Abstract
During the last few years, nanomaterials have sparked a lot of attention due to their properties. Therefore the fundamental goal of this paper, we analyze the impact of sintering temperature (450–750) °C on structural, optical properties, and magnetoresistance of tin oxide nanomaterial via the co-precipitation method. X-ray diffraction and RAMAN reveal a tetragonal crystal structure without the presence of any impurities. Further, we found the growth of crystallinity with higher sintering temperatures of pellets. The morphology studies reveal the inhomogeneity of particles and they are closely packed together. UV–Vis spectroscopy results show that tuning the bandgap suggested the improvement of optical properties in tin oxide in the role of optoelectronic devices, sensors, etc. We found a reduction in resistivity (ρ) and an increment in magnetoresistance as the sintering temperature of pellets rises.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Dr. Balak Das- Review and editing Supervision, and investigation. Archana Verma- Conceptualization, writing original draft preparation, data curation, methodology. Kartikey Shriram- Editing the manuscript.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: No conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Ye, Q.; Zhang, X.; Yao, R.; Luo, D.; Liu, X.; Zou, W.; Guo, C.; Xu, Z.; Ning, H.; Peng, J. Cryst 2021, 11 (12), 1479; https://doi.org/10.3390/cryst11121479.Search in Google Scholar
2. Karmaoui, M.; Jorge, A. B.; McMillan, F. P.; Aliev, A. E.; Pullar, C. R.; Labrincha, J. A.; Tobaldi, D. M. ACS Omega 2018, 3 (10), 13227–13238; https://doi.org/10.1021/acsomega.8b02122.Search in Google Scholar PubMed PubMed Central
3. Kharbanda, J.; Priya, R. Mater. Today 2022, 68, 916–921. https://doi.org/10.1016/j.matpr.2022.07.131.Search in Google Scholar
4. Kima, P. S.; Choib, Y. M.; Choi, C. H. Mater. Res. Bull. 2016, 74, 85–89. https://doi.org/10.1016/j.materresbull.2015.10.024.Search in Google Scholar
5. Masuda, Y. Sens. Actuators: B. Chem. 2022, 364, 131876. https://doi.org/10.1016/j.snb.2022.131876.Search in Google Scholar
6. Deng, K.; Chen, Q.; Li, L. Adv. Funct. Mater. 2020, 30 (46), 2004209; https://doi.org/10.1002/adfm.202004209Search in Google Scholar
7. Wu, S. D.; Han, Y. C.; Wang, Y. S.; Wu, N. L.; Rusakova, I. A. Mater. Lett. 2002, 53 (3), 155–159; https://doi.org/10.1016/s0167-577x-01-00468-2.Search in Google Scholar
8. Lou, W. X.; Li, M. C.; Archer, L. A. Adv. Mater. 2009, 21, 2536–2539; https://doi.org/10.1002/adma.200803439Search in Google Scholar
9. Pan, X.; Zhang, T.; Lu, Q.; Wang, W.; Ye, Z. RSC Adv. 2019, 9 (64), 37201–37206; https://doi.org/10.1039/c9ra03999f.Search in Google Scholar PubMed PubMed Central
10. Acarbas, O.; Suvacı, E.; Dogan, A. Ceram. Int. 2007, 33 (4), 537–542; https://doi.org/10.1016/j.ceramint.2005.10.024.Search in Google Scholar
11. Ayeshamariam, A.; Vidhya, V. S.; Sivaranjani, S.; Bououdina, M.; Samy, M. P. R.; Jayachandran, P. J. Nanoelectron. Optoelectron 2013, 8 (3), 273–280; https://doi.org/10.1166/jno.2013.1471.Search in Google Scholar
12. Tazikeh, S.; Akbari, A.; Talebi, A.; Talebi, E. Mater. Sci. Pol. 2014, 32, 98; https://doi.org/10.2478/s13536-013-0164-y.Search in Google Scholar
13. Asaithambi, S.; Sakthivel, P.; Karuppaiah, M.; Murugan, R.; Yuvakkumar, R.; Ravi, G. J. Electron. Mater. 2019, 48 (4); 2183–2194. https://doi.org/10.1007/s11664-019-07061-5.Search in Google Scholar
14. Lu, G.; Huebner, L. K.; Ocola, L. E.; Josifovska, M. G. J. Chen: J. Nanomater. 2006, 1–7; https://doi.org/10.1155/JNM/2006/60828Search in Google Scholar
15. Pan, Z.; Ao, S.; Jia, J. Appl. Mech. Mater. 2014, 670, 26–39; https://doi.org/10.4028/www.scientific.net/AMM.670-671.26Search in Google Scholar
16. Pi, S.; Zhang, X.; Cui, H.; Chen, D.; Zhang, G.; Xiao, S. J. Tang: Front. Chem. 2019, 7, 476; https://doi.org/10.3389/fchem.2019.00476.Search in Google Scholar PubMed PubMed Central
17. Tao, Y.; Pescarmona, P. P. Catalysts 2018, 8 (5), 212; https://doi.org/10.3390/catal8050212.Search in Google Scholar
18. Billik, P.; Čaplovičová, M. Pow. Technol. 2009, 191 (3), 235–239; https://doi.org/10.1016/j.powtec.2008.10.017.Search in Google Scholar
19. Nehru, L. C.; Swaminathan, V.; Sanjeeviraja, C. Am. J. Mater. Sci. 2012, 2 (2), 6–10; https://doi.org/10.5923/j.materials.20120202.02Search in Google Scholar
20. Arularasu, M. V.; Anbarasu, M.; Poovaragan, S.; Sundaram, R.; Kanimozhi, K.; Magdalane, C. M.,; Kaviyarasu, K.; Thema, F. T.; Letsholathebe, D.; Mola, G. T.; Maaza, M. J. Nanosci. Nanotechnol. 2018, 18 (5), 3511–3517; https://doi.org/10.1166/jnn.2018.14658Search in Google Scholar PubMed
21. Naz, S.; Javid, I.; Konwar, S.; Surana, K.; Singh, K. P.; Sahni, M.; Bhattacharya, B. SN Appl. Sci. 2020, 2, 975. https://doi.org/10.1007/s42452-020-2812-2.Search in Google Scholar
22. Cukrov, M. L.; McCormick, G. P.; Galatsis, K.; Wlodarski, W. Sens. Actuator 2001, 77 (1–2), 491–495; https://doi.org/10.1016/s0925-4005-01-00751-1.Search in Google Scholar
23. Reddy, N. N. K.; Akkera, H. S.; Sekhar, M. C.; Park, S. H. Appl. Phys. A 2017, 123 (761), 1–7; https://doi.org/10.1007/s00339-017-1391-6.Search in Google Scholar
24. Awasthi, R. R.; Das, B. J. Aust. Ceram. Soc. 2019, 56 (1), 243–250. https://doi.org/10.1007/s41779-019-00381-zSearch in Google Scholar
25. Kurian, M.; Kunjachan, C. Int. Nano Lett. 2014, 4, 73–80; https://doi.org/10.1007/s40089-014-0122-7Search in Google Scholar
26. Deshpande, S.; Patil, S., Kuchibhatla, S.; Seal, S. Appl. Phys. Lett. 2005, 87 (13), 133113. https://doi.org/10.1063/1.2061873Search in Google Scholar
27. Sebayang, K.; Aryanto, D.; Simbolon, S.; Kurniawan, C.; Hulu, F. S.; Sudiro, T.; Ginting, M.; Sebayang, P. Mater. Sci. Eng. 2018, 309 (1), 012119; https://doi.org/10.1088/1757-899X/309/1/012119Search in Google Scholar
28. https://www.researchgate.net/post/Why-do-the-XRD-diffraction-peaks-shift-towards-larger-angle-higher-theta-instead-of-smaller-angle/5537a6d8d11b8b8f3a8b45a0/citation/download.Search in Google Scholar
29. Gupta, S.; Yadav, B. C.; Dwivedi, K. P.; Das, B. Mater. Res. Bull. 2013, 48 (9), 3315–3322. https://doi.org/10.1016/j.materresbull.2013.05.001Search in Google Scholar
30. Awasthi, R. R.; Asokan, K.; Das, B. Appl. Phys. A 2019, 125, 338. https://doi.org/10.1007/s00339-019-Ǻ2560-610.1007/s00339-019-2560-6Search in Google Scholar
31. Makuła, P.; Pacia, M.; Macyk, W. J. Phys.Chem. Lett. 9 (23), 2018, 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892.Search in Google Scholar PubMed
32. Akazawa, H. Ceram. Inter. 2022, 489 (1), 624–631. https://doi.org/10.1016/j.ceramint.2021.09.141.Search in Google Scholar
33. Singh, M.; Taele, M. B.; Goyal, M. Chin. J. Phy. 2021, 70, 26–36. https://doi.org/10.1016/j.cjph.2021.01.001.Search in Google Scholar
34. Anuar, M. F.; Fen, Y. W.; Zaid, M. H. M.; Omar, N. A. S.; Khaidir, R. E. M. Mater. 2020, 13 (11), 2555. https://doi.org/10.3390/ma13112555.Search in Google Scholar PubMed PubMed Central
35. Ito, M. J. Mol. Spectrosc. 1960, 4 (1–6), 106–124; https://doi.org/10.1016/0022-2852-60-90072-2.Search in Google Scholar
36. Chetri, P.; Saikia, B.; Choudhury, A. J. Appl. Phys. 2013, 113 (23), 233514; https://doi.org/10.1063/1.4811374.Search in Google Scholar
37. Deluca, M.; Hu, H.; Popov, M. N.; Spitaler, J.; Dieing, T. Commun. Mater. 2023, 4 (1), 78. https://doi.org/10.1038/s43246-023-00400-4.Search in Google Scholar
38. Koniakhin, S. V.; Utesov, O. I.; Yashenkin, A. Diam. Relat. Mater. 2024, 146, 111182. https://doi.org/10.1016/j.diamond.2024.111182.Search in Google Scholar
39. Yuan, J. J.; Wen, G. H.; Fan, Y. B.; Zhang, C. P.; Zhao, Q.; Yin, Z.; Zhang, X. K.; Yu, H. J.; Zhu, X. R.; Xie, Y. M. Physica B 2015, 477, 29–32. https://doi.org/10.1016/j.physb.2015.04.002.Search in Google Scholar
40. Dauzhenka, T. A.; Ksenevich, V. K.; Bashmakov, I. A. J. Galibert: Phys. Rev. B 2011, 83 (16), 165309; https://doi.org/10.1103/PhysRevB.83.165309.Search in Google Scholar
41. Juraić, K.; Čulo, M.; Rapljenović, Ž.; Plaisier, R.; Siketić, Z.; Pavić, L.; Bohač, M.; Hodzic, A.; Gracin, D. Mater 2020, 13 (22), 5182; https://doi.org/10.3390/ma13225182.Search in Google Scholar PubMed PubMed Central
42. Mousavi, M.; Yazdi, S. T.; Mohagheghi, M. M. B. Solid State Commun. 2019, 298, 1136. https://doi.org/10.1016/j.ssc.2019.05.012.Search in Google Scholar
43. Mohagheghi, M. M. B.; Yazdi, S. T.; Mousavi, M. Appl. Phys. A 2018, 124 (274), 1–6. https://doi.org/10.1007/s00339-018-1685-3.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston