Home Reconstruction and structural transition at metal/diamond interfaces
Article
Licensed
Unlicensed Requires Authentication

Reconstruction and structural transition at metal/diamond interfaces

  • Wenqing Zhang EMAIL logo
Published/Copyright: January 11, 2022
Become an author with De Gruyter Brill

Abstract

Based on density-functional calculations, interfacial reconstruction and structural transition at diamond(111)/M/copper (M = Ag, Cu, Ni, Co) interfaces are studied by analyzing the atomistic structures of the interfaces. Tuning the strength of chemical bonds across the interfacial plane (out-of-plane), we show that interfacial reconstruction happens as a result of competition between the out-of-plane chemical bonds and the in-plane bonds within the diamond substrate. A relatively weak out-of-plane bond may easily lead to reconstruction of interfacial structures. A structural transition from one-dangling-bond- to three-dangling-bond-terminated interface is also observed as the out-of-plane bond is sufficiently strong, which leads to a dramatic enhancement of the adhesion of the interface.


Dr. Wenqing Zhang 1295 Dingxi Road Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai, 200050, China Tel.: +86 21 5241 5197

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


  1. This work is supported by the National Natural Science Foundation of China under Grant No. 10474106.

References

[1] H.H. Weitering: Mater. Sci. Eng. B 14 (1992) 281.10.1016/0921-5107(92)90310-6Search in Google Scholar

[2] W.E. Pickett, S.C. Erwin: Phys. Rev. B 41 (1990) 9756.10.1103/PhysRevB.41.9756Search in Google Scholar

[3] H. Fujitani, S. Asano: Phys. Rev. B 50 (1994) 8681.10.1103/PhysRevB.50.8681Search in Google Scholar

[4] P.K. Baumann, R.J. Nemanich: Phys. Rev. B 58 (1998) 1643; J. Appl. Phys. 83 (1998) 2072.10.1103/PhysRevB.58.1643Search in Google Scholar

[5] P. Geuens, O.I. Lebedev, G. Van Tendeloo: Solid State Commun. 116 (2000) 643.10.1016/S0038-1098(00)00411-7Search in Google Scholar

[6] R. Moosbuhler, F. Bensch, M. Dumm, G. Bayreuther: J. Appl. Phys. 91 (2002) 8757.10.1063/1.1447205Search in Google Scholar

[7] J.G. Li: Mater. Chem. Phys. 47 (1997) 126.10.1016/S0254-0584(97)80041-7Search in Google Scholar

[8] J. Hoekstra, M. Kohyama: Phys. Rev. B 57 (1998) 2334.10.1103/PhysRevB.57.2334Search in Google Scholar

[9] X.-G. Wang, J.R. Smith: Phys. Rev. Lett. 87 (2001) 186103.10.1103/PhysRevLett.87.186103Search in Google Scholar

[10] Y. Qi, L.G. Hector, Jr.: Phys. Rev. B 68(R) (2003) 201403.10.1103/PhysRevB.68.201403Search in Google Scholar

[11] W. Zhang, J.R. Smith: Phys. Rev. Lett. 85 (2000) 3225;W. Zhang, J.R. Smith, A.G. Evans: Acta Mater. 50 (2002) 3803.10.1103/PhysRevLett.85.3225Search in Google Scholar

[12] C.A. Lucas, G.C.L. Wong, D. Loretto: Phys. Rev. Lett. 70 (1993) 1826.10.1103/PhysRevLett.70.1826Search in Google Scholar

[13] D. Loretto, J.M. Gibson, S.M. Yalisove: Phys. Rev. Lett. 63 (1989) 298; M.F. Chisholm, N.D. Browning, S.J. Pennycook, R. Jebasinski, S. Mantl: Appl. Phys. Lett. 64 (1994) 3608; V. Buschmann, L. Fedina, M. Rodewald, G. Van Tendeloo: Phil. Mag. Lett. 77 (1998) 147; U. Falke, A. Bleloch, M. Falke, S. Teichert: Phys. Rev. Lett. 92 (2004) 116103.10.1103/PhysRevLett.63.298Search in Google Scholar

[14] R.D. Aburano, H. Hong, J.M. Roesler, K. Chung, D.-S. Lin, P. Zschack, H. Chen, T.–C. Chiang: Phys. Rev. B 52 (1995) 1839.10.1103/PhysRevB.52.1839Search in Google Scholar

[15] Y. Jia,W.G. Zhu, E.G. Wang, Y. Huo, Z.Y. Zhang: Phys. Rev. Lett. 94 (2005) 086101.10.1103/PhysRevLett.94.086101Search in Google Scholar

[16] D.A. Ricci, T. Miller, T.-C. Chiang: Phys. Rev. Lett. 95 (2005) 266101.10.1103/PhysRevLett.95.266101Search in Google Scholar

[17] U. Strake: Mater. Sci. Forum 353 (2001) 205.10.4028/www.scientific.net/MSF.353-356.205Search in Google Scholar

[18] J.E. Northrup, R.D. Felice, J. Neugebauer: Phys. Rev. B 55 (1997) 13878.10.1103/PhysRevB.55.13878Search in Google Scholar

[19] K.C. Pandey: Phys. Rev. B 25 (1982) 4338.10.1103/PhysRevB.25.4338Search in Google Scholar

[20] R. Seiwatz: Surf. Sci. 2 (1964) 473.10.1016/0039-6028(64)90089-5Search in Google Scholar

[21] G. Kern, J. Hafner, G. Kresse: Surf. Sci. 366 (1996) 445; ibid, 366 (1996) 464.10.1016/0039-6028(96)00837-0Search in Google Scholar

[22] X.M. Zheng: Surf. Sci. 364 (1996) 141.10.1016/0039-6028(96)00375-5Search in Google Scholar

[23] G. Kresse, J. Furthmuller: Phys. Rev. B 54 (1996) 11169.10.1103/PhysRevB.54.11169Search in Google Scholar

[24] D. Vanderbilt: Phys. Rev. B 41(1990) 7892; G. Kresse, J. Hafner: J. Phys. Condens. Matter 6 (1994) 8245.Search in Google Scholar

[25] P. Ziesche, H. Eschrig (Eds.): Electronic Structure of Solids ’91, (Akademie Verlag, Berlin) (1991) 11.Search in Google Scholar

[26] P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey: Comput. Phys. Commun. 59 (1990) 399.10.1016/0010-4655(90)90187-6Search in Google Scholar

[27] L. Pauling: The Nature of the Chemical bond, 3rd Ed., Cornell University Press, Ithaca (1960) 85.Search in Google Scholar

Received: 2005-10-30
Accepted: 2006-02-20
Published Online: 2022-01-11

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
  3. Evolution of C-rich SiOC ceramics
  4. Evolution of C-rich SiOC ceramics
  5. Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
  6. Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
  7. Thermodynamic modelling of the Ce–Ni system
  8. Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
  9. Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
  10. Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
  11. Reconstruction and structural transition at metal/diamond interfaces
  12. Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
  13. High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
  14. Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
  15. XRD and TEM study of NiO–LSGM reactivity
  16. Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
  17. Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
  18. Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
  19. Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
  20. Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
  21. On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
  22. Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
  23. Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
  24. The Na–H system: from first-principles calculations to thermodynamic modeling
  25. Personal
  26. Conferences
  27. Frontmatter
  28. Basic
  29. Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
  30. Evolution of C-rich SiOC ceramics
  31. Evolution of C-rich SiOC ceramics
  32. Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
  33. Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
  34. Thermodynamic modelling of the Ce–Ni system
  35. Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
  36. Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
  37. Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
  38. Reconstruction and structural transition at metal/diamond interfaces
  39. Applied
  40. Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
  41. High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
  42. Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
  43. XRD and TEM study of NiO–LSGM reactivity
  44. Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
  45. Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
  46. Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
  47. Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
  48. Regular Articles
  49. Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
  50. On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
  51. Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
  52. Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
  53. The Na–H system: from first-principles calculations to thermodynamic modeling
  54. Notifications
  55. Personal
  56. Conferences
Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0123/pdf
Scroll to top button