Home The effect of homogenization on microstructure and hardness of a large-scale high-aluminum Al4.4Co26Cr18Fe18Ni26Ti5.5 Compositionally Complex Alloy cast
Article
Licensed
Unlicensed Requires Authentication

The effect of homogenization on microstructure and hardness of a large-scale high-aluminum Al4.4Co26Cr18Fe18Ni26Ti5.5 Compositionally Complex Alloy cast

  • Florian Biermair EMAIL logo and Gerald Ressel
Published/Copyright: June 29, 2021
Become an author with De Gruyter Brill

Abstract

As any largescale cast material, specific Compositionally Complex Alloys or High Entropy Superalloys contain segregations, leading to unideal, inhomogeneous properties. This work presents the effects of a homogenization heat treatment at 1 150°C for 6 h of a large-scale cast Al4.4Co26Cr18Fe18Ni26Ti5.5 alloy. In order to reveal these effects, homogenized specimens were analyzed and compared to the as-cast state with regard to chemical homogeneity as well as the homogeneity of elemental solution by means of scanning electron microscopy, energy dispersive X-ray spectroscopy as well as X-ray diffraction and hardness measurements. Despite the increased Al content, intermetallic phases and segregations, observable in the as-cast state, dissolve during homogenization. Improved, but not full homogeneity of elemental distribution after annealing can be determined. The improved state of solution and homogeneity agrees with the increasing lattice parameter from 3.572 Å to 3.594 Å and the decreasing hardness from 320.3 HV10 to 245.2 HV10 during homogenization.


Florian Biermair, MSc Materials Center Leoben Forschung GmbH Roseggerstraße 12 Leoben 8700 Austria Tel.: +43 384245922556 Web: https://www.mcl.at/

Funding statement: This manuscript is a result of the project with the short title “HEADesign" with FFG ProjectNumber 864865. This project is funded by resources of the Austrian ministry for traffic, innovation and technology, BMVIT, and carried out in the frame of the program production of the future (“Produktion der Zukunft"). The authors acknowledge the financial support of voestalpine BÖHLER Edelstahl GmbH & Co KG, voestalpine BÖHLER Aerospace GmbH & Co KG and RHPTechnology GmbH, as well as the support of COMTES FHT a.s., for the implementation of the casting process.

  1. Conflict of Interest

    On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

[1] S. Gorsse, M.H. Nguyen, O.N. Senkov, D.B. Miracle: Data Br. 21 (2018) 2664. PMid:30761350; DOI:10.1016/j.dib.2018.11.11110.1016/j.dib.2018.11.111Search in Google Scholar PubMed PubMed Central

[2] M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang: High-Entropy Alloys: Fundamentals and Applications, Springer International Publishing AG Switzerland, Cham (2016). DOI:10.1007/978-3-319-27013-510.1007/978-3-319-27013-5Search in Google Scholar

[3] B.S. Murty, J.W. Yeh, S. Ranganathan: High-Entropy Alloys, Butterworth-Heinemann, London (2014). DOI:10.1016/C2013-0-14235-310.1016/C2013-0-14235-3Search in Google Scholar

[4] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang: Adv. Eng. Mater. 6 (2004) 299. DOI:10.1002/adem.20030056710.1002/adem.200300567Search in Google Scholar

[5] J.-W. Yeh: Eur. J. Control 31 (2006) 633. DOI:10.3166/acsm.31.633-64810.3166/acsm.31.633-648Search in Google Scholar

[6] J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu: J. Alloys Compd. 760 (2018) 15. DOI:10.1016/j.jallcom.2018.05.06710.1016/j.jallcom.2018.05.067Search in Google Scholar

[7] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent: Mater. Sci. Eng. A 375–377 (2004) 213. DOI:10.1016/j.msea.2003.10.25710.1016/j.msea.2003.10.257Search in Google Scholar

[8] A. Gali, E.P. George: Intermetallics 39 (2013) 74. DOI:10.1016/j.intermet.2013.03.01810.1016/j.intermet.2013.03.018Search in Google Scholar

[9] M.J. Jang, S. Praveen, H.J. Sung, J.W. Bae, J. Moon, H.S. Kim: J. Alloys Compd. 730 (2018) 242. DOI:10.1016/j.jallcom.2017.09.29310.1016/j.jallcom.2017.09.293Search in Google Scholar

[10] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George: Acta Mater. 61 (2013) 5743. DOI:10.1016/j.actamat.2013.06.01810.1016/j.actamat.2013.06.018Search in Google Scholar

[11] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter: Acta Mater. 96 (2015) 258. DOI:10.1016/j.actamat.2015.06.02510.1016/j.actamat.2015.06.025Search in Google Scholar

[12] F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George: Acta Mater. 112 (2016) 40. DOI:10.1016/j.actamat.2016.04.00510.1016/j.actamat.2016.04.005Search in Google Scholar

[13] H.M. Daoud, A.M. Manzoni, N. Wanderka, U. Glatzel: JOM 67 (2015) 2271. DOI:10.1007/s11837-015-1484-710.1007/s11837-015-1484-7Search in Google Scholar

[14] D. Chen, F. He, B. Han, Q. Wu, Y. Tong, Y. Zhao, Z. Wang, J. Wang, J. jung Kai: Intermetallics 110 (2019) 106476. DOI:10.1016/j.intermet.2019.10647610.1016/j.intermet.2019.106476Search in Google Scholar

[15] Y.T. Chen, Y.J. Chang, H. Murakami, S. Gorsse, A.C. Yeh: Scr. Mater. 187 (2020) 177. DOI:10.1016/j.scriptamat.2020.06.00210.1016/j.scriptamat.2020.06.002Search in Google Scholar

[16] A.M. Manzoni, S. Haas, J.M. Yu, H.M. Daoud, U. Glatzel, H. Aboulfadl, F. Mücklich, R. Duran, G. Schmitz, D.M. Többens, S. Matsumura, F. Vogel, N. Wanderka: Mater. Charact. 154 (2019) 363. DOI:10.1016/j.matchar.2019.06.00910.1016/j.matchar.2019.06.009Search in Google Scholar

[17] A.C. Yeh, T.K. Tsao, Y.J. Chang, K.C. Chang, J.W. Yeh, M.S. Chiou, S.R. Jian, C.M. Kuo, W.R. Wang, H. Murakami: Int. J. Metall. Mater. Eng. 1 (2015) 1. DOI:10.15344/2455-2372/2015/10710.15344/2455-2372/2015/107Search in Google Scholar

[18] T.K. Tsao, A.C. Yeh, C.M. Kuo, H. Murakami: Adv. Eng. Mater. 19 (2017) 1. DOI:10.1002/adem.20160047510.1002/adem.201600475Search in Google Scholar

[19] A.M. Manzoni, S. Singh, H.M. Daoud, R. Popp, R. Völkl, U. Glatzel, N. Wanderka: Entropy 18 (2016) 104. DOI:10.3390/e1804010410.3390/e18040104Search in Google Scholar

[20] T. Yang, Y.L. Zhao, L. Fan, J. Wei, J.H. Luan, W.H. Liu, C. Wang, Z.B. Jiao, J.J. Kai, C.T. Liu: Acta Mater. 189 (2020) 47. DOI:10.1016/j.actamat.2020.02.05910.1016/j.actamat.2020.02.059Search in Google Scholar

[21] Y.L. Zhao, T. Yang, Y.R. Li, L. Fan, B. Han, Z.B. Jiao, D. Chen, C.T. Liu, J.J. Kai: Acta Mater. 188 (2020) 517. DOI:10.1016/j.actamat.2020.02.02810.1016/j.actamat.2020.02.028Search in Google Scholar

[22] Y.J. Chang, A.C. Yeh: J. Alloys Compd. 653 (2015) 379. DOI:10.1016/j.jallcom.2015.09.04210.1016/j.jallcom.2015.09.042Search in Google Scholar

[23] Y.J. Chang, A.C. Yeh: Mater. Chem. Phys. 210 (2018) 111. DOI:10.1016/j.matchemphys.2017.09.05710.1016/j.matchemphys.2017.09.057Search in Google Scholar

[24] B.C. Hu, Y.J. Chang, A.C. Yeh, Y. Ju: Procedia Manuf. 15 (2018) 364. DOI:10.1016/j.promfg.2018.07.23110.1016/j.promfg.2018.07.231Search in Google Scholar

[25] K. Ming, X. Bi, J. Wang: Int. J. Plast. 100 (2018) 177. DOI:10.1016/j.ijplas.2017.10.00510.1016/j.ijplas.2017.10.005Search in Google Scholar

[26] C.M. Kuo, C.W. Tsai: Mater. Chem. Phys. 210 (2018) 103. DOI:10.1016/j.matchemphys.2017.10.06410.1016/j.matchemphys.2017.10.064Search in Google Scholar

[27] R.C. Reed: The Superalloys, 1st ed. Cambridge University Press, Cambridge (2006). DOI:10.1017/CBO978051154128510.1017/CBO9780511541285Search in Google Scholar

[28] G. Gottstein: Physikalische Grundlagen der Materialkunde, 3rd ed. Springer-Verlag Berlin Heidelberg, Berlin Heidelberg (2007). DOI:10.1007/978-3-540-71105-610.1007/978-3-540-71105-6Search in Google Scholar

[29] Q. Feng, T.K. Nandy, T.M. Pollock: Scr. Mater. 50 (2004) 849. DOI:10.1016/j.scriptamat.2003.12.01310.1016/j.scriptamat.2003.12.013Search in Google Scholar

[30] Z.J. Miao, A.D. Shan, Y.B. Wu, J. Lu, W.L. Xu, H.W. Song: Trans. Nonferrous Met. Soc. China 21 (2011) 1009. DOI:10.1016/S1003-6326(11)60814-510.1016/S1003-6326(11)60814-5Search in Google Scholar

[31] G. Sauthoff: Intermetallics, VCH Verlagsgesellschaft mbH, Weinheim (1995). DOI:10.1002/978352761541410.1002/9783527615414Search in Google Scholar

[32] T.M. Butler, M.L. Weaver: J. Alloys Compd. 674 (2016) 229. DOI:10.1016/j.jallcom.2016.02.25710.1016/j.jallcom.2016.02.257Search in Google Scholar

[33] Landolt-Börnstein: (2012). DOI:10.1007/978-3-540-88142-1_4310.1007/978-3-540-88142-1_43Search in Google Scholar

[34] Landolt-Börnstein: (1998). DOI:10.1007/10551312_266510.1007/10551312_2665Search in Google Scholar

[35] Landolt-Börnstein: (2012). DOI:10.1007/978-3-540-88142-1_810.1007/978-3-540-88142-1_8Search in Google Scholar

[36] D.J. Dyson, B. Holmes: J. Iron Steel Inst., London 208 (1970) 469. https://ci.nii.ac.jp/naid/10007559810/en/Search in Google Scholar

[37] P. Caron: High γ’ Solvus New Generation Nickel-Based Superalloys for Single Crystal Turbine Blade Applications, in: T.M. Pollock (Ed.), Superalloys, 2000, TMS, Warrendale, USA (2000): pp. 737–746. DOI:10.7449/2000/superalloys_2000_737_74610.7449/2000/superalloys_2000_737_746Search in Google Scholar

[38] E.O. Hall: Proc. Phys. Soc., London, Sect. B 64 (1951) 747. DOI:10.1088/0370-1301/64/9/30310.1088/0370-1301/64/9/303Search in Google Scholar

Received: 2021-01-26
Accepted: 2021-04-14
Published Online: 2021-06-29
Published in Print: 2021-08-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8219/html?lang=en
Scroll to top button