Startseite Annealing-induced phase transitions in a Zr–Ti–Nb–Cu–Ni–Al bulk metallic glass matrix composite containing quasicrystalline precipitates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Annealing-induced phase transitions in a Zr–Ti–Nb–Cu–Ni–Al bulk metallic glass matrix composite containing quasicrystalline precipitates

  • Uta Kühn EMAIL logo , Jürgen Eckert und Ludwig Schultz
Veröffentlicht/Copyright: 12. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The phase formation of a copper-mold-cast Zr60Ti2Nb6Cu14 Ni9Al9 alloy has been investigated upon cooling from the melt as well as upon annealing of as-cast specimens. The different states of the samples are characterized by X-ray diffraction, optical and electron microscopy, and differential scanning calorimetry. The cooling rate as realized upon copper-mold casting leads to micrometer-sized quasicrystals, which are embedded in a glassy phase. The thermal stability ΔTx of the supercooled liquid state of the glassy phase that forms near to the wall of the copper mold, differs from that of the glassy matrix in the center of the rod due to different compositions of the glassy phase. This is a consequence of the change in local cooling conditions, which affects the phase formation upon solidification as well as the subsequent transformation behavior of the alloy upon constant-rate heating.


Dedicated to Professor Dr. Knut Urban on the occasion of his 65th birthday



Dr. Uta Kühn Leibniz-Institut für Festkörper- und Werkstoffforschung IFW Dresden Postfach 27 00 16, D-01171 Dresden, Germany Tel.: +49 351 4659 402 Fax: +49 351 4659 541

Funding statement: The authors would like to thank B. Bartusch, M. Frey, H. Kempe, J. Kühn, B. Opitz, and H. Schulze for technical assistance, W. Gruner, and V. Michel for chemical analysis, and N. Mattern and S. Scudino for helpful discussions

References

[1] J.-M. Dubois, S.S. Kang, Y. Massiani: J. Non-Cryst. Solids 153–154 (1993) 443.10.1016/0022-3093(93)90392-BSuche in Google Scholar

[2] S.S. Kang, J.-M. Dubois, J. von Stebut: J. Mater. Res. 8 (1993) 1199.10.1557/JMR.1993.1199Suche in Google Scholar

[3] R. Wittmann, K. Urban, M. Schandl, E. Hombogen: J. Mater. Res. 6 (1991) 1165.10.1557/JMR.1991.1165Suche in Google Scholar

[4] K. Urban, M. Feuerbacher, M. Wollgarten: MRS Bulletin 22 (1997) 65.10.1557/S0883769400034461Suche in Google Scholar

[5] S.L. Chang, J.W. Anderegg, P.A. Thiel: J. Non-Cryst. Solids 195 (1996) 95.10.1016/0022-3093(95)00537-4Suche in Google Scholar

[6] U. Köster, J. Meinhardt, S. Roos, H. Liebertz: Appl. Phys. Lett. 69 (1996) 179.10.1063/1.117364Suche in Google Scholar

[7] L.Q. Xing, J. Eckert, W. Löser, L. Schultz: Appl. Phys. Lett. 73 (1998) 2110.10.1063/1.122394Suche in Google Scholar

[8] N. Wanderka, M.-P. Macht, M. Seidel, S. Mechler, K. Stahl, J.Z. Jiang: Appl. Phys. Lett. 77 (2000) 3935.10.1063/1.1329636Suche in Google Scholar

[9] A. Inoue, T. Zhang, J. Saida, M. Matsushita, M.W. Chen, T. Sakurai: Mater. Trans. JIM 40 (1999) 1181.10.2320/matertrans1989.40.1181Suche in Google Scholar

[10] M.W. Chen, T. Zhang, A. Inoue, A. Sakai, A. Sakurai: Appl. Phys. Lett. 75 (1999) 1697.10.1063/1.124793Suche in Google Scholar

[11] B.S. Murty, D.H. Ping, K. Hono, A. Inoue: Scripta Mater. 43 (2000) 103.10.1016/S1359-6462(00)00375-4Suche in Google Scholar

[12] J. Eckert, N. Mattern, M. Zinkevitch, M. Seidel: Mater. Trans. JIM 39 (1998) 623.10.2320/matertrans1989.39.623Suche in Google Scholar

[13] B.S. Murty, D.H. Ping, K. Hono, A. Inoue: Appl. Phys. Lett. 76 (2000) 55.10.1063/1.125654Suche in Google Scholar

[14] C. Li, J. Saida, A. Inoue: Scripta Mater. 42 (2000) 1077.10.1016/S1359-6462(00)00358-4Suche in Google Scholar

[15] J. Saida, M. Matsushita, A. Inoue: Appl. Phys. Lett. 77 (2000) 3176.10.1063/1.1326036Suche in Google Scholar

[16] U. Kühn, J. Eckert, N. Mattern, L. Schultz: Appl. Phys. Lett. 77 (2000) 73.10.1063/1.126881Suche in Google Scholar

[17] U. Kühn, J. Eckert, N. Mattern, L. Schultz: Phys. Stat. Sol. (a) (2005) 2436.10.1002/pssa.200520079Suche in Google Scholar

[18] J. Eckert, L. Schultz, K. Urban: Appl. Phys. Lett. 55 (1989) 117.10.1063/1.102394Suche in Google Scholar

[19] R.M. Srivastava, J. Eckert, W. Löser, B.K. Dhindaw, L. Schultz: Mater. Trans. JIM 43 (2002) 1670.10.2320/matertrans.43.1670Suche in Google Scholar

[20] U. Kühn, J. Eckert, N. Mattern, N. Radtke, L. Schultz: Mater. Res. Soc. Symp. Proc. Vol. 754 (2003) 333.Suche in Google Scholar

[21] U. Kühn, J. Eckert, N. Mattern, L. Schultz: Mater. Sci. Eng. A375–377 (2004) 322.10.1016/j.msea.2003.10.086Suche in Google Scholar

[22] P.A. Bancel, P.A. Heiney, P.W. Stephens, A.I. Goldmann, P.M. Horn: Phys. Rev. Lett. 54 (1985) 2422.10.1103/PhysRevLett.54.2422Suche in Google Scholar PubMed

[23] H. Choi-Yim, W.L. Johnson: Appl. Phys. Lett. 71 (1997) 3808.10.1063/1.120512Suche in Google Scholar

[24] A. Inoue: Acta Mater 48 (2000) 277.10.1016/S1359-6454(99)00300-6Suche in Google Scholar

[25] K. Urban, M. Bauer, A. Csanady, J. Mayer: Mater. Sci. Forum 22–24 (1987) 517.10.4028/www.scientific.net/MSF.22-24.517Suche in Google Scholar

Received: 2005-12-27
Accepted: 2006-02-26
Published Online: 2022-02-12

© 2006 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Professor Dr. Knut Urban 65 Years
  4. Basic
  5. Ordering processes and atomic defects in FeCo
  6. Atomic resolution electron tomography: a dream?
  7. Electron tomography of microelectronic device interconnects
  8. Aberration correction in electron microscopy
  9. Off-axis electron holography: Materials analysis at atomic resolution
  10. Determination of phases of complex scattering amplitudes and two-particle structure factors by investigating diffractograms of thin amorphous foils
  11. Prospects of the multislice method for CBED pattern calculation
  12. Electron energy-loss spectrometry for metals:some thoughts beyond microanalysis
  13. Quantitative assessment of nanoparticle size distributions from HRTEM images
  14. Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in sintered zinc oxide ceramics doped with iron oxide
  15. Structural domains in antiferromagnetic LaFeO3 thin films
  16. Short-range order of liquid Ti72.3Fe27.7 investigated by a combination of neutron scattering and X-ray diffraction
  17. Extended interfacial structure between two asymmetrical facets of a Σ = 9 grain boundary in copper
  18. Dislocation imaging in fcc colloidal single crystals
  19. Applied
  20. Omega phase transformation – morphologies and mechanisms
  21. Mixed (Sr1 − xCax)33Bi24Al48O141 fullerenoids: the defect structure analysed by (S)TEM techniques
  22. Wetting of aluminium-based complex metallic alloys
  23. Annealing-induced phase transitions in a Zr–Ti–Nb–Cu–Ni–Al bulk metallic glass matrix composite containing quasicrystalline precipitates
  24. Special planar defects in the structural complex metallic alloys of Al–Pd–Mn and Al–Ni–Rh
  25. On the formation of Si nanowires by molecular beam epitaxy
  26. Self-induced oscillations in Si and other semiconductors
  27. Growth, interface structure, and magnetic properties of Fe/GaAs and Fe3Si/GaAs hybrid systems
  28. An investigation of improved titanium/titanium nitride barriers for submicron aluminum-filled contacts by energy-filtered transmission electron microscopy
  29. Radiation damage during HRTEM studies in pure Al and Al alloys
  30. Cross-sectional high-resolution transmission electron microscopy at Mo/Si multilayer stacks
  31. Structural properties of the fiber –matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates
  32. Microstructure and properties of surface-treated Timetal 834
  33. Notifications
  34. Personal
  35. Conferences
Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0157/html?lang=de
Button zum nach oben scrollen