Article
Licensed
Unlicensed
Requires Authentication
Erratum
Published/Copyright:
February 23, 2021
Published Online: 2021-02-23
Published in Print: 2020-06-01
© 2020 by Walter de Gruyter Berlin/Boston
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- CONTENTS
- Original Contributions
- Accurate estimation of DLC thin film hardness using genetic programming
- Effects of graphene on the microstructure and properties of MAO coatings formed on AA7050
- Influence of nanostructured Cu on the mechanical properties of Cu–MWCNTs composites
- Effect of NbC on the microstructure, mechanical properties, and oxidation resistance of Ti(C,N)-based cermets
- Evolution of microstructure and wear-friction behavior of W-30 wt.% Cu nanocomposite produced via a mechanochemical synthesis route
- Comparison of the strengthening effects of Nb, V, and Ti on the mechanical properties of 20MnSi low-alloy steel
- Effects of Zn content on surface deformability and corrosion resistance of MgZnMnCa alloys
- Experimental investigation on low cycle fatigue properties of Ni-based alloy with single hole
- Phase relationships in the Ce–Nd–B system at 773 K
- Notifications
- Erratum
- DGM
- CONFERENCES
- Imprint
Articles in the same Issue
- CONTENTS
- Original Contributions
- Accurate estimation of DLC thin film hardness using genetic programming
- Effects of graphene on the microstructure and properties of MAO coatings formed on AA7050
- Influence of nanostructured Cu on the mechanical properties of Cu–MWCNTs composites
- Effect of NbC on the microstructure, mechanical properties, and oxidation resistance of Ti(C,N)-based cermets
- Evolution of microstructure and wear-friction behavior of W-30 wt.% Cu nanocomposite produced via a mechanochemical synthesis route
- Comparison of the strengthening effects of Nb, V, and Ti on the mechanical properties of 20MnSi low-alloy steel
- Effects of Zn content on surface deformability and corrosion resistance of MgZnMnCa alloys
- Experimental investigation on low cycle fatigue properties of Ni-based alloy with single hole
- Phase relationships in the Ce–Nd–B system at 773 K
- Notifications
- Erratum
- DGM
- CONFERENCES
- Imprint