Home Effect of Sr on the microstructure and corrosion properties of the as-cast Mg–Zn–Zr alloy
Article
Licensed
Unlicensed Requires Authentication

Effect of Sr on the microstructure and corrosion properties of the as-cast Mg–Zn–Zr alloy

  • Jinxiang Wu , Xin Cao , Chunxiang Xu ORCID logo EMAIL logo , Yuxing Dong , Xinming Di and Jinshan Zhang
Published/Copyright: February 18, 2022
Become an author with De Gruyter Brill

Abstract

The effect of Sr on the microstructure of Mg–Zn–Zr alloys was investigated by means of scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. An immersion experiment and electrochemical experiment were designed to study the effect of Sr on the corrosion performance of the alloys. The results show that the addition of Sr promotes the formation of Mg17Sr2 phase in the alloy, and this stripe phase appears at the alloy grain boundaries. With the increase in Sr content, a network structure is formed at the grain boundary, creating a corrosion barrier to prevent further corrosion of the alloy. The study found that Mg-4Zn-0.4Zr-1.0Sr alloy has the best corrosion performance.


Corresponding author: Chunxiang Xu, School of Materials Science and Engineering, Taiyuan University of Technology, Yingze West Street, Taiyuan 030024, P. R. China, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by National Natural Science Foundation of China (Grant nos. 51574175 and 51474153).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1 Meng, X., Jiang, Z., Zhu, S., Guan, S. J. Alloys Compd. 2020, 838, 155611. https://doi.org/10.1016/j.jallcom.2020.155611.Search in Google Scholar

2 Roche, V., Koga, G. Y., Matias, T. B., Kiminami, C. S., Junior, A. M. J. J. Alloys Compd. 2018, 774, 168. https://doi.org/10.1016/j.jallcom.2018.09.346.10.1016/j.jallcom.2018.09.346Search in Google Scholar

3. Jin, Y., Blawert, C., Feyerabend, F., Bohlen, J., Campos, M. S., Gavras, S., Wiese, B., Mei, D., Deng, M., Yang, H. Corrosion Sci. 2019, 158, 108096. https://doi.org/10.1016/j.corsci.2019.108096.10.1016/j.corsci.2019.108096Search in Google Scholar

4. Zhao, D., Witte, F., Lu, F., Wang, J., Li, J., Qin, L. Biomaterials 2017, 112, 287. https://doi.org/10.1016/j.biomaterials.2016.10.017.Search in Google Scholar PubMed

5. Peter, I., Castella, C., Rosso, M. Key Eng. Mater. 2016, 682, 53. https://doi.org/10.4028/www.scientific.net/KEM.682.53.Search in Google Scholar

6. Zhang, H. J., Zhang, D. F., Ma, C. H., Guo, S. F. Mater. Lett. 2013, 92, 45. https://doi.org/10.1016/j.matlet.2012.10.051.Search in Google Scholar

7. Mandal, M., Moon, A. P., Deo, G., Mendis, C. L., Mondal, K. Corrosion Sci. 2014, 78, 172. https://doi.org/10.1016/j.corsci.2013.09.012.10.1016/j.corsci.2013.09.012Search in Google Scholar

8. Pulido-González, N., Torres, B., García-Rodríguez, S., Rodrigo, P., Bonache, V., Hidalgo-Manrique, P., Mohedano, M., Rams, J. J. Alloys Compd. 2020, 831, 154735. https://doi.org/10.1016/j.jallcom.2020.154735.10.1016/j.jallcom.2020.154735Search in Google Scholar

9. Nan, L., Zheng, Y. J. Mater. Sci. Technol. 2013, 29, 489. https://doi.org/10.1016/j.jmst.2013.02.005.Search in Google Scholar

10. Yi, S., Zhang, W., Xu, C., Nie, K., Zhang, J., Zong, X. Int. J. Mater. Res. 2018, 109, 621. https://doi.org/10.3139/146.111651.Search in Google Scholar

11. Gu, N. X., Li, N., Zheng, Y. F., Ruan, L. J. Mater. Sci. Eng. B 2011, 176, 1778. https://doi.org/10.1016/j.mseb.2011.05.032.10.1016/j.mseb.2011.05.032Search in Google Scholar

12. Li, Y., Wen, C., Mushahary, D., Sravanthi, R., Harishankar, N., Pande, G., Hodgson, P. Acta Biomater. 2012, 8, 3177. https://doi.org/10.1016/j.actbio.2012.04.028.Search in Google Scholar

13. Yang, Z. S. P. Trans. Nonferrous Metals Soc. China 2010, 20, 306. https://doi.org/10.1016/S1003-6326(10)60488-8.Search in Google Scholar

14. Yu, Z., Chen, J., Yan, H., Xia, W., Guo, H. Mater. Lett. 2019, 260, 126920. https://doi.org/10.1016/j.matlet.2019.126920.Search in Google Scholar

15. Tang, H.Y., Wang, F., Li, D., Gu, X.N., Fan, Y.B., J. Mater. Lett., 2020, 264, 127285. https://doi.org/10.1016/j.matlet.2019.127285.10.1016/j.matlet.2019.127285Search in Google Scholar

16. Ibrahim, J. M., Wu, G., Zhao, Y., McKenzie, D. R. Corrosion Sci. 2015, 91, 160. https://doi.org/10.1016/j.corsci.2014.11.015.Search in Google Scholar

17. Zhang, S., Bi, Y., Li, J., Wang, Z., Yan, J. Bioact. Mater. 2017, 2, 53. https://doi.org/10.1016/j.bioactmat.2017.03.004.Search in Google Scholar PubMed PubMed Central

18. Zheng, M., Xu, G., Liu, D., Zhao, Y., Ning, B., Chen, M. J. Mater. Eng. Perform. 2018, 27, 1837. https://doi.org/10.1007/s11665-018-3278-x.Search in Google Scholar

19. ASTM G31-72. Standard Practice For Laboratory Immersion Corrosion Testing of Metals; American Society for Testing Materials: West Conshohocken, 2004.Search in Google Scholar

20. Cao, X., Jia, Q., Xu, C., Zhang, Z., Ren, C., Yang, W., Zhang, J. Adv. Eng. Mater. 2020, 22, 1901146. https://doi.org/10.1002/adem.201901146.10.1002/adem.201901146Search in Google Scholar

21. Cihova, M., Martinelli, E., Schmutz, P., Myrissa, A., Lffler, J. F. Acta Biomater. 2019, 100, 398. https://doi.org/10.1016/j.actbio.2019.09.021.10.1016/j.actbio.2019.09.021Search in Google Scholar PubMed

22. Hong-xiang, L., Qin, S.-k., Yang, C.-l., Ma, Y.-z., Wang, J., Liu, Y.-j., Zhang, J.-s. China Foundry 2018, 15, 363. https://doi.org/10.1007/s41230-018-7203-6.10.1007/s41230-018-7203-6Search in Google Scholar

23. Bornapour, M., Muja, N., Shum-Tim, D., Cerruti, M., Pekguleryuz, M. Acta Biomater. 2013, 9, 5319. https://doi.org/10.1016/j.actbio.2012.07.045.Search in Google Scholar

24. Ding, Y., Li, Y., Wen, C. Adv. Eng. Mater. 2016, 18, 259. https://doi.org/10.1002/adem.201500222.Search in Google Scholar

25. Cho, D. H., Lee, B. W., Jin, Y. P., Cho, K. M., Park, I. M. J. Alloys Compd. 2017, 695, 1166. https://doi.org/10.1016/j.jallcom.2016.10.244.10.1016/j.jallcom.2016.10.244Search in Google Scholar

26. Wang, J., Ma, Y., Guo, S., Jiang, W., Liu, Q. Mater. Design 2018, 153, 308. https://doi.org/10.1016/j.matdes.2018.04.062.10.1016/j.matdes.2018.04.062Search in Google Scholar

27. Zhang, Y., Li, J., Li, J. J. Mech. Behav. Biomed. Mater. 2018, 246, 257. https://doi.org/10.1016/j.jmbbm.2018.01.028.Search in Google Scholar

28. Miao, J., Ye, B., Wang, Q., Peng, T. J. Alloys Compd. 2013, 561, 184. https://doi.org/10.1016/j.jallcom.2013.01.202.10.1016/j.jallcom.2013.01.202Search in Google Scholar

29. Lasia, A. Electrochemical Impedance Spectroscopy and its Applications; Springer: London, 2014.10.1007/978-1-4614-8933-7Search in Google Scholar

30. Gu, M. Y., Wei, G. L., Liu, W. C., Wu, G. H. Mater. Corros. 2017, 68, 436. https://doi.org/10.1002/maco.201609141.Search in Google Scholar

31. Zhang, X. B., Ba, Z. X., Wang, Z. Z., Xue, Y. J., Wang, Q. Trans. Nonferrous Metals Soc. China 2014, 24, 3797. https://doi.org/10.1016/S1003-6326(14)63535-4.Search in Google Scholar

32. Wu, P. P., Xu, F. J., Deng, K. K., Han, F. Y., Zhang, Z. Z., Gao, R. Corrosion Sci. 2017, 127, 280. https://doi.org/10.1016/j.corsci.2017.08.014.10.1016/j.corsci.2017.08.014Search in Google Scholar

33. Yang, M., Pan, F., Cheng, R., Tang, A. J. Mater. Sci. 2007, 42, 10074. https://doi.org/10.1007/s10853-007-2035-6.Search in Google Scholar

34. Pan, H., Pang, K., Cui, F., Ge, F., Cheng, M., Wang, X., Zhongyu, C. Corrosion Sci. 2019, 157, 420. https://doi.org/10.1016/j.corsci.2019.06.022.10.1016/j.corsci.2019.06.022Search in Google Scholar

Received: 2021-03-02
Revised: 2022-01-15
Accepted: 2021-11-23
Published Online: 2022-02-18
Published in Print: 2022-03-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8264/html
Scroll to top button