Abstract
The effect of Sr on the microstructure of Mg–Zn–Zr alloys was investigated by means of scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. An immersion experiment and electrochemical experiment were designed to study the effect of Sr on the corrosion performance of the alloys. The results show that the addition of Sr promotes the formation of Mg17Sr2 phase in the alloy, and this stripe phase appears at the alloy grain boundaries. With the increase in Sr content, a network structure is formed at the grain boundary, creating a corrosion barrier to prevent further corrosion of the alloy. The study found that Mg-4Zn-0.4Zr-1.0Sr alloy has the best corrosion performance.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by National Natural Science Foundation of China (Grant nos. 51574175 and 51474153).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1 Meng, X., Jiang, Z., Zhu, S., Guan, S. J. Alloys Compd. 2020, 838, 155611. https://doi.org/10.1016/j.jallcom.2020.155611.Search in Google Scholar
2 Roche, V., Koga, G. Y., Matias, T. B., Kiminami, C. S., Junior, A. M. J. J. Alloys Compd. 2018, 774, 168. https://doi.org/10.1016/j.jallcom.2018.09.346.10.1016/j.jallcom.2018.09.346Search in Google Scholar
3. Jin, Y., Blawert, C., Feyerabend, F., Bohlen, J., Campos, M. S., Gavras, S., Wiese, B., Mei, D., Deng, M., Yang, H. Corrosion Sci. 2019, 158, 108096. https://doi.org/10.1016/j.corsci.2019.108096.10.1016/j.corsci.2019.108096Search in Google Scholar
4. Zhao, D., Witte, F., Lu, F., Wang, J., Li, J., Qin, L. Biomaterials 2017, 112, 287. https://doi.org/10.1016/j.biomaterials.2016.10.017.Search in Google Scholar PubMed
5. Peter, I., Castella, C., Rosso, M. Key Eng. Mater. 2016, 682, 53. https://doi.org/10.4028/www.scientific.net/KEM.682.53.Search in Google Scholar
6. Zhang, H. J., Zhang, D. F., Ma, C. H., Guo, S. F. Mater. Lett. 2013, 92, 45. https://doi.org/10.1016/j.matlet.2012.10.051.Search in Google Scholar
7. Mandal, M., Moon, A. P., Deo, G., Mendis, C. L., Mondal, K. Corrosion Sci. 2014, 78, 172. https://doi.org/10.1016/j.corsci.2013.09.012.10.1016/j.corsci.2013.09.012Search in Google Scholar
8. Pulido-González, N., Torres, B., García-Rodríguez, S., Rodrigo, P., Bonache, V., Hidalgo-Manrique, P., Mohedano, M., Rams, J. J. Alloys Compd. 2020, 831, 154735. https://doi.org/10.1016/j.jallcom.2020.154735.10.1016/j.jallcom.2020.154735Search in Google Scholar
9. Nan, L., Zheng, Y. J. Mater. Sci. Technol. 2013, 29, 489. https://doi.org/10.1016/j.jmst.2013.02.005.Search in Google Scholar
10. Yi, S., Zhang, W., Xu, C., Nie, K., Zhang, J., Zong, X. Int. J. Mater. Res. 2018, 109, 621. https://doi.org/10.3139/146.111651.Search in Google Scholar
11. Gu, N. X., Li, N., Zheng, Y. F., Ruan, L. J. Mater. Sci. Eng. B 2011, 176, 1778. https://doi.org/10.1016/j.mseb.2011.05.032.10.1016/j.mseb.2011.05.032Search in Google Scholar
12. Li, Y., Wen, C., Mushahary, D., Sravanthi, R., Harishankar, N., Pande, G., Hodgson, P. Acta Biomater. 2012, 8, 3177. https://doi.org/10.1016/j.actbio.2012.04.028.Search in Google Scholar
13. Yang, Z. S. P. Trans. Nonferrous Metals Soc. China 2010, 20, 306. https://doi.org/10.1016/S1003-6326(10)60488-8.Search in Google Scholar
14. Yu, Z., Chen, J., Yan, H., Xia, W., Guo, H. Mater. Lett. 2019, 260, 126920. https://doi.org/10.1016/j.matlet.2019.126920.Search in Google Scholar
15. Tang, H.Y., Wang, F., Li, D., Gu, X.N., Fan, Y.B., J. Mater. Lett., 2020, 264, 127285. https://doi.org/10.1016/j.matlet.2019.127285.10.1016/j.matlet.2019.127285Search in Google Scholar
16. Ibrahim, J. M., Wu, G., Zhao, Y., McKenzie, D. R. Corrosion Sci. 2015, 91, 160. https://doi.org/10.1016/j.corsci.2014.11.015.Search in Google Scholar
17. Zhang, S., Bi, Y., Li, J., Wang, Z., Yan, J. Bioact. Mater. 2017, 2, 53. https://doi.org/10.1016/j.bioactmat.2017.03.004.Search in Google Scholar PubMed PubMed Central
18. Zheng, M., Xu, G., Liu, D., Zhao, Y., Ning, B., Chen, M. J. Mater. Eng. Perform. 2018, 27, 1837. https://doi.org/10.1007/s11665-018-3278-x.Search in Google Scholar
19. ASTM G31-72. Standard Practice For Laboratory Immersion Corrosion Testing of Metals; American Society for Testing Materials: West Conshohocken, 2004.Search in Google Scholar
20. Cao, X., Jia, Q., Xu, C., Zhang, Z., Ren, C., Yang, W., Zhang, J. Adv. Eng. Mater. 2020, 22, 1901146. https://doi.org/10.1002/adem.201901146.10.1002/adem.201901146Search in Google Scholar
21. Cihova, M., Martinelli, E., Schmutz, P., Myrissa, A., Lffler, J. F. Acta Biomater. 2019, 100, 398. https://doi.org/10.1016/j.actbio.2019.09.021.10.1016/j.actbio.2019.09.021Search in Google Scholar PubMed
22. Hong-xiang, L., Qin, S.-k., Yang, C.-l., Ma, Y.-z., Wang, J., Liu, Y.-j., Zhang, J.-s. China Foundry 2018, 15, 363. https://doi.org/10.1007/s41230-018-7203-6.10.1007/s41230-018-7203-6Search in Google Scholar
23. Bornapour, M., Muja, N., Shum-Tim, D., Cerruti, M., Pekguleryuz, M. Acta Biomater. 2013, 9, 5319. https://doi.org/10.1016/j.actbio.2012.07.045.Search in Google Scholar
24. Ding, Y., Li, Y., Wen, C. Adv. Eng. Mater. 2016, 18, 259. https://doi.org/10.1002/adem.201500222.Search in Google Scholar
25. Cho, D. H., Lee, B. W., Jin, Y. P., Cho, K. M., Park, I. M. J. Alloys Compd. 2017, 695, 1166. https://doi.org/10.1016/j.jallcom.2016.10.244.10.1016/j.jallcom.2016.10.244Search in Google Scholar
26. Wang, J., Ma, Y., Guo, S., Jiang, W., Liu, Q. Mater. Design 2018, 153, 308. https://doi.org/10.1016/j.matdes.2018.04.062.10.1016/j.matdes.2018.04.062Search in Google Scholar
27. Zhang, Y., Li, J., Li, J. J. Mech. Behav. Biomed. Mater. 2018, 246, 257. https://doi.org/10.1016/j.jmbbm.2018.01.028.Search in Google Scholar
28. Miao, J., Ye, B., Wang, Q., Peng, T. J. Alloys Compd. 2013, 561, 184. https://doi.org/10.1016/j.jallcom.2013.01.202.10.1016/j.jallcom.2013.01.202Search in Google Scholar
29. Lasia, A. Electrochemical Impedance Spectroscopy and its Applications; Springer: London, 2014.10.1007/978-1-4614-8933-7Search in Google Scholar
30. Gu, M. Y., Wei, G. L., Liu, W. C., Wu, G. H. Mater. Corros. 2017, 68, 436. https://doi.org/10.1002/maco.201609141.Search in Google Scholar
31. Zhang, X. B., Ba, Z. X., Wang, Z. Z., Xue, Y. J., Wang, Q. Trans. Nonferrous Metals Soc. China 2014, 24, 3797. https://doi.org/10.1016/S1003-6326(14)63535-4.Search in Google Scholar
32. Wu, P. P., Xu, F. J., Deng, K. K., Han, F. Y., Zhang, Z. Z., Gao, R. Corrosion Sci. 2017, 127, 280. https://doi.org/10.1016/j.corsci.2017.08.014.10.1016/j.corsci.2017.08.014Search in Google Scholar
33. Yang, M., Pan, F., Cheng, R., Tang, A. J. Mater. Sci. 2007, 42, 10074. https://doi.org/10.1007/s10853-007-2035-6.Search in Google Scholar
34. Pan, H., Pang, K., Cui, F., Ge, F., Cheng, M., Wang, X., Zhongyu, C. Corrosion Sci. 2019, 157, 420. https://doi.org/10.1016/j.corsci.2019.06.022.10.1016/j.corsci.2019.06.022Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Heat-flow parameters affecting microstructure and mechanical properties of Al–Cu and Al–Ni alloys in directional solidification: an experimental comparative study
- Effect of Sr on the microstructure and corrosion properties of the as-cast Mg–Zn–Zr alloy
- Influence of Nb content on mechanical behavior and microstructure of Ti–Nb alloys
- TLP diffusion bonding of C–C composite and TC4 alloy using AgCuNiLi alloy as joining material
- Effect of CuO nanoparticle additive on optical, photocatalytic and surface properties of TiO2 mesoporous nanoparticles
- Sonochemical synthesis of MnFe2O4 nanoparticles with ionic liquid and their application in magnetic and dielectric polystyrene nanocomposites
- Preparation and characterization of electrospun sulfonated polysulfone/ZrO2 composite nanofiber membranes
- Short Communication
- Microstructure and electrochemical properties of FeCoNiCuZn high-entropy alloy films by DC electrodeposition
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Heat-flow parameters affecting microstructure and mechanical properties of Al–Cu and Al–Ni alloys in directional solidification: an experimental comparative study
- Effect of Sr on the microstructure and corrosion properties of the as-cast Mg–Zn–Zr alloy
- Influence of Nb content on mechanical behavior and microstructure of Ti–Nb alloys
- TLP diffusion bonding of C–C composite and TC4 alloy using AgCuNiLi alloy as joining material
- Effect of CuO nanoparticle additive on optical, photocatalytic and surface properties of TiO2 mesoporous nanoparticles
- Sonochemical synthesis of MnFe2O4 nanoparticles with ionic liquid and their application in magnetic and dielectric polystyrene nanocomposites
- Preparation and characterization of electrospun sulfonated polysulfone/ZrO2 composite nanofiber membranes
- Short Communication
- Microstructure and electrochemical properties of FeCoNiCuZn high-entropy alloy films by DC electrodeposition
- News
- DGM – Deutsche Gesellschaft für Materialkunde