Home Kinetics and thermodynamics of methylene blue adsorption onto black plum seed-based graphene oxide
Article
Licensed
Unlicensed Requires Authentication

Kinetics and thermodynamics of methylene blue adsorption onto black plum seed-based graphene oxide

  • Oluwadayo Asokogene Francis EMAIL logo and Muhammad Abbas Ahmad Zaini ORCID logo
Published/Copyright: December 5, 2024

Abstract

The kinetics and thermodynamics of methylene blue adsorption from aqueous solution was studied using low-cost biomass graphite (CVDM) and graphene oxide (SGO) derived from black plum seed. The effects of pH in the range of 2.2–12.5, adsorbent dosage in the range of 25–100 mg and solution temperature in the range of 28.7–90 °C were studied. The optimum conditions were recorded at pH 4.8, dosage of 25 mg and solution temperature of 70 °C. The pseudo-second-order model demonstrated the best fit to experimental data (R 2 → 1 and SSE = 3.69), rapid rate constant (K s = 0.0868 g/mg.min) and empirical adsorption capacity of 4.12 mg/g. The adsorption of methylene blue onto SGO increased with solution temperature to 70 °C before it decreased, suggesting a weakening of the attractive adsorbent-adsorbate forces due to collisions among methylene blue molecules.


Corresponding author: Oluwadayo Asokogene Francis, Department of Chemical Engineering, Edo State University, Uzairue, Nigeria, E-mail:

Acknowledgments

We wish to acknowledge the role and support of Momoh Solomon, Abiakwe Esther Chidinma, Chemical Engineering laboratory and Chemistry laboratory of Edo State University, Uzairue, Nigeria.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Dr. Francis Asokogene Oluwadayo: Conceptualization, methodology, experimental work, analysis, resource, validation, first draft, review, final draft. Assoc. Prof. Muhammad Abbas Ahmad Zaini: Analysis, validation, review, final draft. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: Large Language Models, AI and Machine Learning Tools were not used in experimental design, data collection and writing of the manuscript.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

[1] L. Carlsen and R. Bruggemann, “The 17 United Nations’ sustainable development goals: a status by 2020,” Int. J. Sustainable Dev. World Ecol., vol. 29, no. 3, pp. 219–229, 2022, https://doi.org/10.1080/13504509.2021.1948456.Search in Google Scholar

[2] O. A. Francis and M. A. A. Zaini, “Deep eutectic solvent-treated palm oil mill sludge adsorbents for methylene blue adsorption,” Environ. Monit. Assess., vol. 195, no. 11, p. 1356, 2023, https://doi.org/10.1007/s10661-023-11925-z.Search in Google Scholar PubMed

[3] V. Kumar, et al.., “Silver doped manganese oxide-carbon nanotube nanocomposite for enhanced dye-sequestration: isotherm studies and RSM modelling approach,” Ceram. Int., vol. 46, no. 8, pp. 10309–10319, 2020, https://doi.org/10.1016/j.ceramint.2020.01.025.Search in Google Scholar

[4] J. Mittal, “Permissible synthetic food dyes in India,” Resonance, vol. 25, no. 4, pp. 567–577, 2020, https://doi.org/10.1007/s12045-020-0970-6.Search in Google Scholar

[5] J. Kaushal and P. Mahajan, “Aquatic macrophytes and algae in textile wastewater treatment,” in Algae and Aquatic Macrophytes in Cities, Amsterdam, Netherlands, Elsevier, 2022, pp. 103–117.10.1016/B978-0-12-824270-4.00002-XSearch in Google Scholar

[6] J. Mittal, A. Mariyam, F. Sakina, R. T. Baker, A. K. Sharma, and A. Mittal, “Batch and bulk adsorptive removal of anionic dye using metal/halide-free ordered mesoporous carbon as adsorbent,” J. Cleaner Prod., vol. 321, p. 129060, 2021, https://doi.org/10.1016/j.jclepro.2021.129060.Search in Google Scholar

[7] T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, and H. M. Iqbal, “Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment,” Environ. Int., vol. 122, pp. 52–66, 2019, https://doi.org/10.1016/j.envint.2018.11.038.Search in Google Scholar PubMed

[8] P. Yilmaz, D. Gunduz, and B. Ozbek, “Utilization of low-cost bio-waste adsorbent for methylene blue dye removal from aqueous solutions and optimization of process variables by response surface methodology approach,” Desal. Water Treat., vol. 224, pp. 367–388, 2021.10.5004/dwt.2021.27206Search in Google Scholar

[9] D. Pathania, S. Sharma, and P. Singh, “Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast,” Arabian J. Chem., vol. 10, pp. S1445–S1451, 2017, https://doi.org/10.1016/j.arabjc.2013.04.021.Search in Google Scholar

[10] M. Alipour, et al.., “Optimising the basic violet 16 adsorption from aqueous solutions by magnetic graphene oxide using the response surface model based on the Box–Behnken design,” Int. J. Environ. Anal. Chem., vol. 101, no. 6, pp. 758–777, 2021, https://doi.org/10.1080/03067319.2019.1671378.Search in Google Scholar

[11] S. R. Piriya, R. M. Jayabalakrishnan, M. Maheswari, K. Boomiraj, and S. Oumabady, “Coconut shell derived ZnCl2 activated carbon for malachite green dye removal,” Water Sci. Technol., vol. 83, no. 5, pp. 1167–1182, 2021, https://doi.org/10.2166/wst.2021.050.Search in Google Scholar PubMed

[12] K. Cao, Z. Tian, X. Zhang, Y. Wang, and Q. Zhu, “Green preparation of graphene oxide nanosheets as adsorbent,” Sci. Rep., vol. 13, no. 1, p. 9314, 2023, https://doi.org/10.1038/s41598-023-36595-2.Search in Google Scholar PubMed PubMed Central

[13] A. O. Francis, O. S. Kevin, and M. A. Ahmad Zaini, “Vitex doniana seed activated carbon for methylene blue adsorption: equilibrium and kinetics,” Int. J. Phytorem., vol. 25, no. 12, pp. 1625–1635, 2023. https://doi.org/10.1080/15226514.2023.2179013.Search in Google Scholar PubMed

[14] A. Kheradmand, M. Negarestani, S. Kazemi, H. Shayesteh, S. Javanshir, and H. Ghiasinejad, “Adsorption behavior of rhamnolipid modified magnetic Co/Al layered double hydroxide for the removal of cationic and anionic dyes,” Sci. Rep., vol. 12, no. 1, p. 14623, 2022, https://doi.org/10.1038/s41598-022-19056-0.Search in Google Scholar PubMed PubMed Central

[15] A. Mariyam, J. Mittal, F. Sakina, R. T. Baker, A. K. Sharma, and A. Mittal, “Efficient batch and Fixed-Bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent,” Arabian J. Chem., vol. 14, no. 6, p. 103186, 2021, https://doi.org/10.1016/j.arabjc.2021.103186.Search in Google Scholar

[16] C. A. Sáenz-Alanís, R. B. García-Reyes, E. Soto-Regalado, and A. García-González, “Phenol and methylene blue adsorption on heat-treated activated carbon: characterization, kinetics, and equilibrium studies,” Adsorpt. Sci. Technol., vol. 35, nos. 9–10, pp. 789–805, 2017.10.1177/0263617416684517Search in Google Scholar

[17] O. J. Amode, H. S. Jose, M. A. Zahangir, and H. M. Aminul, “Adsorption of methylene blue from aqueous solution using untreated and treated (metroxylon Spp.) waste adsorbent: equilibrium and kinetics studies,” Int. J. Ind. Chem., vol. 7, pp. 333–345, 2016.10.1007/s40090-016-0085-9Search in Google Scholar

[18] O. F. Asokogene, M. A. A. Zaini, M. M. Idris, S. Abdulsalam, and A. E. N. Usman, “Physicochemical properties of oxalic acid-modified chitosan/neem leave composites from Pessu river crab shell,” Int. J. Chem. React. Eng., vol. 17, no. 9, p. 20180274, 2019, https://doi.org/10.1515/ijcre-2018-0274.Search in Google Scholar

[19] F. A. S. Roslan, N. Y. Harun, A. A. H. Saeed, R. M. Ramli, S. D. Mannikam, and E. H. H. Al-Qadami, “Methylene blue removal using palm oil mill effluent sludge-derived adsorbent,” Chem. Eng. Trans., vol. 91, pp. 589–594, 2022.Search in Google Scholar

[20] F. Arias Arias, et al.., “The adsorption of methylene blue on eco-friendly reduced graphene oxide,” Nanomaterials, vol. 10, no. 4, p. 681, 2020, https://doi.org/10.3390/nano10040681.Search in Google Scholar PubMed PubMed Central

[21] A. Jiříčková, O. Jankovský, Z. Sofer, and D. Sedmidubský, “Synthesis and applications of graphene oxide,” Materials, vol. 15, no. 3, p. 920, 2022, https://doi.org/10.3390/ma15030920.Search in Google Scholar PubMed PubMed Central

[22] N. A. Guliyeva, R. G. Abaszade, E. A. Khanmammadova, and E. M. Azizov, “Synthesis and analysis of nanostructured graphene oxide,” J. Optoelectron. Biomed. Mater., vol. 15, no. 1, pp. 23–30, 2023, https://doi.org/10.15251/jobm.2023.151.23.Search in Google Scholar

[23] R. Ramli and R. Hidayat, Graphene Oxide Based on Biomass Waste: Synthesis and Applications, London, UK, Intech Open, 2023, pp. 1–20.10.5772/intechopen.107488Search in Google Scholar

[24] G. Supriyanto, et al.., “Graphene oxide from Indonesian biomass: synthesis and characterization,” BioResources, vol. 13, no. 3, pp. 4832–4840, 2018, https://doi.org/10.15376/biores.13.3.4832-4840.Search in Google Scholar

[25] D. Rahmawati, M. Taspika, and N. A. Zen, “Utilization of biomass as a carbon source for the synthesis of graphene as a sustainable materials innovation,” Sustainability (STPP) Theory, Pract. Policy, vol. 1, no. 2, pp. 136–153, 2021, https://doi.org/10.30631/sdgs.v1i2.1015.Search in Google Scholar

[26] A. A. Challa, et al.., “Synthesis and characterization of graphene oxide from residual biomass,” in 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP), IEEE, 2022, pp. 1–4.10.1109/NAP55339.2022.9934117Search in Google Scholar

[27] B. Thangaraj, F. Mumtaz, Y. Abbas, D. H. Anjum, P. R. Solomon, and J. Hassan, “Synthesis of graphene oxide from sugarcane dry leaves by two-stage pyrolysis,” Molecules, vol. 28, no. 8, p. 3329, 2023, https://doi.org/10.3390/molecules28083329.Search in Google Scholar PubMed PubMed Central

[28] P. O. Ameh, R. Odoh, and A. Oluwaseye, “Equilibrium study on the adsorption of Zn (II) and Pb (II) ions from aqueous solution onto vitex doniana nut,” Int. J. Mod. Chem., vol. 3, no. 2, pp. 82–97, 2012.Search in Google Scholar

[29] C. A. Guerrero-Fajardo, L. Giraldo, and J. C. Moreno-Piraján, “Preparation and characterization of graphene oxide for Pb (II) and Zn (II) ions adsorption from aqueous solution: experimental, thermodynamic and kinetic study,” Nanomaterials, vol. 10, no. 6, p. 1022, 2020, https://doi.org/10.3390/nano10061022.Search in Google Scholar PubMed PubMed Central

[30] J. Yusuf, M. Muhammed, and B. T. Grace, “Preparation of activated carbon from Syzygium cumini seed for the removal of chromium (II) ion from aqueous solution,” Bayero J. Pure Appl. Sci., vol. 13, no. 1, pp. 158–163, 2020, https://doi.org/10.4314/bajopas.v13i1.22.Search in Google Scholar

[31] M. S. Amir Faiz, C. A. Che Azurahanim, Y. Yazid, A. B. Suriani, and M. J. Siti Nurul Ain, “Preparation and characterization of graphene oxide from tea waste and it’s photocatalytic application of TiO2/graphene nanocomposite,” Mater. Resour. Express, vol. 7, no. 1, p. 015613, 2020. https://doi.org/10.1088/2053-1591/ab689d.Search in Google Scholar

[32] S. Bai, T. Wang, Z. Tian, K. Cao, and J. Li, “Facile preparation of porous biomass charcoal from peanut shell as adsorbent,” Sci. Rep., vol. 10, no. 1, p. 15845, 2020, https://doi.org/10.1038/s41598-020-72721-0.Search in Google Scholar PubMed PubMed Central

[33] M. A. Baqiya, et al.., “Structural study on graphene-based particles prepared from old coconut shell by acid–assisted mechanical exfoliation,” Adv. Powder Technol., vol. 31, no. 5, pp. 2072–2078, 2020, https://doi.org/10.1016/j.apt.2020.02.039.Search in Google Scholar

[34] S. Sankar, et al.., “Ultrathin graphene nanosheets derived from rice husks for sustainable supercapacitor electrodes,” New J. Chem., vol. 41, no. 22, pp. 13792–13797, 2017, https://doi.org/10.1039/c7nj03136j.Search in Google Scholar

[35] B. Paulchamy, G. Arthi, and B. D. Lignesh, “A simple approach to stepwise synthesis of graphene oxide nanomaterial,” J. Nanomed. Nanotechnol., vol. 6, no. 1, p. 1, 2015.Search in Google Scholar

[36] W. C. H. Silva, M. A. Zafar, S. Allende, M. V. Jacob, and R. Tuladhar, “Sustainable synthesis of graphene oxide from waste sources: a comprehensive review of methods and applications,” Mater. Circ. Econ., vol. 6, no. 1, p. 23, 2024, https://doi.org/10.1007/s42824-024-00117-w.Search in Google Scholar

[37] W. W. Nik, M. M. Rahman, A. M. Yusof, F. N. Ani, and C. C. Adnan, “Production of activated carbon from palm oil shell waste and its adsorption characteristics,” in Proceedings of the 1st International Conference on Natural Resources, Engineering and Technology, 2006, pp. 646–654.Search in Google Scholar

[38] Y. H. Teow, W. N. A. Wan Mohammad Hamdan, and A. W. Mohammad, “Preparation of palm oil industry’s biomass-based graphene composite for the adsorptive removal of methylene blue,” Adsorpt. Sci. Technol., vol. 2021, p. 9130233, 2021, https://doi.org/10.1155/2021/9130233.Search in Google Scholar

[39] E. M. Mistar, T. Alfatah, and M. D. Supardan, “Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation,” J. Mater. Res. Technol., vol. 9, no. 3, pp. 6278–6286, 2020, https://doi.org/10.1016/j.jmrt.2020.03.041.Search in Google Scholar

[40] L. Luo, et al.., “Synthesis of activated carbon from biowaste of fir bark for methylene blue removal,” R. Soc. Open Sci., vol. 6, no. 9, p. 190523, 2019, https://doi.org/10.1098/rsos.190523.Search in Google Scholar PubMed PubMed Central

[41] V. M. Vučurović, R. N. Razmovski, and M. N. Tekić, “Methylene blue (cationic dye) adsorption onto sugar beet pulp: equilibrium isotherm and kinetic studies,” J. Taiwan Inst. Chem. Eng., vol. 43, no. 1, pp. 108–111, 2012, https://doi.org/10.1016/j.jtice.2011.06.008.Search in Google Scholar

[42] W. W. Ngah, L. C. Teong, and M. M. Hanafiah, “Adsorption of dyes and heavy metal ions by chitosan composites: a review,” Carbohydr. Polym., vol. 83, no. 4, pp. 1446–1456, 2011, https://doi.org/10.1016/j.carbpol.2010.11.004.Search in Google Scholar

[43] S. Soni, P. K. Bajpai, J. Mittal, and C. Arora, “Utilisation of cobalt doped Iron based MOF for enhanced removal and recovery of methylene blue dye from waste water,” J. Mol. Liq., vol. 314, p. 113642, 2020, https://doi.org/10.1016/j.molliq.2020.113642.Search in Google Scholar

[44] B. Agarwal, C. Balomajumder, and P. K. Thakur, “Simultaneous co-adsorptive removal of phenol and cyanide from binary solution using granular activated carbon,” Chem. Eng. J., vol. 228, pp. 655–664, 2013, https://doi.org/10.1016/j.cej.2013.05.030.Search in Google Scholar

[45] E. A. El-Sharkaway, R. M. Kamel, I. M. El-Sherbiny, and S. S. Gharib, “Removal of methylene blue from aqueous solutions using polyaniline/graphene oxide or polyaniline/reduced graphene oxide composites,” Environ. Technol., vol. 41, no. 22, pp. 2854–2862, 2020. https://doi.org/10.1080/09593330.2019.1585481.Search in Google Scholar PubMed

[46] A. O. Francis, M. A. Ahmad Zaini, Z. A. Zakaria, I. M. Muhammad, S. Abdulsalam, and U. A. El-Nafaty, “Equilibrium and kinetics of phenol adsorption by crab shell chitosan,” Part. Sci. Technol., vol. 39, no. 4, pp. 415–426, 2021, https://doi.org/10.1080/02726351.2020.1745975.Search in Google Scholar

[47] M. T. Yagub, T. K. Sen, S. Afroze, and H. M. Ang, “Dye and its removal from aqueous solution by adsorption: a review,” Adv. Colloid Interface Sci., vol. 209, no. 13, pp. 172–184, 2014, https://doi.org/10.1016/j.cis.2014.04.002.Search in Google Scholar PubMed

[48] Y. Li, J. Li, and B. Zhao, “Study on influencing factors of adsorption of methylene blue on magnetic graphene oxide composite,” in E3S Web of Conferences, vol. 218, EDP Sciences, 2020, p. 03035.10.1051/e3sconf/202021803035Search in Google Scholar

[49] C. Arora, S. Soni, S. Sahu, J. Mittal, P. Kumar, and P. K. Bajpai, “Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste,” J. Mol. Liq., vol. 284, pp. 343–352, 2019, https://doi.org/10.1016/j.molliq.2019.04.012.Search in Google Scholar

[50] A. Kebede, K. Kedir, F. Melak, and T. G. Asere, “Removal of Cr (VI) from aqueous solutions using biowastes: tella residue and pea (Pisum sativum) seed shell,” Sci. World J., vol. 2022, no. 1, p. 7554133, 2022. https://doi.org/10.1155/2022/7554133.Search in Google Scholar PubMed PubMed Central

[51] T. Li, Y. Yin, S. Wu, and X. Du, “Effect of deep eutectic solvents-regulated lignin structure on subsequent pyrolysis products selectivity,” Bioresour. Technol., vol. 343, p. 126120, 2022, https://doi.org/10.1016/j.biortech.2021.126120.Search in Google Scholar PubMed

[52] F. E. A. Arias, A. Beneduci, F. Chidichimo, E. Furia, and S. Straface, “Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions,” Chemosphere, vol. 180, pp. 11–23, 2017, https://doi.org/10.1016/j.chemosphere.2017.03.137.Search in Google Scholar PubMed

[53] X. Zhou, X. Yu, R. Maimaitiniyazi, X. Zhang, and Q. Qu, “Discussion on the thermodynamic calculation and adsorption spontaneity re Ofudje et al. (2023),” Heliyon, vol. 10, no. 8, 2024, https://doi.org/10.1016/j.heliyon.2024.e28188.Search in Google Scholar PubMed PubMed Central

[54] F. O. Asokogene, M. A. A. Zaini, M. M. Idris, S. Abdulsalam, and E. N. A. Usman, “Methylene blue adsorption onto neem leave/chitosan aggregates: isotherm, kinetics and thermodynamics studies,” Int. J. Chem. React. Eng., vol. 18, no. 1, p. 20190093, 2020, https://doi.org/10.1515/ijcre-2019-0093.Search in Google Scholar

[55] W. Wei, L. Yang, W. H. Zhong, S. Y. Li, J. Cui, and Z. G. Wei, “Fast removal of methylene blue from aqueous solution by adsorption onto poorly crystalline hydroxyapatite nanoparticles,” Dig. J. Nanomater. Biostruct., vol. 19, no. 4, pp. 1343–1363, 2015.Search in Google Scholar

[56] J. A. Alexander, M. A. Ahmad Zaini, A. Surajudeen, E. N. U. Aliyu, and A. U. Omeiza, “Insight into kinetics and thermodynamics properties of multicomponent lead (II), cadmium (II) and manganese (II) adsorption onto Dijah-Monkin bentonite clay,” Part. Sci. Technol., vol. 36, no. 5, pp. 569–577, 2018.10.1080/02726351.2016.1276499Search in Google Scholar

[57] C. H. Chia, N. F. Razali, M. S. Sajab, S. Zakaria, N. M. Huang, and H. N. Lim, “Methylene blue adsorption on graphene oxide,” Sains Malays., vol. 42, no. 6, pp. 819–826, 2013.Search in Google Scholar

[58] V. Makrigianni, G. Aris, D. Yiannis, and K. Ipannis, “Adsorption of phenol and methylene blue from aqueous solutions by pyrolytic tire char: equilibrium and kinetic studies,” J. Environ. Chem. Eng., vol. 3, pp. 574–582, 2015.10.1016/j.jece.2015.01.006Search in Google Scholar

[59] H. Bajun“Adsorption of methylene blue and phenol on activated carbon prepared from fox nutshell by K2CO3 activator.” Dissertation Submitted to the National Institute of Technology, Rourkela, 2016.Search in Google Scholar

[60] G. Pigatto, A. Lodi, E. Finocchio, and M. S. A. Palma, “Chitin as biosobent for phenol removal from aqueous solution: equilibrium, kinetic and thermodynamic studies,” Chem. Eng. Process., vol. 70, pp. 131–139, 2013.10.1016/j.cep.2013.04.009Search in Google Scholar

[61] H. V. T. Luong, T. P. Le, T. L. T. Le, H. G. Dang, and T. B. Q. Tran, “A graphene oxide based composite granule for methylene blue separation from aqueous solution: adsorption, kinetics and thermodynamic studies,” Heliyon, vol. 10, no. 7, 2024, https://doi.org/10.1016/j.heliyon.2024.e28648.Search in Google Scholar PubMed PubMed Central

[62] I. K. Basha, E. M. Abd El-Monaem, R. E. Khalifa, A. M. Omer, and A. S. Eltaweil, “Sulfonated graphene oxide impregnated cellulose acetate floated beads for adsorption of methylene blue dye: optimization using response surface methodology,” Sci. Rep., vol. 12, no. 1, p. 9339, 2022, https://doi.org/10.1038/s41598-022-13105-4.Search in Google Scholar PubMed PubMed Central

[63] M. V. Ratnam, M. P. Murugesan, S. Komarabathina, S. Samraj, M. Abdulkadir, and M. A. Kalifa, “Methylene blue adsorption BY UV-treated graphene oxide nanoparticles (UV/n-GO): Modeling and optimization using response surface methodology and artificial neural networks,” Int. J. Chem. Eng., vol. 2022, no. 1, p. 5759394, 2022, https://doi.org/10.1155/2022/5759394.Search in Google Scholar

[64] J. Ederer, et al.., “A study of methylene blue dye interaction and adsorption by monolayer graphene oxide,” Adsorpt. Sci. Technol., vol. 2022, p. 7385541, 2022, https://doi.org/10.1155/2022/7385541.Search in Google Scholar

[65] F. Asokogene and M. A. A. Zaini, “Green synthesis and characterization of graphene oxide from Vitex doniana seed,” Fullerenes, Nanotubes Carbon Nanostruct., pp. 1–9, 2024, https://doi.org/10.1080/1536383x.2024.2398808.Search in Google Scholar

Received: 2024-08-20
Accepted: 2024-11-15
Published Online: 2024-12-05

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2024-0168/html
Scroll to top button