi.org/10.3390/ma13112555.Search in Google Scholar PubMed PubMed Central

35. Ito, M. J. Mol. Spectrosc. 1960, 4 (1–6), 106–124; https://doi.org/10.1016/0022-2852-60-90072-2.Search in Google Scholar

36. Chetri, P.; Saikia, B.; Choudhury, A. J. Appl. Phys. 2013, 113 (23), 233514; https://doi.org/10.1063/1.4811374.Search in Google Scholar

37. Deluca, M.; Hu, H.; Popov, M. N.; Spitaler, J.; Dieing, T. Commun. Mater. 2023, 4 (1), 78. https://doi.org/10.1038/s43246-023-00400-4.Search in Google Scholar

38. Koniakhin, S. V.; Utesov, O. I.; Yashenkin, A. Diam. Relat. Mater. 2024, 146, 111182. https://doi.org/10.1016/j.diamond.2024.111182.Search in Google Scholar

39. Yuan, J. J.; Wen, G. H.; Fan, Y. B.; Zhang, C. P.; Zhao, Q.; Yin, Z.; Zhang, X. K.; Yu, H. J.; Zhu, X. R.; Xie, Y. M. Physica B 2015, 477, 29–32. https://doi.org/10.1016/j.physb.2015.04.002.Search in Google Scholar

40. Dauzhenka, T. A.; Ksenevich, V. K.; Bashmakov, I. A. J. Galibert: Phys. Rev. B 2011, 83 (16), 165309; https://doi.org/10.1103/PhysRevB.83.165309.Search in Google Scholar

41. Juraić, K.; Čulo, M.; Rapljenović, Ž.; Plaisier, R.; Siketić, Z.; Pavić, L.; Bohač, M.; Hodzic, A.; Gracin, D. Mater 2020, 13 (22), 5182; https://doi.org/10.3390/ma13225182.Search in Google Scholar PubMed PubMed Central

42. Mousavi, M.; Yazdi, S. T.; Mohagheghi, M. M. B. Solid State Commun. 2019, 298, 1136. https://doi.org/10.1016/j.ssc.2019.05.012.Search in Google Scholar

43. Mohagheghi, M. M. B.; Yazdi, S. T.; Mousavi, M. Appl. Phys. A 2018, 124 (274), 1–6. https://doi.org/10.1007/s00339-018-1685-3.Search in Google Scholar

Received: 2024-01-06
Accepted: 2025-06-29
Published Online: 2025-08-22

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0010/html?lang=en
Scroll to top button