Home On the formation of Si nanowires by molecular beam epitaxy
Article
Licensed
Unlicensed Requires Authentication

On the formation of Si nanowires by molecular beam epitaxy

  • Peter Werner EMAIL logo , Nikolai D. Zakharov , Gerhard Gerth , Luise Schubert and Ulrich Gösele
Published/Copyright: February 12, 2022
Become an author with De Gruyter Brill

Abstract

Silicon nanowires can be successfully grown by applying the vapor – liquid – solid process. In the case of the commonly used chemical vapor deposition technique, a Si containing gas/precursor is cracked at Au droplets acting as seeds. Si adatoms are subsequently dissolved in the liquid metal. Due to a supersaturation within this droplet, Si precipitates predominantly at the liquid – solid interface – a nanowire grows. A different situation occurs if nanowires are grown by molecular beam epitaxy via the vapor– liquid – solid mechanism. The difference consists, for example, of the role of the metal seed, the morphology of the nanowires and their aspect ratio. In particular, surface diffusion including the metal used as well as Si, strongly influences the growth process. This article describes molecular beam epitaxy growth experiments of Si nanowires under ultra-high vacuum conditions and compares the results with other growth techniques.


Dedicated to Professor Dr. Knut Urban on the occasion of his 65th birthday



Dr. Peter Werner Max Planck Institute of Microstructure Physics Weinberg 2, D-06120 Halle (Saale), Germany Tel: +49 345 5582629

Funding statement: The authors would like to thank A. Frommfeld for the support of the MBE experiments, F. Syrowatka and S. Hofmann for SEM analysis, S. Hopfe for TEM specimen preparation, and M. Werner for specific TEM analysis. The author L. Schubert appreciates the financial support of the Deutsche Forschungsgemeinschaft (Graduierten-Kolleg). The work was also partly supported by European project NODE (FP6/015783)

References

[1] Y. Nakajiama, Y. Takahashi, S. Horiguchi, K. Iwadate, H. Namatsu, K. Kurihara, M. Tabe: Appl. Phys. Lett. 65 (1994) 2833.10.1063/1.112991Search in Google Scholar

[2] N. Usami, T. Mine, S. Fukatsu, Y. Shiraki: Appl. Phys. Lett. 64 (1994) 1126.10.1063/1.110827Search in Google Scholar

[3] J.L. Liu, Y. Shi, F. Wang, Y. Lu, R. Zhang, P. Han, S.L. Gu, Y.D. Zheng: Appl. Phys. Lett. 68 (1996) 352.10.1063/1.116713Search in Google Scholar

[4] C.M. Lieber: MRS Bulletin 28 (2003) 128.10.1557/mrs2003.144Search in Google Scholar

[5] R.S. Wagner, W.C. Ellis, K. Jackson, S.M. Arnold: J. Appl. Phys. 35 (1964) 2993.10.1063/1.1713143Search in Google Scholar

[6] R.S.Wagner, W.C. Ellis: Transaction of the Metallurgical Society of AIME 233 (1965) 1053.Search in Google Scholar

[7] E.I. Givargizov: J. Cryst. Growth 31 (1975) 20.10.1016/0022-0248(75)90105-0Search in Google Scholar

[8] R.S. Wagner a, W.C. Ellis: Appl. Phys. Lett. 4 (1964) 89.10.1063/1.1753975Search in Google Scholar

[9] Y. Cui, L.J. Lauhon, M. Gudiksen, J. Wang, C.M. Lieber: Appl. Phys. Lett. 78 (2001) 2214.10.1063/1.1363692Search in Google Scholar

[10] J.Westwater, D.P. Gosain, S. Tomiya, S. Usui: J. Vac. Sci. Technol. B 15 (1997) 554.10.1116/1.589291Search in Google Scholar

[11] Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber: Nano Lett. 4 (2004) 433.10.1021/nl035162iSearch in Google Scholar

[12] J. Westwater, D.P. Gosain, S. Usui: Phys. Stat. Sol. A 165 (1998) 37.10.1002/(SICI)1521-396X(199801)165:1<37::AID-PSSA37>3.0.CO;2-ZSearch in Google Scholar

[13] Q. Tang, X. Liu, T.I. Kamins, G.S. Salomon, J.S. Harris: Appl. Phys. Lett. 81 (2002) 2451.10.1063/1.1509096Search in Google Scholar

[14] J.L. Liu, S.J. Cai, G.L. Jin, Y.S. Tang, K.L.Wang: Supp. Microstr. 25 (1999) 477.10.1006/spmi.1998.0678Search in Google Scholar

[15] P. Finnie, Y. Homma: J. Cryst. Growth 201/202 (1999) 604.10.1016/S0022-0248(98)01420-1Search in Google Scholar

[16] J.L. Liu, S.J. Cai, G.L. Jin, S.G. Thomas, K.L. Wang: J. Cryst. Growth 200, (1999) 106.10.1016/S0022-0248(98)01408-0Search in Google Scholar

[17] Y-H. Yang, S.-J Wu, H.-S. Chiu, P.-I. Lin, Y.-T. Chen: J. Phys. Chem. B 108, 846 (2004)10.1021/jp030663dSearch in Google Scholar

[18] F.M. Kolb, H. Hofmeister, R. Scholz, M. Zacharias, U. Gösele, D.D. Ma, S.T. Lee: J. Electrochem. Soc. 151 (2004) 375.10.1149/1.1759365Search in Google Scholar

[19] M. Borgström, K. Deppert, L. Samuelson, W. Seifert: J. Cryst. Growth 260 (2004) 18.10.1016/j.jcrysgro.2003.08.009Search in Google Scholar

[20] T. Martenson, M. Borgström, W. Seifert, B.J. Ohlsson, L. Samuelson: Nanotechn. 14 (2003) 1255.10.1088/0957-4484/14/12/004Search in Google Scholar

[21] H.D. Park, T.P. Hogan: J. Vac. Soc. Technol. B 22 (2004) 237.10.1116/1.1643401Search in Google Scholar

[22] Z.H. Wu, X.Y. Mei, D. Kim, M. Blumin, H.E. Ruda: Appl. Phys. Lett. 81 (2002) 5177.10.1063/1.1532772Search in Google Scholar

[23] F.M. Ross, J. Tersoff, M.C. Reuter: Phys. Rev. Lett. 95 (2005) 146104.10.1103/PhysRevLett.95.146104Search in Google Scholar

[24] L. Schubert, P. Werner, N.D. Zakharov, G. Gerth, F. Kolb, L. Long, U. Gösele, T.Y. Tan: Appl. Phys. Lett. 84 (2004) 4968.10.1063/1.1762701Search in Google Scholar

[25] L. Schubert, N.D. Zakharov, G. Gerth, H.S. Leipner, P. Werner, U. Gösele: Proc. DPG Meeting, Berlin 2005.Search in Google Scholar

[26] I.M. Lifshitz, V.V. Slyozov: J. Phys. Chem. Solids 19 (1961) 35.10.1016/0022-3697(61)90054-3Search in Google Scholar

[27] C. Wagner: Zeitschrift für Elektrochemie 65 (1961) 581.10.1002/bbpc.19610650704Search in Google Scholar

[28] S. Ino: Reflection High-Energy Electron Diffraction and Reflection Electron Imaging of Surfaces, NATO ASI Series B, Plenum Press, New York (1988).Search in Google Scholar

[29] N.D. Zakharov, P. Werner, G. Gerth, L. Schubert, L. Sokolov, U. Gösele: J. Cryst. Growth 290 (2006) 6.10.1016/j.jcrysgro.2005.12.096Search in Google Scholar

[30] B. Fuhrmann, H.S. Leipner, H.-R. Höche, L. Schubert, P. Werner, U. Gösele: Nano Lett. 5 (2005) 2524.10.1021/nl051856aSearch in Google Scholar PubMed

Received: 2006-01-16
Accepted: 2006-04-22
Published Online: 2022-02-12

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Professor Dr. Knut Urban 65 Years
  4. Basic
  5. Ordering processes and atomic defects in FeCo
  6. Atomic resolution electron tomography: a dream?
  7. Electron tomography of microelectronic device interconnects
  8. Aberration correction in electron microscopy
  9. Off-axis electron holography: Materials analysis at atomic resolution
  10. Determination of phases of complex scattering amplitudes and two-particle structure factors by investigating diffractograms of thin amorphous foils
  11. Prospects of the multislice method for CBED pattern calculation
  12. Electron energy-loss spectrometry for metals:some thoughts beyond microanalysis
  13. Quantitative assessment of nanoparticle size distributions from HRTEM images
  14. Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide
  15. Structural domains in antiferromagnetic LaFeO3 thin films
  16. Short-range order of liquid Ti72.3Fe27.7 investigated by a combination of neutron scattering and X-ray diffraction
  17. Extended interfacial structure between two asymmetrical facets of a Σ = 9 grain boundary in copper
  18. Dislocation imaging in fcc colloidal single crystals
  19. Applied
  20. Omega phase transformation – morphologies and mechanisms
  21. Mixed (Sr1 − xCax)33Bi24Al48O141 fullerenoids: the defect structure analysed by (S)TEM techniques
  22. Wetting of aluminium-based complex metallic alloys
  23. Annealing-induced phase transitions in a Zr–Ti–Nb–Cu–Ni–Al bulk metallic glass matrix composite containing quasicrystalline precipitates
  24. Special planar defects in the structural complex metallic alloys of Al–Pd–Mn and Al–Ni–Rh
  25. On the formation of Si nanowires by molecular beam epitaxy
  26. Self-induced oscillations in Si and other semiconductors
  27. Growth, interface structure, and magnetic properties of Fe/GaAs and Fe3Si/GaAs hybrid systems
  28. An investigation of improved titanium/titanium nitride barriers for submicron aluminum-filled contacts by energy-filtered transmission electron microscopy
  29. Radiation damage during HRTEM studies in pure Al and Al alloys
  30. Cross-sectional high-resolution transmission electron microscopy at Mo/Si multilayer stacks
  31. Structural properties of the fiber –matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates
  32. Microstructure and properties of surface-treated Timetal 834
  33. Notifications
  34. Personal
  35. Conferences
Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0159/html?lang=en
Scroll to top button