Startseite Viscoelastic analysis of oat grain within linear viscoelastic region by using dynamic mechanical analyzer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Viscoelastic analysis of oat grain within linear viscoelastic region by using dynamic mechanical analyzer

  • Nan Zhao , Bo-wen Li , Ying-dan Zhu , Dong Li EMAIL logo und Li-jun Wang EMAIL logo
Veröffentlicht/Copyright: 13. April 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The stress relaxation, creep-recovery, temperature, and frequency sweep tests were performed within the linear viscoelastic region by using a dynamic mechanical analyzer to investigate the viscoelastic characteristic of oat grain. The result showed that 5-element Maxwell and Burgers model were able to describe viscoelastic behaviors better. The relaxation stress decreased with the increasing moisture content from 6.79 to 23.35%, while the creep strain increased as well as the final percentage recovery decreased from 58.61 to 32.50%. In frequency sweep, storage modulus increased with the increasing frequency. In temperature sweep, there was a clear turning point in storage modulus, loss modulus, and tan delta curves with increasing temperature. The turning value of 167.47, 147.44, 134.27, 132.41, 110.28, and 92.62 °C detected in the tan delta were regarded as the best glass transition temperatures. This temperature was found to be lower than gelatinization heating temperature and decrease with the increase of moisture content. The crystalline structure of oat exhibited a typical A-type pattern and corresponding crystallinity increased from 22.03 to 31.86% with increasing moisture content. The scanning electron microscopy (SEM) micrograph of oat section was found that the size and adhesive effect of starch granules increased due to hydration.


Corresponding authors: Dong Li,College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, 100083, China, E-mail: ; and Li-jun Wang,College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China, E-mail: .

Award Identifier / Grant number: 2016YFD0701801

Funding source: Commonweal Guild Grain Scientific Research Program of China

Award Identifier / Grant number: 201513004

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by The National Key Research and Development Program of China (2016YFD0701801) and Commonweal Guild Grain Scientific Research Program of China (201513004).

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Romaní A, Tomaz PD, Garrote G, Teixeira JA, Domingues L. Combined alkali and hydrothermal pretreatments for oat straw valorization within a biorefinery concept. Bioresour Technol 2016;220:323–32. https://doi.org/10.1016/j.biortech.2016.08.077.Suche in Google Scholar PubMed

2. Ren C-Z, Ma B-L, Burrows V, Zhou J, Hu Y-G, Guo L, et al. Evaluation of early mature naked oat varieties as a summer-seeded crop in dry land northern climate regions. Field Crops Res 2007;103:248–54. https://doi.org/10.1016/j.fcr.2007.07.001.Suche in Google Scholar

3. Berg A, Koenig D, Deibert P, Grathwohl D, Berg A, Baumstark MW, et al. Effect of an oat bran enriched diet on the atherogenic lipid profile inpatients with an increased coronary heart disease risk a controlled randomized lifestyle intervention study. Ann Nutr Metab 2003;47:306–11. https://doi.org/10.1159/000072404.Suche in Google Scholar PubMed

4. Butt MS, Tashir NM, Khan MKI, Shabir R. Oat: unique among the cereals. Eur J Nutr 2008;47:68–79.10.1007/s00394-008-0698-7Suche in Google Scholar PubMed

5. Cerio R, Dohil M, Magina S, Mahé E, Stratigos A. Mechanism of action and clinical benefits of colloidal oatmeal for dermatologic practice. J Drugs Dermatol 2010;9:1116–20.Suche in Google Scholar

6. Klose C, Schehl BD, Arendt EK. Fundamental study on protein changes taking place during malting of oats. J Cereal Sci 2009;49:83–91. https://doi.org/10.1016/j.jcs.2008.07.014.Suche in Google Scholar

7. Bayarri S, Dolz M, Hernández MJ. Effect of carboxymethyl cellulose concentration on rheological behavior of milk and aqueous systems. A creep and recovery study. J Appl Polym Sci 2009;114:1626–32. https://doi.org/10.1002/app.30739.Suche in Google Scholar

8. Comino I, Moreno MDL, Sousa C. Role of oats in celiac disease. World J Gastroenterol 2015;21:11825–31. https://doi.org/10.3748/wjg.v21.i41.11825.Suche in Google Scholar PubMed PubMed Central

9. Gray DA, Auerbach RH, Hill S, Wang R, Campbell GM, Webb C, et al. Enrichment of oat antioxidant activity by dry milling and sieving. J Cereal Sci 2000;32:89–98. https://doi.org/10.1006/jcrs.2000.0318.Suche in Google Scholar

10. Rebello CJ, O’Neil CE, Greenway FL. Dietary fiber and satiety: the effects of oats on satiety. Nutr Rev 2016;74:131–47. https://doi.org/10.1093/nutrit/nuv063.Suche in Google Scholar PubMed PubMed Central

11. Chowdhury MMI, Huda MD, Hossain MA, Hassan MS. Moisture sorption isotherms for mungbean (Vigna radiata L). J Food Eng 2006;74:462–7. https://doi.org/10.1016/j.jfoodeng.2005.03.036.Suche in Google Scholar

12. Yilmaz MT, Karaman S, Dogan M, Yetim H, Kayacier A. Characterization of O/W model system meat emulsions using shear creep and creep recovery tests based on mechanical simulation models and their correlation with texture profile analysis (TPA) parameters. J Food Eng 2012;108:327–36. https://doi.org/10.1016/j.jfoodeng.2011.08.005.Suche in Google Scholar

13. Li D, Wang L-J, Wang D-C, Chen X-D, Mao Z-H. Microstructure analysis of rice kernel. Int J Food Prop 2007;10:85–91. https://doi.org/10.1080/10942910600754683.Suche in Google Scholar

14. Perdon A, Siebenmorgen TJ, Mauromoustakos A. Glass state transition and rice drying: development of a brown rice state diagram. Cereal Chem 2000;77:708–13.10.1094/CCHEM.2000.77.6.708Suche in Google Scholar

15. Sheng S-Y, Wang L-J, Li D, Mao Z-H, Adhikari B. Viscoelastic behavior of maize kernel studied by dynamic mechanical analyzer. Carbohydr Polym 2014;112:350–8. https://doi.org/10.1016/j.carbpol.2014.05.080.Suche in Google Scholar PubMed

16. Nobile MAD, Chillo S, Mentana A, Baiano A. Use of the generalized Maxwell model for describing the stress relaxation behavior of solid-like foods. J Food Eng 2007a;78:978–83. https://doi.org/10.1016/j.jfoodeng.2005.12.011.Suche in Google Scholar

17. Starkweather HW Jr, Giri MR. Use of a dynamic mechanical analyzer to study supported polymers. J Appl Polym Sci 1982;27:1243–8.10.1002/app.1982.070270413Suche in Google Scholar

18. Jyoti H, Takhar PS. Dynamic viscoelastic properties and glass transition behavior of Corn Kernels. Int J Food Prop 2009;12:295–307. https://doi.org/10.1080/10942910701687477.Suche in Google Scholar

19. Li Q, Li D, Wang L-J, Ozkan N, Mao Z-H. Dynamic viscoelastic properties of sweet potato studied by dynamic mechanical analyzer. Carbohydr Polym 2010;79:520–5. https://doi.org/10.1016/j.carbpol.2009.08.035.Suche in Google Scholar

20. Fritz RD, Chen Y-M, Contreras V. Gluten-containing grains skew gluten assessment in oats due to sample grind non-homogeneity. Food Chem 2017;216:170–5. https://doi.org/10.1016/j.foodchem.2016.08.031.Suche in Google Scholar PubMed

21. Bruno M, Moresi M. Viscoelastic properties of Bologna sausages by dynamic methods. J Food Eng 2004;63:291–8. https://doi.org/10.1016/j.jfoodeng.2003.08.012.Suche in Google Scholar

22. Nobile MAD, Chillo S, Falcone PM, Laverse J, Pati S, Baiano A. Textural changes of Canestrello Pugliese cheese measured during storage. J Food Eng 2007b;83:621–8.10.1016/j.jfoodeng.2007.04.026Suche in Google Scholar

23. Liu P, Yu L, Liu H, Chen L, Li L. Glass transition temperature of starch studied by a high-speed DSC. Carbohydr Polym 2009;77:250–3. https://doi.org/10.1016/j.carbpol.2008.12.027.Suche in Google Scholar

24. Mohsenin NN, Mittal JP. Use of rheological terms and correlation of compatible measurements in food texture research. J Texture Stud 1977;8:395–408. https://doi.org/10.1111/j.1745-4603.1977.tb01191.x.Suche in Google Scholar

25. Chen Y-H, Jia Y, Yang F, Huang C-C, Lee S. Boussinesq problem of a Burgers viscoelastic layer on an elastic substrate. Mech Mater 2015;87:27–39. https://doi.org/10.1016/j.mechmat.2015.03.011.Suche in Google Scholar

26. Ramesh C, Gowd EB. High-temperature X-ray diffraction studies on the crystalline transitions in the R- and ç-Forms of Nylon-6. Macromolecules 2001;34:3308–13. https://doi.org/10.1021/ma0006979.Suche in Google Scholar

27. Yang H, Natansohn A. Polyimines from terephthalaldehyde and aliphatic diamines. 2. Studies of the crystalline structure by X-ray diffraction. Macromolecules 1992;25:5331–7. https://doi.org/10.1021/ma00046a034.Suche in Google Scholar

28. Zobel HF, Young SN, Rocca LA. Starch gelatinization an X-ray diffraction study. Cereal Chem 1998;65:647–66.Suche in Google Scholar

29. Jiang JS, Brünger AT. Protein hydration observed by X-ray diffraction solvation properties of penicillopepsin and neuraminidase crystal structures. J Mol Biol 1994;243:100–15. https://doi.org/10.1006/jmbi.1994.1633.Suche in Google Scholar PubMed

30. Ferrarezi MMF, Rodrigues GV, Felisberti MI, Gonçalves MDC. Investigation of cellulose acetate viscoelastic properties in different solvents and microstructure. Eur Polym J 2013;49:2730–7.10.1016/j.eurpolymj.2013.06.007Suche in Google Scholar

31. Mostofi N, Nazockdast H, Mohammadigoushki H. Study on morphology and viscoelastic properties of PP/PET/SEBS ternary blend and their fibers. J Appl Polym Sci 2009;114:3737–43. https://doi.org/10.1016/j.eurpolymj.2013.06.007.Suche in Google Scholar

32. Jackowiak H, Packa D, Wiwart M, Perkowski J. Scanning electron microscopy of Fusarium damaged kernels of spring wheat. Int J Food Microbiol 2005;98:113–23. https://doi.org/10.1016/j.ijfoodmicro.2004.05.014.Suche in Google Scholar PubMed

33. Pagano AM, Mascheroni RH. Sorption isotherms for amaranth grains. J Food Eng 2005;67:441–50. https://doi.org/10.1016/j.jfoodeng.2004.05.012.Suche in Google Scholar

34. Santalla EM, Mascheroni RH. Equilibrium moisture characteristics of high oleic sunflower seeds and kernels. Drying Technol 2003;21:147–63. https://doi.org/10.1081/DRT-120017288.Suche in Google Scholar

35. Li X-J, Cao Z-Y, Wei Z-Y, Feng Q-Y, Wang J-S. Equilibrium moisture content and sorption isosteric heats of five wheat varieties in China. J Stored Prod Res 2011;47:39–47. https://doi.org/10.1016/j.jspr.2010.10.001.Suche in Google Scholar

36. Fonseca J, O’Sullivan C, Nagira T, Yasuda H, Gourlay CM. In situ study of granular micromechanics in semi-solid carbon steels. Acta Mater 2013;61:4169–79. https://doi.org/10.1016/j.actamat.2013.03.043.Suche in Google Scholar

37. Riglet-Martial C, Martin P, Testemale D, Sabathier-Devals C, Carlot G, Matheron P, et al. Thermodynamics of chromium in UO2 fuel: a solubility model. J Nucl Mater 2014;447:63–72. https://doi.org/10.1016/j.jnucmat.2013.12.021.Suche in Google Scholar

38. Sadrnia H, Rajabipour A, Jafari A, Javadi A, Mostofi Y, Kafashan J, et al. Internal bruising prediction in watermelon compression using nonlinear models. J Food Eng 2008;86:272–80. https://doi.org/10.1016/j.jfoodeng.2007.10.007.Suche in Google Scholar

39. Hedjazi L, Guessasma S, Valle GD, Benseddiq N. Finite element modelling of crack propagation in carbohydrate extruded starch with open void structure. Carbohydr Polym 2011;83:1696–706. https://doi.org/10.1016/j.carbpol.2010.10.031.Suche in Google Scholar

40. Yang C, Wang Y-X, Chen L-Y. Fabrication, characterization and controlled release properties of oat protein gels with percolating structure induced by cold gelation. Food Hydrocolloids 2017;62:21–34. https://doi.org/10.1016/j.foodhyd.2016.07.023.Suche in Google Scholar

41. Zhang Q, Yang W, Sun Z. Mechanical properties of sound and fissured rice kernels and their implications for rice breakage. J Food Eng 2005;68:65–72. https://doi.org/10.1016/j.jfoodeng.2004.04.042.Suche in Google Scholar

42. Razavi SMA, Edalatian MR. Effect of moisture contents and compression axes on physical and mechanical properties of Pistachio Kernel. Int J Food Prop 2012;15:507–17.10.1080/10942912.2010.492541Suche in Google Scholar

43. Dolz M, Hernandez MJ, Delegido J. Creep and recovery experimental investigation of low oil content food emulsions. Food Hydrocolloids 2008;22:421–7. https://doi.org/10.1080/10942912.2010.492541.Suche in Google Scholar

44. Xing J-J, Liu Y, Li D, Wang L-J, Adhikari B. Heat-moisture treatment and acid hydrolysis of corn starch in different sequences. LWT Food Sci Technol 2016;79:11–20. https://doi.org/10.1016/j.lwt.2016.12.055.Suche in Google Scholar

45. Aviara NA, Ajibola OO, Dairo UO. Thermodynamics of moisture sorption in sesame seed. Biosyst Eng 2003;83:423–32. https://doi.org/10.1006/bioe.2002.0124.Suche in Google Scholar

46. Ishihara S, Nakauma M, Funami T, Odake S, Nishinari K. Viscoelastic and fragmentation characters of model bolus from polysaccharide gels after instrumental mastication. Food Hydrocolloids 2011;25:1210–8. https://doi.org/10.1016/j.foodhyd.2010.11.008.Suche in Google Scholar

47. Wang Y, Wang L-J, Li D, Xue J, Mao Z-H. Effects of drying methods on rheological properties of flaxseed gum. Carbohydr Polym 2009;78:213–9. https://doi.org/10.1016/j.carbpol.2009.03.025.Suche in Google Scholar

48. Penny WD, Kilner J, Blankenburg F. Robust Bayesian general linear models. Neuroimage 2007;36:661–71. https://doi.org/10.1016/j.neuroimage.2007.01.058.Suche in Google Scholar PubMed

49. Nunes LCS, Dias FWR, Mattos HSDC. Mechanical behavior of polytetrafluoroethylene in tensile loading under different strain rates. Polym Testing 2011;30:791–6. https://doi.org/10.1016/j.polymertesting.2011.07.004.Suche in Google Scholar

50. Jimenezavalos HA, Ramosramirez EG, Salazarmontoya JA. Viscoelastic characterization of gum arabic and maize starch mixture using the Maxwell model. Carbohydr Polym 2005;62:11–8. https://doi.org/10.1016/j.carbpol.2005.07.007.Suche in Google Scholar

51. Hilles H, Monroy F. Dilational creep compliance in Langmuir polymer films. Soft Matter 2011;7:7790–6. https://doi.org/10.1039/C1SM05255A.Suche in Google Scholar

52. Dong C-X, Zhu S-J, Mizuno M, Hashimoto M. Modeling and prediction of compressive creep of silane-treated TiO2/high-density polyethylene. J Mater Sci 2010;45:3506–13. https://doi.org/10.1007/s10853-010-4387-6.Suche in Google Scholar

53. Xu Y, Wu Q, Lei Q, Yao F. Creep behavior of bagasse fiber reinforced polymer composites. Bioresour Technol 2010;101:3280–6.10.1016/j.biortech.2009.12.072Suche in Google Scholar

54. Jackman RL, Stanley DW. Creep behaviour of tomato pericarp tissue as influenced by ambient temperature ripening and chilled storage. J Texture Stud 1995;26:537–52.10.1111/j.1745-4603.1995.tb00802.xSuche in Google Scholar

55. Manconi M, Muraa S, Manca ML, Fadda AM, Dolz M, Hernandez MJ, et al. Chitosomes as drug delivery systems for C-phycocyanin: preparation and characterization. Int J Pharm 2010;392:92–100. https://doi.org/10.1016/j.ijpharm.2010.03.038.Suche in Google Scholar

56. Picciochi R, Wang Y-M, Alves NM, Mano JF. Glass transition of semi-crystalline PLLA with different morphologies as studied by dynamic mechanical analysis. Colloid Polym Sci 2007;285:575–80. https://doi.org/10.1007/s00396-006-1590-8.Suche in Google Scholar

57. Champion D, Le MM, Simatos D. Towards an improved understanding of glass transition and relaxations in foods molecular mobility in the glass transition range. Trends Food Sci Technol 2000;11:41–55. https://doi.org/10.1016/S0924-2244(00)00047-9.Suche in Google Scholar

58. Meste ML, Champion D, Roudaut G, Blond G, Simatos D. Glass transition and food technology: a critical appraisal. J Food Sci 2010;67:2444–58. https://doi.org/10.1111/j.1365-2621.2002.tb08758.x.Suche in Google Scholar

59. Barral L, Cano J, López J, López-Bueno I, Nogueira P, Abad MJ, et al. Physical aging of a tetrafunctional/phenol novolac epoxy mixture cured with diamine DSC and DMA measurements. J Therm Anal Calorim 2000;60:391–9. https://doi.org/10.1023/A:1010125022491.10.1023/A:1010125022491Suche in Google Scholar

60. Zhou Y-G, Wang L-J, Li D, Yan P-Y, Li Y-B, Shi J, et al. Effect of sucrose on dynamic mechanical characteristics of maize and potato starch films. Carbohydr Polym 2009;76:239–43. https://doi.org/10.1016/j.carbpol.2008.10.016.Suche in Google Scholar

61. Zimeri JE, Kokini JL. The effect of moisture content on the crystallinity and glass transition temperature of inulin. Carbohydr Polym 2002;48:299–304.10.1016/S0144-8617(01)00260-0Suche in Google Scholar

62. Maaruf AG, Man YBC, Asbi BA, Junainah AH, Kennedy JF. Effect of water content on the gelatinisation temperature of sago starch. Carbohydr Polym 2001;46:331–7. https://doi.org/10.1016/S0144-8617(00)00335-0.Suche in Google Scholar

63. Cheetham NWH, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym 1998;36:277–84. https://doi.org/10.1016/S0144-8617(98)00007-1.Suche in Google Scholar

64. Bédoui F, Guigon M. Linear viscoelastic behavior of poly (ethylene terephtalate) above Tg amorphous viscoelastic properties Vs crystallinity: experimental and micromechanical modeling. Polymer 2010;51:5229–35. https://doi.org/10.1016/j.polymer.2010.08.058.Suche in Google Scholar

Received: 2018-10-18
Accepted: 2020-02-20
Published Online: 2020-04-13

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2018-0350/html?lang=de
Button zum nach oben scrollen