Home Self-induced oscillations in Si and other semiconductors
Article
Licensed
Unlicensed Requires Authentication

Self-induced oscillations in Si and other semiconductors

  • Helmut Föll EMAIL logo , Jürgen Carstensen and Eugen Foca
Published/Copyright: February 12, 2022
Become an author with De Gruyter Brill

Abstract

Some metals share an elusive property with silicon (and other semiconductors): they may exhibit strong self-induced current oscillations during anodic dissolution in electrochemical experiments. While this feature, as well as related features concerning self-organization at reactive solid-liquid interfaces, is still not well understood, the so-called “current-burst model” of the authors succeeded in reproducing many effects quantitatively that have been observed at the Si electrode. The current-burst model assumes that current flow through the electrode on a nm scale is inhomogeneous in both time and space; a single current-burst is a stochastic event. Current oscillations in time and space result from interactions in space or time of single current-bursts. The paper outlines the basics of the model and gives results of Monte Carlo simulations concerning stable and damped oscillations for the current and, as a new feature, for the voltage. With the current-burst model a kind of “nano”-electrochemistry is introduced; its strengths, weaknesses, and possible implications for other electrochemical phenomena and for other materials are briefly discussed.


Dedicated to Professor Dr. Knut Urban on the occasion of his 65th birthday



Prof. Dr. Helmut Föll Lehrstuhl für Materialwissenschaft Technische Fakultät der Christian-Albrechts-Universität zu Kiel Kaiserstraße 2, D-24143 Kiel, Germany Tel.: +49 431 880 6175 Fax: +49 431 880 6178

Funding statement: The authors gratefully acknowledge contributions and discussions with Drs. S. Frey, G. Hasse, G. Popkirov, and a fruitful and frank exchange of ideas with Drs. J. Grzanna, H. Jungblut and H.-J. Lewerenz

References

[1] X.G. Zhang: Electrochemistry of silicon and its oxide, Kluwer Academic – Plenum Publishers, New York (2001).Search in Google Scholar

[2] V. Lehmann: Electrochemistry of silicon, Wiley-VCH, Weinheim (2002).10.1002/3527600272Search in Google Scholar

[3] H. Föll, M. Christophersen, J. Carstensen, G. Hasse: Mater. Sci. Eng. R 39 (4) (2002) 93.10.1016/S0927-796X(02)00090-6Search in Google Scholar

[4] H. Föll, S. Langa, J. Carstensen, M. Christophersen, I.M. Tiginyanu: Adv. Mater. 15 (2003) 183.10.1002/adma.200390043Search in Google Scholar

[5] C. Fang, H. Föll, J. Carstensen: J. Electroanal. Chem., to be published.Search in Google Scholar

[6] A.J. Sedriks: Corrosion of Stainless Steels, JohnWiley, New York (1996).Search in Google Scholar

[7] M. Faraday: Phil. Trans. Roy. Soc. Ser. A 124 (1834) 77.10.1098/rstl.1834.0008Search in Google Scholar

[8] IUPAC manual of symbols and technology, Appendix 2, Part 1, Pure and Appl. Chem. 31 (1972) 578.Search in Google Scholar

[9] L.T. Canham, M.P. Stewart, J.M. Buriak, C.L. Reeves, M. Anderson, E.K. Squire, P. Allcock, P.A. Snow: Phys. Stat. Sol. (a) 182 (1) (2000) 521.10.1002/1521-396X(200011)182:1<521::AID-PSSA521>3.0.CO;2-7Search in Google Scholar

[10] L.T. Canham, A. Nassiopoulou, V. Parkhutik (Eds.): Phys. stat. sol (a) 197 (2003).10.1002/pssa.200390006Search in Google Scholar

[11] L.T. Canham, A. Nassiopoulou, V. Parkhutik (Eds.): Phys. Stat. Sol. (a) 202 (8) (2005).Search in Google Scholar

[12] P. Schiffer: Nature 35 (2002) 420.10.1038/420035aSearch in Google Scholar

[13] A.P. Ramirez: MRS Bull. 30 (2005) 447.10.1557/mrs2005.122Search in Google Scholar

[14] S. Langa, M. Christophersen, J. Carstensen, I.M. Tiginyanu, H. Föll: Phys. Stat. Sol. (a) 195 (2003) R4.10.1002/pssa.200306456Search in Google Scholar

[15] A.M. Zhabotinsky: Biofizika 9 (1964) 306.Search in Google Scholar

[16] A.N. Zaikin, A.M. Zhabotinsky: Nature 225 (1970) 535.10.1038/225535b0Search in Google Scholar

[17] P.J. Sides, C.W. Tobias: J. Electrochem. Soc. 132 (3) (1985) 583.10.1149/1.2113910Search in Google Scholar

[18] Y. Mukouyama, S. Nakanishi, H. Konishi, Y. Ikeshima, Y. Nakato: J. Phys. Chem. B 105 (44) (2001) 10905.10.1021/jp012461sSearch in Google Scholar

[19] V.P. Parkhutik, E. Matveeva: Electrochemical and Sol. State Lett. 2 (1999) 371.10.1149/1.1390841Search in Google Scholar

[20] V. Parkhutik: Mater. Sci. Eng. B 88 (2002) 269.10.1016/S0921-5107(01)00877-7Search in Google Scholar

[21] O. Nast, S. Rauscher, H. Jungblut, H.-J. Lewerenz: J. Electroanal. Chem. 442 (1998) 169.10.1016/S0022-0728(97)00476-2Search in Google Scholar

[22] V. Lehmann: ECS Meeting Abtracts MA 96-2 (1996) 228.Search in Google Scholar

[23] F. Ozanam, J.-N. Chazalviel, A. Radi, M. Etman: Ber. Bunsenges. Phys. Chem. 95 (1991) 98.10.1002/bbpc.19910950118Search in Google Scholar

[24] J. Stumper, R. Greef, L.M. Peter: J. Electroanal. Chem. 310 (1991) 445.10.1016/0022-0728(91)85281-SSearch in Google Scholar

[25] J. Carstensen, R. Prange, G.S. Popkirov, H. Föll: Appl. Phys. A 67 (1998) 459.10.1007/s003390050804Search in Google Scholar

[26] J. Carstensen, R. Prange, H. Föll: J. Electrochem. Soc. 146 (1999) 1134.10.1149/1.1391734Search in Google Scholar

[27] G. Hasse, J. Carstensen, G.S. Popkirov, H. Föll: Mater. Sci. Eng. B 69–70 (2000) 188.10.1016/S0921-5107(99)00259-7Search in Google Scholar

[28] H. Gerischer, M. Lübke: Ber. Bunsenges. Phys. Chem. 92 (1988) 573.10.1002/bbpc.198800138Search in Google Scholar

[29] H. Föll: Appl. Phys. A 53 (1991) 8.10.1007/BF00323428Search in Google Scholar

[30] R.L. Smith, S.D. Collins: J. Appl. Phys. 71 (1992) R1.10.1063/1.350839Search in Google Scholar

[31] H.-J. Lewerenz, M. Aggour: J. Electroanal. Chem. 351 (1993) 159.10.1016/0022-0728(93)80231-6Search in Google Scholar

[32] V. Lehmann: J. Electrochem. Soc. 143 (1996) 1313.10.1149/1.1836636Search in Google Scholar

[33] J.-N. Chazalviel, F. Ozanam, M. Etman, F. Paolucci, L.M. Peter, J. Stumper: J. Electroanal. Chem. 327 (1992) 343.10.1016/0022-0728(92)80160-6Search in Google Scholar

[34] J. Carstensen, M. Christophersen, G. Hasse, H. Föll: Phys. Stat. Sol. (a) 182 (1) (2000) 63.10.1002/1521-396X(200011)182:1<63::AID-PSSA63>3.0.CO;2-ESearch in Google Scholar

[35] H. Föll, J. Carstensen, M. Christophersen, G. Hasse: Phys. Stat. Sol. (a) 182 (1) (2000) 7.10.1002/1521-396X(200011)182:1<7::AID-PSSA7>3.0.CO;2-BSearch in Google Scholar

[36] U.F. Frank: Angew. Chem. 90 (1978) 1.10.1002/ange.19780900104Search in Google Scholar

[37] J. Grzanna, H. Jungblut, H.J. Lewerenz: J. Electroanal. Chem. 486 (2000) 181.10.1016/S0022-0728(00)00141-8Search in Google Scholar

[38] J. Grzanna, H. Jungblut, H.J. Lewerenz: J. Electroanal. Chem. 486 (2000) 190.10.1016/S0022-0728(00)00142-XSearch in Google Scholar

[39] Monte Carlo simulation of Current Burst Model, http://www.tf.uni-kiel.de/matwis/amat/osc_model/index.html.Search in Google Scholar

[40] S. Frey, B. Grésillion, F. Ozanam, J.-N. Chazalviel, J. Carstensen, H. Föll, R.B. Wehrspohn: Electrochem. Sol. State Lett. 8 (2005), B 25.10.1149/1.1960024Search in Google Scholar

Received: 2006-01-09
Accepted: 2006-04-26
Published Online: 2022-02-12

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Professor Dr. Knut Urban 65 Years
  4. Basic
  5. Ordering processes and atomic defects in FeCo
  6. Atomic resolution electron tomography: a dream?
  7. Electron tomography of microelectronic device interconnects
  8. Aberration correction in electron microscopy
  9. Off-axis electron holography: Materials analysis at atomic resolution
  10. Determination of phases of complex scattering amplitudes and two-particle structure factors by investigating diffractograms of thin amorphous foils
  11. Prospects of the multislice method for CBED pattern calculation
  12. Electron energy-loss spectrometry for metals:some thoughts beyond microanalysis
  13. Quantitative assessment of nanoparticle size distributions from HRTEM images
  14. Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide
  15. Structural domains in antiferromagnetic LaFeO3 thin films
  16. Short-range order of liquid Ti72.3Fe27.7 investigated by a combination of neutron scattering and X-ray diffraction
  17. Extended interfacial structure between two asymmetrical facets of a Σ = 9 grain boundary in copper
  18. Dislocation imaging in fcc colloidal single crystals
  19. Applied
  20. Omega phase transformation – morphologies and mechanisms
  21. Mixed (Sr1 − xCax)33Bi24Al48O141 fullerenoids: the defect structure analysed by (S)TEM techniques
  22. Wetting of aluminium-based complex metallic alloys
  23. Annealing-induced phase transitions in a Zr–Ti–Nb–Cu–Ni–Al bulk metallic glass matrix composite containing quasicrystalline precipitates
  24. Special planar defects in the structural complex metallic alloys of Al–Pd–Mn and Al–Ni–Rh
  25. On the formation of Si nanowires by molecular beam epitaxy
  26. Self-induced oscillations in Si and other semiconductors
  27. Growth, interface structure, and magnetic properties of Fe/GaAs and Fe3Si/GaAs hybrid systems
  28. An investigation of improved titanium/titanium nitride barriers for submicron aluminum-filled contacts by energy-filtered transmission electron microscopy
  29. Radiation damage during HRTEM studies in pure Al and Al alloys
  30. Cross-sectional high-resolution transmission electron microscopy at Mo/Si multilayer stacks
  31. Structural properties of the fiber –matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates
  32. Microstructure and properties of surface-treated Timetal 834
  33. Notifications
  34. Personal
  35. Conferences
Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0160/pdf
Scroll to top button