Home “Order-order” relaxations in intermetallics
Article
Licensed
Unlicensed Requires Authentication

“Order-order” relaxations in intermetallics

  • Rafał Kozubski EMAIL logo , Mirosław Kozłowski , Véronique Pierron-Bohnes and Wolfgang Pfeiler
Published/Copyright: February 15, 2022
Become an author with De Gruyter Brill

Abstract

“Order-order” relaxation processes in high-temperature intermetallics occur after an abrupt change of temperature and are controlled by atomic migration in the almost perfect superstructure. The related experiments were carried out using systems being of technological interest and representing three common types of superstructures: L12 (Ni3Albased quasi-binaries), L10 (FePd, FePt) and B2 (NiAl, FeAl). The corresponding Monte Carlo (MC) simulations of “Order-order” kinetics involving the Glauber dynamics implemented with vacancy mechanism for atomic jumps were performed. The studies indicate a crucial role of antisite-easy-diffusion channels offered by particular superstructures in determining the character of “Order-order” processes and their relationship to steady-state self-diffusion. Specific mechanisms of the relaxations in triple-defect B2-ordered binaries are discussed.


Dr. Rafał Kozubski M. Smoluchowski Institute of Physics Jagellonian University Reymonta 4 PL-30-059 Kraków, Poland Tel.: +48 12 663 5716 Fax: +48 12 633 7086

Dedicated to Prof. Dr. Helmut Mehrer on the occasion of his 65th birthday


  1. The work was partially supported by the Austrian Government: bm:bwk (GZ 45.529/2-VI/B/7a/2002). Support from the Austrian-Polish, Austrian-French (AMADEUS), and French-Polish (POLONIUM) programmes of scientific co-operation is greatly acknowledged.

References

[1] R. Kozubski: Prog. Mater. Sci. 41 (1997) 1.10.1016/S0079-6425(97)00002-9Search in Google Scholar

[2] S.V. Divinski, St. Frank, Chr. Herzig, U. Södervall: Solid State Phenomena 72 (2000) 203.10.4028/www.scientific.net/SSP.72.203Search in Google Scholar

[3] H. Numakura, T. Ikeda, M. Koiwa, A. Almazouzi: Philos. Mag. A 77 (1998) 887.10.1080/01418619808221218Search in Google Scholar

[4] R. Kozubski, M.C. Cadeville: J. Phys. F. Met. Phys. 18 (1988) 2569.10.1088/0305-4608/18/12/008Search in Google Scholar

[5] St. Frank, U. Södervall, Chr. Herzig: Phys. Stat. Sol. b191 (1995) 45.10.1002/pssb.2221910105Search in Google Scholar

[6] J. Fillon, D. Calais: J. Phys. Chem. Solids 38 (1977) 81.10.1016/0022-3697(77)90150-0Search in Google Scholar

[7] J. Kucera, B. Million: phys.stat.sol. (a) 31 (1975) 275.10.1002/pssa.2210310131Search in Google Scholar

[8] Y. Nose, T. Ikeda, H. Nakajima, K. Tanaka, H. Numakura: Mater. Res. Soc. Symp. Proc. 753 (2003) BB5.36.1.10.1557/PROC-753-BB5.36Search in Google Scholar

[9] St. Frank, S.V. Divinski, U. Södervall, Chr. Herzig: Acta Mater. 49 (2001) 1399.10.1016/S1359-6454(01)00037-4Search in Google Scholar

[10] A. Kulovits, W.A. Soffa, W. Püschl, W. Pfeiler: Mater. Res. Soc. Symp. Proc. 753 (2003) BB5.37.1.10.1557/PROC-753-BB5.37Search in Google Scholar

[11] L. Messad, S. Czekaj, H. Bouzar, M. Zemirli, V. Pierron-Bohnes, M.C. Cadeville, R. Kozubski: Colloque Scientifique Algéro-Français TAM-MAT 2003 Les Matériaux émergents, Tamanrasset, Algeria, 2003.Search in Google Scholar

[12] R. Kozubski, D. Kmieć, E. Partyka, M. Danielewski: Intermetallics 11 (2003) 897.10.1016/S0966-9795(03)00099-2Search in Google Scholar

[13] H. Yamauchi, D. de Fontaine, in: H. Warlimont (Ed.), Order-disorder transformations in alloys, Springer, Berlin (1974) 148.10.1007/978-3-642-80840-1_7Search in Google Scholar

[14] B. Sitaud, X. Zhang, C. Dimitrov, O. Dimitrov, in: H.E. Exner, V. Schuhmacher (Eds.) Advanced Materials and Processes, DGM, Oberursel (1990) 389.Search in Google Scholar

[15] R. Kozubski, J. Soltys, M.C. Cadeville: J. Phys. Condensed Matter. 2 (1990) 3451.10.1088/0953-8984/2/15/003Search in Google Scholar

[16] H. Lang, K. Rohrhofer, P. Rosenkranz, R. Kozubski, W. Püschl, W. Pfeiler: Intermetallics 10 (2002) 283.10.1016/S0966-9795(01)00135-2Search in Google Scholar

[17] H.-E. Schaefer, K. Frenner, R. Würschum: Intermetallics 7 (1999) 277.10.1016/S0966-9795(98)00121-6Search in Google Scholar

[18] P. Oramus, R. Kozubski, V. Pierron-Bohnes, M.C. Cadeville, W. Pfeiler: Phys. Rev. B 63 (2001) 174109.10.1103/PhysRevB.63.174109Search in Google Scholar

[19] P. Oramus, R. Kozubski, V. Pierron-Bohnes, M.C. Cadeville, C. Massobrio, W. Pfeiler: Mater. Sci. Eng. A 324 (2002) 11.10.1016/S0921-5093(01)01275-8Search in Google Scholar

[20] T. Mohri, C. Ying: Mater. Trans. 43 (2002) 2104.10.2320/matertrans.43.2104Search in Google Scholar

[21] R. Kozubski, S. Czekaj, M. Kozłowski, E. Partyka, K. Zapala: J. Alloys and Compounds 378 (2004) 302.10.1016/j.jallcom.2003.11.168Search in Google Scholar

[22] B. Meyer, M. Fähnle: Phys. Rev. B 59 (1999) 6072.10.1103/PhysRevB.59.6072Search in Google Scholar

[23] H. Schweiger, O. Semenova, W. Wolf, W. Pueschl, W. Pfeiler, R. Podloucky, H. Ipser: Scripta Mater. 46 (2002) 37.10.1016/S1359-6462(01)01194-0Search in Google Scholar

[24] P. Oramus, C. Massobrio, M. Kozlowski, R. Kozubski, V. Pierron-Bohnes, M.C. Cadeville, W. Pfeiler: Comput. Mater. Sci. 27 (2003) 186.10.1016/S0927-0256(02)00444-5Search in Google Scholar

[25] T. Mehaddene, E. Kentzinger, B. Hennion, K. Tanaka, H. Numakura, A. Marty, V. Parasote, M.C. Cadeville, M. Zemirli, V. Pierron-Bohnes: Phys. Rev. B 69 (2004) 024304.10.1103/PhysRevB.69.024304Search in Google Scholar

[26] F.E. Spada, F.T. Parker, C.L. Platt, J.K. Howard: J. Appl. Phys. 94 (2003) 5123.10.1063/1.1606522Search in Google Scholar

[27] P. Oramus, M. Kozłowski, R. Kozubski, V. Pierron-Bohnes, M.C. Cadeville, W. Pfeiler: Mater. Sci. Eng. A 365 (2004) 165.10.1016/j.msea.2003.09.023Search in Google Scholar

[28] T.B. Massalski: Binary Alloy Phase Diagrams. ASME, Metals Park, OH (1987).Search in Google Scholar

Received: 2004-07-05
Accepted: 2004-07-25
Published Online: 2022-02-15

© 2004 Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Editorial
  3. Helmut Mehrer 65 Years
  4. Articles Basic
  5. Diffusion in intermetallic compounds: the ordered Cu3Au rule, its history
  6. Live long and prosper: Long positronium lifetimes in borate glasses
  7. Atomic defects and diffusion in intermetallic compounds with D03 structure: an ab-initio study
  8. Relationships between chemical and tracer diffusion coefficients in strongly ionic crystals
  9. Formation volume of atomic vacancies in body-centred cubic metals
  10. “Order-order” relaxations in intermetallics
  11. A new diffusion mechanism for self-compensating impurities in α-alumina
  12. Self-diffusion behaviour and microstructure of ultrafine-grained Nd2Fe14B with intergranular melting transition
  13. Tracer diffusion in Pt3Fe ordered alloys
  14. Intermetallic growth and Kirkendall effect manifestations in Cu/Sn and Au/Sn diffusion couples
  15. Ionic conductivity of a fragile glass-forming molten salt: Modelling its dependence on frequency, temperature, and pressure
  16. Some novel applications of sputtering techniques for diffusion studies in solids
  17. Grain boundary faceting close to the Σ3 coincidence misorientation in copper
  18. Grain boundary self-diffusion in α-iron of different purity: effect of dislocation enhanced diffusion
  19. Connection between Fe grain boundary segregation in Al and phase formation in the bulk
  20. Diffusion in metallic glasses and undercooled metallic melts
  21. Sculptures depicting the physical processes which govern the plastic deformation of metals and alloys
  22. Notifications/Mitteilungen
  23. Personal/Personelles
  24. Conferences/Konferenzen
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2004-0165/pdf
Scroll to top button