Home Radiation damage during HRTEM studies in pure Al and Al alloys
Article
Licensed
Unlicensed Requires Authentication

Radiation damage during HRTEM studies in pure Al and Al alloys

  • Bernhard Mingler and H. Peter Karnthaler EMAIL logo
Published/Copyright: February 12, 2022
Become an author with De Gruyter Brill

Abstract

During transmission electron microscopy (TEM) investigations of Al alloys, defects caused by the electron irradiation can occur. Since the image contrast of these irradiation defects is similar to that of early stages of precipitates, care is needed to avoid confusion. In the present paper the formation and the coarsening of radiation damage defects were studied by in situ TEM in both, pure Al and Al alloys. High-resolution (HR)TEM images show on an atomic level that the radiation defects are extrinsic Frank loops (some converted into unfaulted prismatic loops); they are distributed homogeneously within the TEM foil but inhomogeneously on the four {111} planes. Applying HRTEM imaging conditions, the minimum electron energy causing defects is found to be as low as 110 keV using a [110] beam direction. The results for pure Al are very similar to those of the Al alloys. Therefore, during HRTEM studies (using accelerating voltages > 100 kV) the formation of radiation defects seems inevitable; they can be distinguished from the early stages of precipitates if they lie on different planes.


Dedicated to Professor Dr. Knut Urban on the occasion of his 65th birthday



Professor H. Peter Karnthaler Institute of Materials Physics, University of Vienna Boltzmanngasse 5, A-1090 Wien, Austria Tel.: +43 1 4277 51307 (-51302 secretary) Fax: +43 1 4277 51316

Funding statement: Financial support from the ‘Austrian FWF’ is gratefully acknowledged

References

[1] K. Urban: Phys. Stat. Sol. (a): 1 (1970) 761.10.1002/pssa.2210040321Search in Google Scholar

[2] M.J. Goringe: Ultramicroscopy 39 (1991) 100.10.1016/0304-3991(91)90188-CSearch in Google Scholar

[3] S. Kojima, Y. Satoh, H. Taoka, I. Ishida, T. Yoshiie, M. Kiritani: Phil. Mag. A 59 (1989) 519.10.1080/01418618908229782Search in Google Scholar

[4] K. Furuya, M. Piao, N. Ishikawa, T. Saito: Mater. Res. Soc. Symp. Proc. 439 (1997) 331.10.1557/PROC-439-331Search in Google Scholar

[5] S. Belliot, A. Hundt, B. Jouffrey, in: H.A. Calderón Benavides, M.J. Yacamán (Eds.), Proc. 14th Intern. Congr. on Electron Micr., Vol. 2, Institute of Physics Publishing, Bristol and Philadelphia (1998) 99.Search in Google Scholar

[6] Y.C. Chang, J.M. Howe: Ultramicroscopy 51 (1993) 46.10.1016/0304-3991(93)90135-KSearch in Google Scholar

[7] L. Reich, M. Murayama, K. Hono: Acta mater. 46 (1998) 6053.10.1016/S1359-6454(98)00280-8Search in Google Scholar

[8] H.P. Karnthaler, C. Rentenberger, T. Waitz, B. Mingler: Mater. Sci. Eng. A 387–389 (2004) 777.10.1016/j.msea.2004.01.125Search in Google Scholar

[9] B. Jouffrey, M. Karlik: Microsc. Microanal. Microstruct. 3 (1992) 243.10.1051/mmm:0199200302-3024300Search in Google Scholar

[10] B. Mingler, H.P. Karnthaler, in: D.L. Dorset, S. Hovmöller, X. Zou (Eds.), Electron Crystallography, NATO ASI Series E-Vol. 347, Kluwer Academic Publishers (1997) 397.10.1007/978-94-015-8971-0_40Search in Google Scholar

[11] B. Mingler, H.P. Karnthaler: Z. Metallkd. 84 (1993) 313.10.1515/ijmr-1993-840506Search in Google Scholar

[12] K. Urban, A. Seeger: Phil. Mag. 30(6) (1974) 395.10.1080/14786437408207289Search in Google Scholar

[13] M. Kiritani: Ultramicroscopy 39 (1991) 135.10.1016/0304-3991(91)90193-ASearch in Google Scholar

[14] H. Fischer, C. Gomez, M. Rühle, J. Diehl, in: M.T. Robinson, F.W. Young (Eds.), Proc. Int. Conf. “Fundamental Aspects of Radiation Damage in Metals”, Gatlinburg TN Oct. 6–10 (1975).Search in Google Scholar

[15] S. Amelinckx, in: F.R.N. Nabarro (Ed.), Dislocations in Solids, Vol. 2, North-Holland Publishing Company, Amsterdam, New York, Oxford (1979) 67.Search in Google Scholar

[16] N.J. Zaluzec, J.F. Mansfield, in: K. Rajan (Ed.), Intermediate Voltage Microscopy and its Application to Materials Science, Philips Electron Optics Publishing Group (1987) 9.Search in Google Scholar

[17] W. Jäger, M. Rühle, M.Wilkens: phys. stat. sol. (a) 31 (1975) 525.10.1002/pssa.2210310224Search in Google Scholar

[18] W. Schilling, H. Ullmaier, in: R.W. Cahn, P. Haasen, E.J. Kramer (Eds.), Materials Science and Technology, 10B, VCH, Weinheim (1994) 179.Search in Google Scholar

[19] D.I.R. Norris, in: E. Ruedl, U. Valdre (Eds.), Electron Microscopy in Materials Science, Vol. 3, ECSC, Luxembourg (1976) 1101.Search in Google Scholar

[20] G.M. Bond, I.M. Robertson, F.M. Zeides, H.K. Birnbaum: Phil. Mag. A 55 (1987) 669.10.1080/01418618708214376Search in Google Scholar

[21] H.M. Simpson, R.L. Chaplin: Phys. Rev. 185 (1969) 958.10.1103/PhysRev.185.958Search in Google Scholar

[22] K. Urban: phys. stat. sol. 56 (1979) 157.10.1002/pssa.2210560116Search in Google Scholar

[23] A. Wolfenden: Radiation Effects 21 (1974) 197.10.1080/00337577408241463Search in Google Scholar

[24] K. Tanaka, Y. Shimomura: Jap. J. Appl. Phys. 20 (1981) 1393.10.1143/JJAP.20.1393Search in Google Scholar

[25] N. Yoshida, K. Urban: Physics Letters A 63 (1977) 381.10.1016/0375-9601(77)90939-2Search in Google Scholar

[26] W. Sigle, M. Hohenstein, A. Seeger: Phil. Mag. Lett. 62 (1990) 67.10.1080/09500839008203741Search in Google Scholar

[27] F. Gao, D.J. Bacon: Phil. Mag. A 67 (1993) 289.10.1080/01418619308207159Search in Google Scholar

Received: 2006-01-20
Accepted: 2006-04-05
Published Online: 2022-02-12

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Professor Dr. Knut Urban 65 Years
  4. Basic
  5. Ordering processes and atomic defects in FeCo
  6. Atomic resolution electron tomography: a dream?
  7. Electron tomography of microelectronic device interconnects
  8. Aberration correction in electron microscopy
  9. Off-axis electron holography: Materials analysis at atomic resolution
  10. Determination of phases of complex scattering amplitudes and two-particle structure factors by investigating diffractograms of thin amorphous foils
  11. Prospects of the multislice method for CBED pattern calculation
  12. Electron energy-loss spectrometry for metals:some thoughts beyond microanalysis
  13. Quantitative assessment of nanoparticle size distributions from HRTEM images
  14. Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide
  15. Structural domains in antiferromagnetic LaFeO3 thin films
  16. Short-range order of liquid Ti72.3Fe27.7 investigated by a combination of neutron scattering and X-ray diffraction
  17. Extended interfacial structure between two asymmetrical facets of a Σ = 9 grain boundary in copper
  18. Dislocation imaging in fcc colloidal single crystals
  19. Applied
  20. Omega phase transformation – morphologies and mechanisms
  21. Mixed (Sr1 − xCax)33Bi24Al48O141 fullerenoids: the defect structure analysed by (S)TEM techniques
  22. Wetting of aluminium-based complex metallic alloys
  23. Annealing-induced phase transitions in a Zr–Ti–Nb–Cu–Ni–Al bulk metallic glass matrix composite containing quasicrystalline precipitates
  24. Special planar defects in the structural complex metallic alloys of Al–Pd–Mn and Al–Ni–Rh
  25. On the formation of Si nanowires by molecular beam epitaxy
  26. Self-induced oscillations in Si and other semiconductors
  27. Growth, interface structure, and magnetic properties of Fe/GaAs and Fe3Si/GaAs hybrid systems
  28. An investigation of improved titanium/titanium nitride barriers for submicron aluminum-filled contacts by energy-filtered transmission electron microscopy
  29. Radiation damage during HRTEM studies in pure Al and Al alloys
  30. Cross-sectional high-resolution transmission electron microscopy at Mo/Si multilayer stacks
  31. Structural properties of the fiber –matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates
  32. Microstructure and properties of surface-treated Timetal 834
  33. Notifications
  34. Personal
  35. Conferences
Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0163/pdf?lang=en
Scroll to top button