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Abstract: Spinel nano-ferrite compounds have attracted

significant interest in industrial, scientific and technological

communities as a result of their promising and unique fea-

tures especially at nano-scale range. The present and future

potentials of spinel nano-ferritematerials cut across several

applications such as biotechnology, magnetic storage, sen-

sors, magnetic hyperthermia, microwave absorbance and

photo-catalysis. Enhancing the photocatalytic application

of spinel nano-ferrite materials involves accommodation

of foreign materials into the parent compound as well as

appropriate fabrication technique which respectively alter

the crystal structure and nano-size of the spinel nano-

ferrite materials. This work implements the crystal lattice

distortion and the size of nano-particles to develop, for

the first time, hybridization of a support vector regres-

sion algorithm with a genetic algorithm for estimating the

energy gap of doped spinel nano-ferrite materials. The

developed hybrid genetic algorithm based support vec-

tor regression model was built using two hundred differ-

ent spinel nano-ferrite materials doped with varieties of

materials and synthesized through various methods. The

developed genetic algorithm based support vector regres-

sion model that is characterized by low root mean square

error and mean squared error of 0.3075 eV and 0.095 eV

respectively, was further validated using eighteen differ-

ent spinel nano-ferrite materials and the estimated energy

gaps agree excellently with the experimental values. The

influence of magnesium, aluminum and lanthanum on the

band gap of spinel ferrite nanoparticles was investigated

and studied using the developed genetic algorithm based
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support vector regression model. The developed model in

this work ultimately provides a quick, accurate and pre-

cise method of characterizing the band gap of spinel nano-

ferrite materials while circumventing experimental stress

with conservation of appreciable time and other valuable

resources.

Keywords: Energy band gap; Genetic algorithm; Lattice

parameter; Nano-size; Spinel nano-ferrite materials; Sup-
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1 Introduction

Spinel ferrite nano-particles are technologically important

materialswith versatile applications inmagnetic drug deliv-

ery, magnetic recording, energy storage, sensor fabrication,

heterogeneous catalysis, waste water treatment, and photo-

Fenton processes among others [1–3]. The spinel ferrite

magnetic characteristic contributes immensely to the recy-

cling feature of the material with retention of its known

catalytic activity. Both tetrahedral and octahedral voids in

spinel ferrite nano-particles are occupied by metal ions

while the presence of oxygen atoms results in cubic close

packing. Although transition metal ions have site prefer-

ence which has been studied extensively elsewhere, metal

ion distribution significantly influences the electrical, mag-

netic, structural, and optical properties of spinel ferrite

nano-particles [3]. Altering the spinel ferrite nano-particle

physical properties is achieved either by tuning the fea-

tures of metal ions, changing the method of synthesis,

sintering conditions or partial substitution of external par-

ticles referred to as dopants into structural lattice of spinel

ferrite nano-particles [4]. The chemical methods of syn-

thesis include combustion method, solid state reaction,

co-precipitation route andmicrowave synthesis among oth-

ers. The preparation conditions strongly influence the mor-

phological and structural features of spinel ferrite nano-

particles such as size of the particles, surface state and

chemical homogeneity while doping alters the cation distri-

bution in tetrahedral as well as octahedral sites and thereby
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changes the magnetic, electric, structural and optical

characteristics.

Spinel ferrite nano-particles belong to a class of soft

ferrite with general chemical formula AB2O4 and happen to

be a type of nano-ferrite materials that principally combine

mixed composition ofmetal ions and iron oxide. The oxygen

anions of spinel ferrite nano-particles crystalize in faced

center cubic structure while the metal cations A2+ and Fe3+

(B3+) respectively occupy the tetrahedral and octahedral

sites [4]. Although nano-ferrite materials can be grouped

into hexagonal ferrites, garnet ferrites and spinel ferrites,

spinel nano-ferrites are the most promising, explored and

researched due to the stability of their lattice structure,

easy tuning properties, simple crystal structure, ease of

guest ion (dopant) accommodation, flexibility of cationic

distribution and ease of chemical synthesis among others.

Balancing of ions controls the cation allocation between

the available intrinsic lattice sites and directly determines

the properties of spinel ferrite nano-particles [2]. Accom-

modation of foreign materials, stoichiometric proportions

of dopants, preparation and synthesis circumstances sig-

nificantly influence the optical properties of spinel ferrite

nano-particles. The nature and stoichiometry of the incor-

porated foreign materials alter the crystal lattice structure

of spinel ferrite nano-particles while the preparation and

synthesis circumstances influence the size of the spinel fer-

rite nano-particles. This research work employs the crystal

lattice parameter of the doped spinel ferrite nano-particles

and the nano-size of the material to estimate the band gap

energy of spinel ferrite nano-particles using support vector

regression coupled with genetic algorithm for parameter

optimization.

Support vector regression (SVR) belongs to the class

of intelligent algorithms with statistical learning theory

formulation [5]. The algorithm aims at minimizing the

generalized error bound using the principle of structural

risk minimization and thereby results in excellent pre-

diction and generalization capacity. Since SVR transforms

and maps data to high dimensional feature space, the

adopted kernel trick and function conveniently circumvent

the problem associated with the curse of dimensionality

whereby the variable dimension in real space becomes

inconsequential to the inner product performed in feature

space of high dimension [6]. These important features of

the SVR algorithm have resulted in wide applicability of the

algorithm in diverse fields of study anddisciplines including

materials science, laser spectroscopy and superconductivity

among others [7–9]. The user defined parameters of the

SVR algorithm need to be properly tuned for precision and

accuracy enhancement using a heuristic algorithm. The

choice of genetic algorithm (GA) for parameter optimiza-

tion in this work is due to the intrinsic features of genetic

algorithm such as avoidance of local convergence, quick

convergence, low possibility of premature convergence as

well as the ease of its implementation.

The arrangement of the rest of the manuscript is as

follows: Section 2 discusses the mathematical formulation

of both genetic algorithm and support vector regression.

Presentation the computationalmethodology and the acqui-

sition details of the employed dataset as extracted from

more than two hundred doped spinel nano-ferritematerials

is depicted in Section 3 of themanuscript. Section 4 discusses

the research outcomes with the results of the optimiza-

tion method and factors influencing the convergence of the

algorithm. Comparison of the measured energy gap with

the estimated values using the GA-SVR developed model

is also presented in Section 4 of the manuscript. Section 5

summarizes the manuscript.

2 Mathematical formulation and

background of the developed

hybrid model

This section presents the background of the support vector

regression intelligent algorithm employed. The operation

details and principles of genetic algorithm are also present.

2.1 Support vector regression

A support vector regression algorithm aims at acquir-

ing pattern linking the descriptors 𝜇 with the desired

target Bg(𝜇) through training of dataset samples S ={(
𝜇1,B

∗
g

)
,… .,

(
𝜇n,B

∗
gn

)}
,B∗

gn
∈ ℝ (where B∗

g
represents

the measured band gap) by approximating the function to

a form presented in Equation (1) [9].

Bg(𝜇) = 𝜔Tx+ d (1)

where 𝜇 stands for the predictors that include the lattice

parameter and the size of spinel ferrite nano-particles while

Bg(𝜇) stand for the estimated energy gap. The goal of the

algorithm is to ensure that the difference between Bg(𝜇) and

the measured band gap B∗
g
is very small while only slight

deviation of 𝜀 is tolerated. Thus, 𝜔 and d model param-

eters are to be determined through convex optimization
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which aims at minimizing Equation (2) with inclusion of

𝜀− insensitive loss 𝜌 presented in Equation (3) [7].

Minimize

𝜔, d

1

2
‖𝜔‖2 + C

m∑
j=1
𝜌

(
Bg(𝜇 j)− B∗

g j

)
(2)

𝜌(q) =
{

0

|q|− 𝜀
if |q| ≤ 𝜀
otherwise

(3)

where C is the penalty factor (also known as the regulariza-

tion factor).

Inclusion of positive non-zero variables called slack

variables (𝜒 and 𝜒∗) modifies Equations (2) to (4) with con-

straints presented in Equation (5) [10].

Minimize

𝜔, d

1

2
‖𝜔‖2 + C

m∑
j=1

(
𝜒 + 𝜒∗) (4)

Bg(𝜇 j)− B∗
g j
≤ 𝜀+ 𝜒 j

B∗
g j
− Bg(𝜇 j) ≤ 𝜀+ 𝜒∗

j

𝜒
∗
j
≥ 0, 𝜒 j ≥ 0, j = 1, 2, 3,… .,m

(5)

Introduction of Lagrange multipliers (𝜓 , 𝜓∗) conve-

niently transforms the problem to quadratic optimization

presented in Equation (6) with the conditions depicted in

Equation (7)

Maximize

𝜓,𝜓
∗

m∑
j=1

B∗
g j

(
𝜓

∗
j
− 𝜓 j

)
− 𝜀

(
𝜓

∗
j
+ 𝜓 j

)

− 1

2

m∑
j=1

m∑
i=1

(
𝜓

∗
j
− 𝜓 j

)(
𝜓

∗
i
− 𝜓i

)
xT
j
xi (6)

subjected to

m∑
j=1

(
𝜓

∗
j
− 𝜓 j

)
= 0

0 ≤ 𝜓 j, 𝜓
∗
j
≤ C

(7)

The solution of the quadratic optimization yields 𝜓 j

with the condition that 0 ≤ 𝜓 j ≤ C. After mapping the lat-

tice parameters and the size of spinel ferrite nano-particles,

the bias d and othermodel parameter𝜔 are determined and

presented in Equations (8) and (9), respectively where 𝜃(𝜇)

represents the eigenvector.

d = B∗
g j
+ 𝜀−

m∑
j=1

(
𝜓

∗
j
− 𝜓 j

)
𝜃(𝛍j)

T
𝜃(𝛍j) (8)

𝜔 =
m∑
j=1

(
𝜓

∗
j
− 𝜓 j

)
𝜃(𝛍j) (9)

Equation (9) substitution in Equation (1) leads to

Equation (10)

Bg(𝜇) =
m∑
j=1

(
𝜓

∗
j
− 𝜓 j

)
𝜗(𝛍,𝛍j) (10)

where𝜗(𝛍,𝛍j) = 𝜃(𝛍j)
T
𝜃(𝛍j) represents the kernel function

for data mapping.

The formulation for the employed Gaussian function is

shown in Equation (11) [6].

𝜗(𝛍,𝛍j) = exp

{
−𝜆‖‖‖𝛍− 𝛍j

‖‖‖
2
}

(11)

where 𝜆 represents the kernel parameter.

2.2 Genetic algorithm

A genetic algorithm is a population based random search

optimization algorithm that shares operational principle

resemblance with the biological evolution genetic mecha-

nism proposed by Darwin [11]. It adaptively controls the

process of global searching purposely to attain global con-

vergence through a parallel, efficient and global search

method that automatically records and acquires the knowl-

edge of probable possible solutions within the search space.

The feasible and probable solutions representing the hyper-

parameters of an SVR algorithm are expressed as individ-

uals called chromosomes within genetic algorithm opera-

tional principles. The element contained in the chromosome

called a gene is a true representation of a single solution

to be optimized while three hyper-parameters such as the

regularization parameter, epsilon and kernel parameter, are

contained in a single solution referred to as a gene while all

the possible values in the gene are called the alleles. Specif-

ically, a combination of hyper-parameters represent a sin-

gle solution called a chromosome while the regularization

parameter, epsilon and kernel parameter are individually

called the gene and their specific values are called the alleles

[7]. The operations involved in genetic algorithm implemen-

tation include selection, crossover andmutation. A selection

operator is employed within the genetic algorithm oper-

ational principle with a specific probability for transition

from one generation to another through reproduction and

population replacement. The fitness of an individual in a

population has a strong reflection on the possibility of being

retained and selected for inclusion in the subsequent gen-

eration. Individuals with good characters are selected and

retained in this contribution through a stochastic univer-

sal selection procedure [12]. Crossover operation involves

random selection of two parents within the population fol-

lowed by gene exchange and recombination, resulting in

a new individual with inherited features from their par-

ents. The mutation operation leads to varieties of trait

within the population and prevents being trapped within a

local solution.
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3 Data acquisition and

computational hybridization

methodology

The sources of employed dataset and their descriptions

are presented in this section. A computational method

of hybridizing support vector regression and genetic

algorithm is also presented.

3.1 Description of lattice distortion and the
size of nano-particles for spinel
nano-ferrite materials employed in
model development

The predictors to the developed GA-SVRmodel include crys-

tal lattice parameter and the size of spinel nano-ferrite.

The descriptors and the corresponding energy band gaps

are extracted from the literature [2, 13–59]. The employed

dataset consists of spinel ferrite nano-particles doped with

different foreign materials. Incorporation of foreign mate-

rials into the parent spinel nano-ferrite alters and distorts

the lattice parameter of the material depending on the ionic

radius of the dopant and the substituted ions. In order

to assess the potentials of the proposed model for precise

estimation of the energy gap, statistical analysis was con-

ducted on the employed set of data and the outcomes of

the analysis are shown in Table 1. The table shows val-

ues of the mean (average value) through which the overall

content of the dataset can be inferred since the sum of

deviations of each value from the average value is always

zero. Standard deviations that measure the consistency in

the dataset as extracted frommeasurement tomeasurement

are also presented. The maximum and minimum values

presented are insightful for understanding the range and

boundaries of the dataset. The presented coefficients of cor-

relation give the extent and degree of linear relationship

existing between the target and predictors. The cross-plot

correlation between the size of nano-particles, the crystal

lattice parameter and experimental band gap is presented

in Figure 1. The figure shows spatial distribution of all the

employed data-points in three dimensions. The distribution

presented in Figure 1 shows the inability of a unique lin-

ear function to relate the descriptors with the energy gaps.

Therefore, this research work aims at developing a single

and universal relation through which the energy band gap

of any spinel nano-ferrite based compounds can be esti-

mated and determined. Hence, we have developed aGA-SVR

model for this purpose.

3.2 Computation hybridization of support
vector regression and genetic
algorithms

Genetic algorithmhybridizationwith support vector regres-

sion algorithms as well as other computational tasks were

conducted using the MATLAB computing facility. The devel-

oped GA-SVRmodel estimates the energy band gap of doped

spinel ferrite nano-particles using the size of the particle

and the crystal lattice parameter as inputs to the model.

Data-points from two hundred spinel ferrite nano-materials

available for simulation were separated into training and

testing in the ratio of 8:2 where one hundred and sixty data-

pointswere allotted formodel training and forty data-points

were assigned for model testing and hyper-parameter set-

ting using the genetic algorithm. Data-points were random-

ized to ensure that the investigated samples are well and

evenly distributed so that model testing fell within what the

model learnt previously. The developed model was further

validated using eighteen doped samples of spinel ferrite

nano-materials that were excluded from the training and

testing phase of model development. The hyper-parameters

optimized by genetic algorithms were the epsilon, kernel

parameter of the best fit kernel function for data transfor-

mation and regularization factor. The details of the compu-

tational procedures are itemized as follows:

Step I: Population initialization: this stage of com-

putational method initializes and generates a population

of probable solutions within a defined search space. The

search space of the hyper-parameter regularization factor

extends between 1 and 500 while that of the epsilon and

Table 1: The results of each of the statistical parameters for the employed descriptors and energy band gap.

Statistical parameter Lattice parameter a (Å) Size of nano-particles D (nm) Energy band gap (eV)

Mean 8.392 24.806 2.212

Standard deviation 0.079 14.691 0.758

Maximum 8.726 71.000 5.000

Correlation coefficient 0.1922 −0.0441 –

Minimum 8.223 1.800 1.300
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Figure 1: Correlation cross-plot in three dimensions.

kernel parameter range from0.1 to 0.001. Variations of num-

ber of population were investigated purposely to determine

the contribution of the number of initial population to the

precision and convergence of the model.

Step II: Fitness computation for chromosome evalua-

tion: Evaluation of each of the chromosomes in the popu-

lation was carried out using root mean square error as a

measure of fitness were a low value corresponds to more

fit chromosome and high value corresponds to less fit chro-

mosome. While computing the fitness, the SVR algorithm is

incorporated and hybridized with the genetic algorithm as

detailed below:

a. Selection of the kernel function frompolynomial, sigma

and Gaussian function for data mapping and transfor-

mation to the feature space.

b. Selection of a chromosome that represents the regular-

ization factor, kernel parameter and epsilon within the

population.

c. Training of the SVR algorithm using (i) the selected

chromosome in Step b, (ii) the selected kernel function

in Step a, and (iii) the training set of data.

d. Evaluation of the performance of trained SVR

algorithm in Step c using root mean square error.

e. Repeat Step b to Step d for all the chromosomes in the

population and rank the best chromosome on the basis

of root mean square error using the principle that the

lower the better.

f. Further evaluation of the trained SVR algorithm using

the testing set of data and record the values of the root

mean square error.

g. Repeat Step b to Step f for the other activation func-

tion and save the details of the model with lowest root

mean square error. The saved model details include

the support vectors, regularization factor, performance

measuring parameters for training and testing set of

data, epsilon and kernel parameters.

Step III: Algorithm reproduction stage: In order to

replace the population with chromosomes of better qual-

ity, a selection operation was carried out using probability

selection of 0.8. This chosen value of probability gives better

a chance to chromosomewith better fitness to proceed to the

next generation.

Step IV: Implementation of crossover operator:

Exchange of subsequences and portions for offsprings

selection was carried out through a crossover operation.

0.65 probability of crossover was maintained in order
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to replace the weaker individual from the subsequent

population.

Step V: Randomness of string positions through muta-

tion operation: Probability of 0.009 was implemented for

mutation and altering of randomness of position of strings.

Step VI: Stopping conditions: The algorithm is brought

to a stop when the same value of root mean square error is

obtained for forty consecutive generations.

Step VII: The final GA-SVR model is developed through

implementation of hyper-parameters generated from GA.

4 Results and discussion

The results of the hybrid GA-SVR are discussed in this

section. The convergence of the genetic optimization

algorithm and hyper-parameters is also presented as the

number of initial population changes. Comparison of the

estimates of GA-SVR with the measured energy gap for

diverse kinds of spinel ferrite nano-particles is contained in

this section.

4.1 Convergence of hyper-parameters as
initial population number changes

The significance of varying the population size exploit-

ing and exploring the search space of the hybrid GA-SVR

model on model convergence is depicted in Figure 2. When

200 chromosomes are in the search space, the algorithm

converges to a local solution as presented in Figure 2. The

global convergence is attained with a population of 50

exploring the search space, as shown in the figure. Increas-

ing the population from50 to 100 throws themodel back into

local solution as depicted in Figure 2. This can be attributed

toweak exploitation capacity of themodel consequent upon

the presence of a large number of chromosomes exploit-

ing a limited search space. The convergence of regular-

ization/penalty factor with the chromosome population is

shown in Figure 3. While varying the size of the population,

the penalty factors (that trades-off model complexity and

the allowed error threshold) begin the convergence at the

same point of iteration. This is a clear indication of the

robustness of the developed hybrid model. Convergence

of the maximum allowed error threshold called epsilon as

the chromosome population is changing is presented in

Figure 4. Increase in population size gradually shifts the con-

vergence values of epsilon towards large values as depicted

in the figure. Since epsilon measures the maximum allowed

error and the lower value is attributed to a good model, the

optimumpopulation size exploiting and exploring the space

as can be deduced from the figures is fifty. Similar conver-

gence for the kernel parameter is presented in Figure 5. The

kernel parameter controls the transformation andmapping

of data to the feature space for regression function construc-

tion. Change in the number of chromosomes to higher val-

ues shifts the value of the Gaussian function kernel param-

eter to a lower value. The hyper-parameters that optimize

the developed SVR model are contained in Table 2.

Figure 2: Convergence of GA-SVR model at different population sizes.
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Figure 3: Convergence of penalty factor at various population sizes.

Figure 4: Convergence of epsilon at various population sizes.

4.2 Evaluation of model performance
through error metrics

Evaluation of the hybrid model was conducted during the

training, testing and external validation stage of model

development using mean squared error (MSE), correla-

tion coefficient (CC) and root mean square error (RMSE).

The training phase acquires support vectors which are

optimized through parameter tuning with the testing

dataset using the genetic algorithm. During the validation

stage, the developed model only used its saved support

vectors for estimation and the model is only supplied with

the lattice parameter of doped spinel ferrite nano-particles

and the size of the nano-particles. During parameters tun-

ing using the testing set of data, the recorded RMSE and
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Figure 5: Convergence of kernel parameter at various population sizes.

Table 2: Best hyper-parameters obtained from GA.

Hyper-parameter Best value

Hyper-parameter lambda E−7
Population number 50

Kernel parameter 0.0045

Kernel function Gaussian

Penalty factor (C) 30.682

Epsilon 0.0017

MSE for the developed model are 0.6781 eV and 0.45984 eV,

respectively. Figure 6 presents the comparison of the GA-

SVR model during training and external validation stages.

The developed GA-SVR performs better during validation

stage than training phase with performance improvement

of 89.16%, 98.83% and 2.72% using RMSE, MSE and CC,

respectively.

It is worth mentioning that the validation stage

involved feeding the GA-SVR model with only the descrip-

tors (lattice parameter and size of the nano-particles) while

the GA-SVR employs the saved support vectors for its esti-

mation. The values of the parameters that assess the perfor-

mance of theGA-SVRmodel are presented in Table 3 for both

training and validation stages.

The performance improvement observed in the valida-

tion dataset over that of the training set can be attributed to

the implementation of a regularization term (represented

as C in Equation (2)) during the training phase of model

development and thereby inflating the training loss. The

loss function while validating the model comprises only

the prediction error without the regularization term, which

generally results into lower error than the training set.

Figure 6: Model evaluation parameters and their comparisons at different developmental stages on the basis (a) RMSE (b) MSE (c) CC.
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Table 3: Evaluation parameters and their corresponding values.

Dataset CC RMSE MSE

Training 0.9399 0.3075 0.0945

External validation 0.9654 0.0333 0.0011

Only support vectors saved during the training phase of

model development were implemented during validation

stage.

4.3 Band gap tailoring effect of magnesium
incorporation on cobalt ferrite spinel
nanoparticle using the developed
GA-SVR model

The results of the influence of magnesium particles incor-

porated into the crystal structure of cobalt ferrite spinel

nanoparticles on the band gap are shown in Figure 7. The

outcomes of the GA-SVR model agree excellently with the

experimental values of energy gap [57]. Magnesium incor-

poration into the parent ferrite spinel lowers the lattice

parameter of the parent compound due to the lower ionic

radius of magnesium as compared to cobalt, while increase

in the concentration of magnesium dopants results in lat-

tice distortion without altering the lattice symmetry. The

observed reduction in crystallite size also connects with

the variation in the ionic radii of the dopants and sub-

stituted element [57]. The stretching vibration in tetrahe-

dral sites of Fe3+ − O2− is responsible for the observed

effect of dopants presented in Figure 7. Level formation

energy of sub-band consequent upon the existence of inter-

facial defects caused by dopants is also responsible for the

observed band gap adjustment. The developed model well

captures the experimental trend of band gap variation in

these ferrite nano-particles.

4.4 Energy gap effect of aluminium dopants
on nickel ferrite spinel material using
the developed hybrid GA-SVR model

The significance of aluminum incorporation in nickel ferrite

spinel nano-particles on the band gap, as obtained using

the developed GA-SVR model is presented in Figure 8. The

experimentally measured band gap is also presented in the

figure for comparison [58]. The occupancy of aluminum ion

dopants in the lattice structure of the host nickel ferrite is

manifested from the observed contraction in lattice param-

eter as well as lattice strains. When lattice strains occur,

internal stress is built up and this prevents further growth

of particle size which results in reduction in nanoparticle

size. The observed change in band gap with increase in the

concentration of aluminum is connected with the nature

of the aluminum dopants while the predicted band gaps

using the developed GA-SVR model agree excellently with

the measured values.

Figure 7: Influence of magnesium dopants on the band gap of cobalt ferrite spinel nanoparticle.
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Figure 8: Effect of aluminum dopants on the band gap of nickel ferrite spinel material.

4.5 Significance of lanthanum in band gap
tuning of ferrite spinel material using
the developed GA-SVR model

The band gap adjustment potential of lanthanum is pre-

sented in Figure 9 using the developed GA-SVR model and

experimentalmeasurement for comparison [13]. The results

of the developed GA-SVR agree perfectly well with the mea-

sured values. A steadily observed lattice parameter varia-

tion is attributed to initial formation of impurities at the

grain boundaries of the host spinel ferrite followed by sub-

sequent diffusion of the dopants with the substituted ele-

ment. The observed alteration in band gap energy is due to

Figure 9: Band gap influence of lanthanum dopants on ferrite spinel material.
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Table 4: Comparison of the estimated band gaps during external validation with the measured values.

Spinel ferrite compound Measured band gap energy (eV) Estimated band gap energy using GA-SVR (eV) % error

NixFe-xO (x = 0.75) 2.52 [48] 2.519 0.039

NixFe-xO (x = 1.0) 2.53 [48] 2.529 0.040

NixFe-xO (x = 1.5) 2.56 [48] 2.559 0.039

Ni-xZnxFe2O (x = 0) 2.60 [47] 2.115 18.642

Ni-xZnxFeO (x = 0.1) 2.41 [47] 2.409 0.041

Ni-xZnxFeO (x = 0.3) 2.26 [47] 2.259 0.044

Ni-xZnxFeO (x = 0.5) 2.14 [47] 2.115 1.154

Ni-xZnxFe2O (x = 0.7) 2.06 [47] 2.061 0.0485

Ni-xZnxFeO (x = 1) 1.93 [47] 1.931 0.052

Ni-xCdxFeO (x = 0) 2.11 [44] 2.111 0.047

Ni-xCdxFeO (x = 0.2) 2.04 [44] 2.115 3.691

Ni-xCdxFeO (x = 0.4) 1.99 [44] 1.991 0.050

Ni-xCdxFeO (x = 0.6) 1.96 [44] 1.961 0.051

Ni-xCdxFeO (x = 0.8) 1.90 [44] 1.901 0.053

MnLaxFe-xO (x = 0) 1.25 [33] 1.251 0.080

MnLaxFe-xO (x = 0.04) 1.30 [33] 1.301 0.076

MnLaxFe-xO (x = 0.06) 1.34 [33] 1.341 0.074

MnLaxFe-xO (x = 0.08) 1.38 [33] 1.381 0.072

Mean absolute percentage error (MAPE) .

some Fe3+ movement from tetrahedral sites to octahedral

sites.

4.6 External validation of the developed
GA-SVR model

In order to further justify the precision and accuracy of

the developed GA-SVR model, the model was further val-

idated with eighteen different spinel ferrite nanoparti-

cles that were not included in the training and testing

phase of model development. In this implementation, the

developed hybrid model was only fed with the lattice

parameter after dopant incorporation and the size of

nanoparticles while the model estimates the corresponding

band gap through support vectors saved during the training

stage of model development. Table 4 presents the compar-

ison of the model estimates and the measured band gap

for the investigated compounds. The sources of data for

each of the compounds are included in the table. The mean

absolute percentage error (MAPE) of 1.35 eV was recorded

during external validationwhich further confirms excellent

generalization capacity of the developed model in real life

practical scenarios.

5 Conclusions

A hybrid model for estimating the band gap of spinel ferrite

nanoparticles was developed using a genetic algorithm and

support vector regression intelligent model. The developed

GA-SVR employed the distorted lattice parameter and the

size of nanoparticles extracted from two hundred spinel

ferrite nanoparticles doped with varieties of foreign mate-

rials for pattern acquisition. The developed hybrid model

was evaluated using RMSE, CC and MSE. The developed

model investigated the influence of magnesium, aluminum

and lanthanum on band gaps of some doped spinel fer-

rite nanoparticles and the obtained band gap using the

model agreed excellently with the measured values. The

hybrid GA-SVR model also estimated the band gap of eigh-

teen spinel ferrite nanoparticles with different dopants

nature and concentration during external validation and

the obtained results agreed well with measured values. The

precision demonstrated by the developed GA-SVR model

will facilitate quick determination of the band gap of spinel

ferrite nanoparticles and the influence of any dopants on

the band gap of spinel ferrite can be determined for band

gap enhancement in photocatalysis.

Author contributions: All the authors have accepted

responsibility for the entire content of this submitted

manuscript and approved submission.

Research funding: None declared.

Conflict of interest statement: Authors declare no Compet-

ing Financial or Non-Financial Interests.

Data availability statement: The raw data required to

reproduce these findings are available in the references

cited in Section 3.1 of the manuscript.



172 — S. O. Olatunji and T. O. Owolabi: Spinel band gap prediction using intelligent approach

References

1. Almessierea M. A., Slimania Y., Gunerc S., Sertkold M., Korkmaze A.

D., Shirsath S. E., Baykal A. Sonochemical synthesis and physical

properties of Co0.3Ni0.5Mn0.2EuxFe2−xO4 nano-spinel ferrites.

Ultrason. Sonochem. 2019, 58, 104654. https://doi.org/10.1016/j

.ultsonch.2019.104654.

2. Slimani Y., Unal B., Almessiere M. A., Korkmaz A. D., Shirsath S. E.,

Yasin G., Trukhanov A. V., Baykal A. Investigation of structural and

physical properties of Eu3+ ions substituted Ni0.4Cu0.2Zn0.4Fe2O4

spinel ferrite nanoparticles prepared via sonochemical approach.

Results Phys. 2020, 17, 103061. https://doi.org/10.1016/j.rinp.2020

.103061.

3. Almessiere M. A., Slimani Y., Korkmaz A. D., Guner S., Sertkol M.,

Shirsath S. E., Baykal A. Structural, optical and magnetic properties

of Tm3+ substituted cobalt spinel ferrites synthesized via

sonochemical approach. Ultrason. Sonochem. 2019, 54, 1−10.
https://doi.org/10.1016/j.ultsonch.2019.02.022.

4. Zhang J., Bai H., He S., Ma Y., Jiang B., Liu P., Yuan H. Effects of

structure and electronic properties of spinel ferrites on their

emissivity in middle and short wavebands. J. Solid State Chem.

2020, 282, 121089. https://doi.org/10.1016/j.jssc.2019.121089.2019.

5. Vapnik V. The Nature of Statistical Learning Theory; Springer:

New-York Berlin Heidelberg, 1995.

6. Hu H., Yu J., Song Y., Chen F. The application of support vector

regression and mesh deformation technique in the optimization of

transonic compressor design. Aero. Sci. Technol. 2021, 112, 106589.

https://doi.org/10.1016/j.ast.2021.106589.

7. Olatunji S. O., Owolabi T. O. Modeling superconducting transition

temperature of doped MgB2 superconductor from structural

distortion and ambient temperature resistivity measurement

using hybrid intelligent approach. Comput. Mater. Sci. 2021, 192,

110392. https://doi.org/10.1016/j.commatsci.2021.110392.

8. Shamsah S. M. I., Owolabi T. O. Modeling the maximummagnetic

entropy change of doped manganite using a grid search-based

extreme learning machine and hybrid gravitational search-based

support vector regression. Crystals 2020, 10, 310. https://doi.org/10

.3390/cryst10040310.

9. Shamsah S. M. I., Owolabi T. O. Newtonian mechanics based

hybrid machine learning method of characterizing energy band

gap of doped zno semiconductor. Chin. J. Phys. 2020, 68, 493−506.
https://doi.org/10.1016/j.cjph.2020.10.002.

10. Owolabi T. O., Akande K. O., Olatunji S. O. Estimation of surface

energies of hexagonal close packed metals using computational

intelligence technique. Appl. Soft Comput. 2015, 31, 360−368.
https://doi.org/10.1016/j.asoc.2015.03.009.

11. Holland J. H. Genetic algorithms. Sci. Am. 1992, 267, 66−73. https://
doi.org/10.1038/scientificamerican0792-66.

12. Dufek A. S., Augusto D. A., Dias P. L. S., Barbosa H. J. C. Application

of evolutionary computation on ensemble forecast of quantitative

precipitation. Comput. Geosci. 2017, 106, 139−149. https://doi.org/
10.1016/j.cageo.2017.06.011.

13. Cu N., Fe C., Aslam A., Morley N. A., Amin N., Imran M., Ajaz M., Ali

A., Mahmood K., Bibi A., Iqbal F., Hussain S., Jamil Y. Study of

structural, optical and electrical properties of La3+ doped

Mg0.25Ni0.15Cu0.25Co0.35Fe2-xLaxO4 spinel ferrites. Physica B: Phys.

Condens. Matter 2021, 602, 412565. https://doi.org/10.1016/j.physb

.2020.412565.

14. Sadaqat A., Almessiere M., Slimani Y., Guner S., Sertkol M.,

Albetran H., Baykal A., Shirsath S. E., Ozcelik B., Ercan I. Structural,

optical and magnetic properties of Tb3+ substituted Co

nanoferrites prepared via sonochemical approach. Ceram. Int.

2019, 45, 22538−22546. https://doi.org/10.1016/j.ceramint.2019.07
.280.

15. Almessiere M. A., Slimani Y., Kurtan U., Guner S., Sertkol M.,

Shirsath S. E. Structural, magnetic, optical properties and cation

distribution of nanosized Co0.7Zn0.3TmxFe2−xO4 (0.0 ≤ x ≤ 0.04)

spinel ferrites synthesized by ultrasonic ultrasonic irradiation.

Ultrason. Sonochem. 2019, 58, 104638. https://doi.org/10.1016/j

.ultsonch.2019.104638.

16. Rathi P. L., Deepa S. Structural, magnetic, thermal and optical

properties of Sn2+ cation doped magnetite nanoparticles. Ceram.

Int. 2020, 46, 2969−2978. https://doi.org/10.1016/j.ceramint.2019
.09.294.

17. Heidari P., Masoudpanah S. M. Structural, magnetic and optical

properties and photocatalytic activity of magnesium-calcium

ferrite powders. J. Phys. Chem. Solid. 2021, 148, 109681. https://doi

.org/10.1016/j.jpcs.2020.109681.

18. Amin N., Sajjad M., Hasan U., Majeed Z., Latif Z., Ajaz M., Mahmood

K., Ali A., Mehmood K., Fatima M., Akhtar M., Imran M., Bibi A.,

Zahir M., Jabeen F., Bano N. Structural, electrical, optical and

dielectric properties of yttrium substituted cadmium ferrites

prepared by Co-Precipitation method. Ceram. Int. 2020, 46,

20798−20809. https://doi.org/10.1016/j.ceramint.2020.05.079.
19. Fe Z., Li Z., Fe O., Lal G., Punia K., Narain S., Alvi P. A., Choudhary B.

L., Kumar S. J. Alloys Compd. 2020, 828, 1−6. https://doi.org/10
.1016/j.jallcom.2020.154388.

20. Slimani Y., Almessiere M. A., Sertkol M., Shirsath S. E., Baykal A.,

Nawaz M., Akhtar S., Ozcelik B., Ercan I. Structural, magnetic,

optical properties and cation distribution of nanosized ultrasound

irradiation. Ultrason. Sonochem. 2019, 57, 203−211. https://doi.org/
10.1016/j.ultsonch.2019.05.001.

21. Gu D., Gu S. Magnetic properties, anticancer and antibacterial

effectiveness of sonochemically produced. Arabian J. Chem. 2020,

7403−7417. https://doi.org/10.1016/j.arabjc.2020.08.017.
22. Almessiere M. A., Korkmaz A. D., Slimani Y., Nawaz M., Ali S., Baykal

A. Magneto-optical properties of rare earth metals substituted

Co−Zn spinel nanoferrites. Ceram. Int. 2019, 45, 3449−3458.
https://doi.org/10.1016/j.ceramint.2018.10.260.

23. Dhiwahar A. T., Sundararajan M., Sakthivel P., Sekhar C., Yuvaraj S.

Microwave-assisted combustion synthesis of pure and zinc-doped

copper ferrite nanoparticles: structural, morphological, optical,

vibrational, and magnetic behavior. J. Phys. Chem. Solid. 2020, 138,

109257. https://doi.org/10.1016/j.jpcs.2019.109257.

24. Hussain K., Bibi A., Jabeen F., Amin N., Mahmood K., Ali A., Iqbal M.

Z., Arshad M. I. Study of structural, optical, electrical and magnetic

properties of Cu2þ doped Zn0.4Co0.6-xCe0.1Fe1.9O4 spinel ferrites.

Physica B: Phys. Condens. Matter 2020, 584, 412078. https://doi.org/

10.1016/j.physb.2020.412078.

25. Sundararajan M., Kennedy L. J., Aruldoss U., Khadeer S., Vijaya J. J.,

Dunn S. Microwave combustion synthesis of zinc substituted

nanocrystalline spinel cobalt ferrite: structural and magnetic

studies. Mater. Sci. Semicond. Process. 2015, 40, 1−10. https://doi
.org/10.1016/j.mssp.2015.06.002.

26. Lassoued A., Li J. F. Magnetic and photocatalytic properties of Ni −
Co ferrites. Solid State Sci. 2020, 104, 1−13. https://doi.org/10.1016/
j.solidstatesciences.2020.106199.

https://doi.org/10.1016/j.ultsonch.2019.104654
https://doi.org/10.1016/j.ultsonch.2019.104654
https://doi.org/10.1016/j.rinp.2020.103061
https://doi.org/10.1016/j.rinp.2020.103061
https://doi.org/10.1016/j.ultsonch.2019.02.022
https://doi.org/10.1016/j.jssc.2019.121089
https://doi.org/10.1016/j.ast.2021.106589
https://doi.org/10.1016/j.commatsci.2021.110392
https://doi.org/10.3390/cryst10040310
https://doi.org/10.3390/cryst10040310
https://doi.org/10.1016/j.cjph.2020.10.002
https://doi.org/10.1016/j.asoc.2015.03.009
https://doi.org/10.1038/scientificamerican0792-66
https://doi.org/10.1038/scientificamerican0792-66
https://doi.org/10.1016/j.cageo.2017.06.011
https://doi.org/10.1016/j.cageo.2017.06.011
https://doi.org/10.1016/j.physb.2020.412565
https://doi.org/10.1016/j.physb.2020.412565
https://doi.org/10.1016/j.ceramint.2019.07.280
https://doi.org/10.1016/j.ceramint.2019.07.280
https://doi.org/10.1016/j.ultsonch.2019.104638
https://doi.org/10.1016/j.ultsonch.2019.104638
https://doi.org/10.1016/j.ceramint.2019.09.294
https://doi.org/10.1016/j.ceramint.2019.09.294
https://doi.org/10.1016/j.jpcs.2020.109681
https://doi.org/10.1016/j.jpcs.2020.109681
https://doi.org/10.1016/j.ceramint.2020.05.079
https://doi.org/10.1016/j.jallcom.2020.154388
https://doi.org/10.1016/j.jallcom.2020.154388
https://doi.org/10.1016/j.ultsonch.2019.05.001
https://doi.org/10.1016/j.ultsonch.2019.05.001
https://doi.org/10.1016/j.arabjc.2020.08.017
https://doi.org/10.1016/j.ceramint.2018.10.260
https://doi.org/10.1016/j.jpcs.2019.109257
https://doi.org/10.1016/j.physb.2020.412078
https://doi.org/10.1016/j.physb.2020.412078
https://doi.org/10.1016/j.mssp.2015.06.002
https://doi.org/10.1016/j.mssp.2015.06.002
https://doi.org/10.1016/j.solidstatesciences.2020.106199
https://doi.org/10.1016/j.solidstatesciences.2020.106199


S. O. Olatunji and T. O. Owolabi: Spinel band gap prediction using intelligent approach — 173

27. Chakrabarty S., Bandyopadhyay S., Pal M., Dutta A. Sol-gel derived

cobalt containing Ni − Zn ferrite nanoparticles: dielectric

relaxation and enhanced magnetic property study. Mater. Chem.

Phys. 2021, 259, 124193. https://doi.org/10.1016/j.matchemphys

.2020.124193.

28. Singh R., Ku I., Vilcakova J., Jamatia T., Machovsky M., Skoda D.,

Urbánek P., Masa M., Urbánek M., Kalina L., Havlica J. Impact of

sonochemical synthesis condition on the structural and physical

properties of MnFe2O4 spinel ferrite nanoparticles. Ultrason.

Sonochem. 2020, 61, 1−15. https://doi.org/10.1016/j.ultsonch.2019
.104839.

29. Hammad T. M., Salem J. K., Abu A., Hejazy N. K. Optical and

magnetic characterizations of zinc substituted copper ferrite

synthesized by a co-precipitation chemical method. J. Alloys Compd.

2018, 741, 123−130. https://doi.org/10.1016/j.jallcom.2018.01.123.
30. Yousaf M., Niaz M., Wang B., Noor A. Preparations, optical,

structural, conductive and magnetic evaluations of RE’s (Pr, Y, Gd,

Ho, Yb) doped spinel nanoferrites. Ceram. Int. 2020, 46,

4280−4288. https://doi.org/10.1016/j.ceramint.2019.10.149.
31. Dhiman M., Chudasama B., Kumar V., Tikoo K. B., Singhal S.

Augmenting the photocatalytic performance of cobalt ferrite via

change in structural and optical properties with the introduction

of different rare earth metal ions. Ceram. Int. 2019, 45, 3698−3709.
https://doi.org/10.1016/j.ceramint.2018.11.033.

32. Saini M., Shukla R., Kumar A. Cd2+ substituted nickel ferrite doped

polyaniline nanocomposites as effective shield against

electromagnetic radiation in X-band frequency. J. Magn. Magn

Mater. 2019, 491, 165549. https://doi.org/10.1016/j.jmmm.2019

.165549.

33. Rajeshwari A., Punithavthy I. K., Jeyakumar S. J., Lenin N.,

Vigneshwaran B. Dependance of lanthanum ions on structural,

magnetic and electrical of manganese based spinel nanoferrites.

Ceram. Int. 2020, 46, 6860−6870. https://doi.org/10.1016/j
.ceramint.2019.11.180.

34. Tatarchuk T. R., Paliychuk N. D., Bououdina M., Al-najar B., Pacia

M., Macyk W. Effect of cobalt substitution on structural, elastic,

magnetic and optical properties of zinc ferrite nanoparticles. J.

Alloys Compd. 2018, 731, 1256−1266. https://doi.org/10.1016/j
.jallcom.2017.10.103.

35. Co M., Fe O., Verma V., Kaur M., Marc J. Tailored structural, optical

and magnetic properties of ternary nanohybrid. Ceram. Int. 2019,

45, 10865−10875. https://doi.org/10.1016/j.ceramint.2019.02.164.
36. Andhare D. D., Patade S. R., Kounsalye J. S., Jadhav K. M. Effect of

Zn doping on structural, magnetic and optical properties of cobalt

ferrite nanoparticles synthesized via. Co-precipitation method.

Physica B: Phys. Condens. Matter 2020, 583, 412051. https://doi.org/

10.1016/j.physb.2020.412051.

37. Abraham A. G., Manikandan A., Manikandan E., Vadivel S.,

Jaganathan S. K., Baykal A., Renganathan P. S. Enhanced

magneto-optical and photo-catalytic properties of transition metal

cobalt (Co2+ ions ) doped spinel MgFe2O4 ferrite nanocomposites.

J. Magn. Magn Mater. 2018, 452, 380−388. https://doi.org/10.1016/j
.jmmm.2018.01.001.

38. Hussain K., Amin N., Arshad M. I. Evaluation of structural, optical,

dielectric, electrical, and magnetic properties of Ce3+ doped

Cu0.5Cd0.25Co0.25Fe2-xO4 spinel nano-ferrites. Ceram. Int. 2021, 47,

3401−3410. https://doi.org/10.1016/j.ceramint.2020.09.185.
39. Dhiwahar A. T., Maruthamuthu S., Marnadu R., Sundararajan M.,

Manthrammel M. A., Shkir M., Sakthivel P., Reddy V., Reddy M.

Improved photocatalytic degradation of rhodamine B under

visible light and magnetic properties using microwave combustion

grown Ni doped copper ferrite spinel nanoparticles. Solid State Sci.

2021, 113, 106542. https://doi.org/10.1016/j.solidstatesciences.2021

.106542.

40. Vinosha P. A., Manikandan A., Ragu R., Dinesh A., Thanrasu K.,

Slimani Y., Baykal A., Xavier B. Impact of nickel substitution on

structure, magneto-optical, electrical and acoustical properties of

cobalt ferrite nanoparticles. J. Alloys Compd. 2021, 857, 157517.

https://doi.org/10.1016/j.jallcom.2020.157517.

41. Naresh U., Kumar R. J., Babu K. C. Hydrothermal synthesis of

barium copper ferrite nanoparticles: nanofiber formation,

optical, and magnetic properties. Mater. Chem. Phys.

2019, 236, 121807. https://doi.org/10.1016/j.matchemphys.2019

.121807.

42. Ateia E. E., Mohamed A. T., Elsayed K. Impact of Gd3+/graphene

substitution on the physical properties of magnesium ferrite

nanocomposites. J. Magn. Magn Mater. 2018, 452, 169−178. https://
doi.org/10.1016/j.jmmm.2017.12.053.

43. Sharma R., Thakur P., Sharma P., Sharma V. Ferrimagnetic Ni2þ
doped Mg−Zn spinel ferrite nanoparticles for high density
information storage. J. Alloys Compd. 2017, 704, 7−17. https://doi
.org/10.1016/j.jallcom.2017.02.021.

44. Kardile H. J., Somvanshi S. B., Chavan A. R., Pandit A. A., Jadhav K.

M. Effect of Cd2+ doping on structural, morphological, optical,

magnetic and wettability properties of nickel ferrite thin films.

Optik − Int. J. Light Electron Opt. 2020, 207, 164462. https://doi.org/

10.1016/j.ijleo.2020.164462.

45. Yuvaraj S., Manikandan N., Vinitha G. Influence of copper ions on

structural and non-linear optical properties in manganese ferrite

nanomaterials. Opt. Mater. 2017, 73, 428−436. https://doi.org/10
.1016/j.optmat.2017.08.027.

46. Iftikhar S., Farooq M., Haider S., Musaddiq S., Shakir I., Shahid M.

The impact of carbon nanotubes on the optical, electrical, and

magnetic parameters of Ni2+ and Co2+ based spinel ferrites.

Ceram. Int. 2019, 45, 21150−21161. https://doi.org/10.1016/j
.ceramint.2019.07.092.

47. Al-ghamdi A. A., Al-hazmi F. S., Memesh L. S., Shokr F. S., Bronstein

M. Effect of mechanochemical synthesis on the structure,

magnetic and optical behavior of Ni1−xZnxFe2O4 spinel ferrites.

Ceram. Int. 2017, 43, 6192−6200. https://doi.org/10.1016/j.ceramint
.2017.02.017.

48. Iranmanesh P., Tabatabai S., Mehran M. Effect of Ni substitution

on structural, optical and magnetic properties of ferrite

nanoparticles synthesized by co-precipitation route.Mater. Sci. Eng.

B 2019, 251, 114442. https://doi.org/10.1016/j.mseb.2019.114442.

49. Mohsin M., Ansari N., Khan S., Ahmad N. Effect of R3+ (R= Pr, Nd,

Eu and Gd) substitution on the structural, electrical, magnetic

and optical properties of Mn-ferrite nanoparticles. J. Magn. Magn

Mater. 2018, 465, 81−87. https://doi.org/10.1016/j.jmmm.2018.05
.071.

50. Patil S., Anantharaju K. S., Rangappa D., Vidya Y. S., Sharma S. C.,

Renuka L., Nagabhushana H. Magnetic Eu-doped MgFe2O4

nanomaterials : an investigation of their structural, optical and

enhanced visible-light-driven photocatalytic performance. Environ.

Nanotechnol. Monit. Manag. 2020, 13, 100268. https://doi.org/10

.1016/j.enmm.2019.100268.

51. Ur A., Morley N. A., Amin N., Imran M., Ajaz M., Mahmood K., Ali A.,

Aslam A., Bibi A., Zahir M., Iqbal F., Bano N., Alzaid M. Controllable

https://doi.org/10.1016/j.matchemphys.2020.124193
https://doi.org/10.1016/j.matchemphys.2020.124193
https://doi.org/10.1016/j.ultsonch.2019.104839
https://doi.org/10.1016/j.ultsonch.2019.104839
https://doi.org/10.1016/j.jallcom.2018.01.123
https://doi.org/10.1016/j.ceramint.2019.10.149
https://doi.org/10.1016/j.ceramint.2018.11.033
https://doi.org/10.1016/j.jmmm.2019.165549
https://doi.org/10.1016/j.jmmm.2019.165549
https://doi.org/10.1016/j.ceramint.2019.11.180
https://doi.org/10.1016/j.ceramint.2019.11.180
https://doi.org/10.1016/j.jallcom.2017.10.103
https://doi.org/10.1016/j.jallcom.2017.10.103
https://doi.org/10.1016/j.ceramint.2019.02.164
https://doi.org/10.1016/j.physb.2020.412051
https://doi.org/10.1016/j.physb.2020.412051
https://doi.org/10.1016/j.jmmm.2018.01.001
https://doi.org/10.1016/j.jmmm.2018.01.001
https://doi.org/10.1016/j.ceramint.2020.09.185
https://doi.org/10.1016/j.solidstatesciences.2021.106542
https://doi.org/10.1016/j.solidstatesciences.2021.106542
https://doi.org/10.1016/j.jallcom.2020.157517
https://doi.org/10.1016/j.matchemphys.2019.121807
https://doi.org/10.1016/j.matchemphys.2019.121807
https://doi.org/10.1016/j.jmmm.2017.12.053
https://doi.org/10.1016/j.jmmm.2017.12.053
https://doi.org/10.1016/j.jallcom.2017.02.021
https://doi.org/10.1016/j.jallcom.2017.02.021
https://doi.org/10.1016/j.ijleo.2020.164462
https://doi.org/10.1016/j.ijleo.2020.164462
https://doi.org/10.1016/j.optmat.2017.08.027
https://doi.org/10.1016/j.optmat.2017.08.027
https://doi.org/10.1016/j.ceramint.2019.07.092
https://doi.org/10.1016/j.ceramint.2019.07.092
https://doi.org/10.1016/j.ceramint.2017.02.017
https://doi.org/10.1016/j.ceramint.2017.02.017
https://doi.org/10.1016/j.mseb.2019.114442
https://doi.org/10.1016/j.jmmm.2018.05.071
https://doi.org/10.1016/j.jmmm.2018.05.071
https://doi.org/10.1016/j.enmm.2019.100268
https://doi.org/10.1016/j.enmm.2019.100268


174 — S. O. Olatunji and T. O. Owolabi: Spinel band gap prediction using intelligent approach

synthesis of La3+ doped Zn0.5Co0.25Cu0.25Fe2−xLaxO4 (x= 0.0,

0.0125, 0.025, 0.0375, 0.05) nano-ferrites by sol-gel

auto-combustion route. Ceram. Int. 2020, 46, 29297−29308.
https://doi.org/10.1016/j.ceramint.2020.08.106.

52. Dojcinovic M. P., Vasiljevic Z. Z., Pavlovic V. P., Barisic D., Pajic D.,

Tadic N. B., Vesna M. Mixed MgeCo spinel ferrites: structure,

morphology, magnetic and photocatalytic properties. J. Alloys

Compd. 2021, 855, 157429. https://doi.org/10.1016/j.jallcom.2020

.157429.

53. Zeeshan T., Waseem S., Riaz M., Zia R. Ceram. Int. 2020, 46,

3935−3943. https://doi.org/10.1016/j.ceramint.2019.10.122.
54. Ashok A., Kennedy L. J., Vijaya J. J. Structural, optical and magnetic

properties of Zn1-xMnxFe2O4 (0 x 0.5) spinel nano particles for

transesteri fi cation of used cooking oil. J. Alloys Compd. 2019, 780,

816−828. https://doi.org/10.1016/j.jallcom.2018.11.390.
55. Shokri A., Farjami S., Boustani K. The role of Co ion substitution in

SnFe2O4 spinel ferrite nanoparticles: study of structural,

vibrational, magnetic and optical properties. Ceram. Int. 2018, 44,

22092−22101. https://doi.org/10.1016/j.ceramint.2018.08.319.

56. Kumar N., Kr R., Kumar S., Kumar P. Tuning in optical, magnetic

and Curie temperature behaviour of nickel ferrite by substitution

of monovalent K+1 ion of Ni0.8K0.2Fe2O4 nanomaterials for

multifunctional applications. Physica B: Phys. Condens. Matter 2021,

606, 412797. https://doi.org/10.1016/j.physb.2020.412797.

57. Sundararajan M., Kennedy L. J., Nithya P., Vijaya J. J., Bououdina M.

Visible light driven photocatalytic degradation of rhodamine B

using Mg doped cobalt ferrite spinel nanoparticles synthesized by

microwave combustion method. J. Phys. Chem. Solids 2017, 108,

61−75. https://doi.org/10.1016/j.jpcs.2017.04.002.
58. Lassoued A., Lassoued M. S., Dkhil B., Ammar S., Gadri A.

Substituted effect of Al3+ on structural, optical, magnetic and

photocatalytic activity of Ni ferrites. J. Magn. Magn Mater. 2019, 476,

124−133. https://doi.org/10.1016/j.jmmm.2018.12.062.
59. Somvanshi S. B., Jadhav S. A., Khedkar M. V., Kharat P. B., More S.

D., Jadhav K. M. Structural, thermal, spectral, optical and surface

analysis of rare earth metal ion (Gd3+) doped mixed Zn − Mg

nano-spinel ferrites. Ceram. Int. 2020, 46, 13170−13179. https://doi
.org/10.1016/j.ceramint.2020.02.091.

https://doi.org/10.1016/j.ceramint.2020.08.106
https://doi.org/10.1016/j.jallcom.2020.157429
https://doi.org/10.1016/j.jallcom.2020.157429
https://doi.org/10.1016/j.ceramint.2019.10.122
https://doi.org/10.1016/j.jallcom.2018.11.390
https://doi.org/10.1016/j.ceramint.2018.08.319
https://doi.org/10.1016/j.physb.2020.412797
https://doi.org/10.1016/j.jpcs.2017.04.002
https://doi.org/10.1016/j.jmmm.2018.12.062
https://doi.org/10.1016/j.ceramint.2020.02.091
https://doi.org/10.1016/j.ceramint.2020.02.091

	1 Introduction
	2 Mathematical formulation and background of the developed hybrid model
	2.1 Support vector regression
	2.2 Genetic algorithm

	3 Data acquisition and computational hybridization methodology
	3.1 Description of lattice distortion and the size of nano-particles for spinel nano-ferrite materials employed in model development
	3.2 Computation hybridization of support vector regression and genetic algorithms

	4 Results and discussion
	4.1 Convergence of hyper-parameters as initial population number changes
	4.2 Evaluation of model performance through error metrics
	4.3 Band gap tailoring effect of magnesium incorporation on cobalt ferrite spinel nanoparticle using the developed GA-SVR model
	4.4 Energy gap effect of aluminium dopants on nickel ferrite spinel material using the developed hybrid GA-SVR model
	4.5 Significance of lanthanum in band gap tuning of ferrite spinel material using the developed GA-SVR model
	4.6 External validation of the developed GA-SVR model

	5 Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


