Startseite Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors

  • Jerzy Andrzej Golczewski EMAIL logo
Veröffentlicht/Copyright: 11. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Thermodynamic modeling has been used to explain structural transformations induced by heat treatment of amorphous Si –C–N ceramics derived from polymers. Nanocrystalline silicon carbide and nanocrystalline silicon nitride identified in the ceramic microstructure have been regarded as metastable NASIC and NASIN phases in the Si–C–N system. The Gibbs energies G(NASIC) and G(NASIN) have been derived and used together with the previously modeled Gibbs energy of the amorphous am-SICN to compute metastable phase diagrams. Computational results allow explanation of the crystallization process of amorphous Si –C–N ceramics. According to this model, the temperature of invariant reaction between carbon and silicon nitride changes with the growth of nanocrystallites, which explains the dependence of the thermal stability on the ceramic microstructure.


J. A. Golczewski MPI für Metallforschung Heisenbergstr 3, D-70569 Stuttgart, Germany Tel.: +49 711 689 3104 Fax: +49 711 689 3131

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


  1. Stimulating discussions and the continuous interest of Prof. F. Aldinger, which have really helped to complete this work, are gratefully acknowledged. The author is also deeply indebted to Dr. A Müller, Priv. Doz. Dr. J. Bill and Priv. Doz. Dr. M. Weinmann for very kind and patient assistance to apprehend complex studies on polymer derived ceramics.

References

[1] J. Bill, F. Aldinger: Adv. Mater. 9 (1995) 775.10.1002/adma.19950070903Suche in Google Scholar

[2] G. Ziegler, H.-J. Kleebe, G. Motz, H. Müller, S. Trassl: Mater. Chem. Phys. 61 (1999) 55.10.1016/S0254-0584(99)00114-5Suche in Google Scholar

[3] J. Bill, J. Schumacher, K. Müller, S. Schemp, J. Seitz, J. Dürr, H.-P. Lamparter, J. Golczewski, J. Peng, H.J. Seifert, F. Aldinger: Z. Melallkd. 91 (2000) 335.10.1515/ijmr-2000-910416Suche in Google Scholar

[4] J. Bill, T.W. Kamphowe, A. Müller, T.Wichmann, A. Zern, A. Jalowiecki, J. Mayer, M. Weinmann, J. Schumacher, K. Müller, J. Peng, H.J. Seifert, F. Aldinger: Appl. Organometal. Chem. 15 (2001) 777.10.1002/aoc.242Suche in Google Scholar

[5] H.-J. Kleebe, H. Störmer, S. Trassl, G. Ziegler: Appl. Organometal. Chem. 15 (2001) 858.10.1002/aoc.243Suche in Google Scholar

[6] L.L. Snead, S.J. Zinkle: Nucl. Instrum. Methods Phys. Res. B 191 (2002) 497.10.1016/S0168-583X(02)00599-2Suche in Google Scholar

[7] R. Riedel, M. Seher: J. Eur. Ceram. Soc. 7 (1991) 21.10.1016/0955-2219(91)90049-6Suche in Google Scholar

[8] J.A. Golczewski, F. Aldinger: J. Non-Crystalline Solids 347 (2004) 204.10.1016/j.jnoncrysol.2004.08.241Suche in Google Scholar

[9] H.J. Seifert, J. Peng, H.-L. Lukas, F. Aldinger: J. Alloy and Compounds 320 (2001) 251.10.1016/S0925-8388(00)01478-XSuche in Google Scholar

[10] Y. Iwamoto, W. Vögler, E. Kroke, R. Riedel: J. Am. Ceram. Soc. 84 (2001) 2170.10.1111/j.1151-2916.2001.tb00983.xSuche in Google Scholar

[11] H. Schmidt, G. Borchardt, A. Müller, J. Bill: J. Non-Crystalline Solids 341 (2004) 133.10.1016/j.jnoncrysol.2004.04.021Suche in Google Scholar

[12] J.W. Christian: The Theory of Transformations in Metalls and Alloys, Pergamon, London (1975).Suche in Google Scholar

[13] E.D. Zanotto, in: M.C. Weinberg (Ed.), Nucleation and Crystallization in Liquids and Glasses, Vol. 30, A. Ceram. Soc., Westerville, OH, (1992) 65.Suche in Google Scholar

[14] S. Trassl, H.-J. Kleebe, H. Störmer, G. Motz, E. Rössler, G. Ziegler: J. Am. Ceram. Soc. 85 (2002) 1268.10.1111/j.1151-2916.2002.tb00256.xSuche in Google Scholar

[15] J. Wan, M.J. Gasch, C.E. Lesher, A.K. Mukherjee: J. Am. Ceram. Soc. 896 (2003) 857.10.1111/j.1151-2916.2003.tb03387.xSuche in Google Scholar

[16] Y. Cai, A. Zimmermann, A. Bauer, F. Aldinger: Acta Materialia 51 (2003) 2675.10.1016/S1359-6454(03)00077-6Suche in Google Scholar

[17] S. Schemp, J. Dürr, P. Lamparter, F. Aldinger: Z. Naturforsch., 53a (1998) 127.10.1515/zna-1998-3-405Suche in Google Scholar

[18] J. Haug, P. Lamparter, M. Weinmann, F. Aldinger: Chem. Mater. 16 (2004) 72.10.1021/cm031029fSuche in Google Scholar

[19] S.R. Elliot: Physics of amorphous material, Longman, London and New York (1984).Suche in Google Scholar

[20] J.A. Golczewski, F. Aldinger: Z. Metallkd. 97 (2006), in press.10.3139/146.101211Suche in Google Scholar

[21] J. Gröbner, H.L. Lukas, F. Aldinger: CALPHAD (1996) 29 247.10.1016/S0364-5916(96)00027-2Suche in Google Scholar

[22] M. Hillert, S. Jonsson, B. Sundman: Z. Metallkd. 83 (1992) 648.10.1515/ijmr-1992-830902Suche in Google Scholar

[23] H. Gleiter: Prtog. Mater. Sci. 33 (1989) 223.10.1016/0079-6425(89)90001-7Suche in Google Scholar

[24] R.W. Siegle, in: F.E. Fujita (Ed.) Physics of New Materials, Springer Series in Material Sciences Vol. 27, Springer Verlag, Berlin (1994).Suche in Google Scholar

[25] B. Sundman, B. Jansson, J.O. Andersson: CALPHAD 6 (1985) 153.10.1016/0364-5916(85)90021-5Suche in Google Scholar

[26] Scientific Group Thermodata Europe (SGTE), Grenoble Campus, 1001 Avenue Centrale, BP&&, F-38402 Saint Martin D’Heres, France, http:/www.sgte.orgSuche in Google Scholar

[27] J.D. Verhoeven: Fundamentals of Physical Metallurgy, John Wiley & Sons, New York (1975).Suche in Google Scholar

Received: 2005-11-02
Accepted: 2006-03-09
Published Online: 2022-01-11

© 2006 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
  3. Evolution of C-rich SiOC ceramics
  4. Evolution of C-rich SiOC ceramics
  5. Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
  6. Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
  7. Thermodynamic modelling of the Ce–Ni system
  8. Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
  9. Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
  10. Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
  11. Reconstruction and structural transition at metal/diamond interfaces
  12. Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
  13. High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
  14. Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
  15. XRD and TEM study of NiO–LSGM reactivity
  16. Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
  17. Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
  18. Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
  19. Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
  20. Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
  21. On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
  22. Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
  23. Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
  24. The Na–H system: from first-principles calculations to thermodynamic modeling
  25. Personal
  26. Conferences
  27. Frontmatter
  28. Basic
  29. Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
  30. Evolution of C-rich SiOC ceramics
  31. Evolution of C-rich SiOC ceramics
  32. Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
  33. Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
  34. Thermodynamic modelling of the Ce–Ni system
  35. Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
  36. Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
  37. Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
  38. Reconstruction and structural transition at metal/diamond interfaces
  39. Applied
  40. Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
  41. High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
  42. Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
  43. XRD and TEM study of NiO–LSGM reactivity
  44. Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
  45. Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
  46. Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
  47. Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
  48. Regular Articles
  49. Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
  50. On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
  51. Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
  52. Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
  53. The Na–H system: from first-principles calculations to thermodynamic modeling
  54. Notifications
  55. Personal
  56. Conferences
Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0118/pdf?lang=de
Button zum nach oben scrollen