Home CFD simulation for comparative of hydrodynamic effects in biochemical reactors using population balance model with varied inlet gas distribution profiles
Article
Licensed
Unlicensed Requires Authentication

CFD simulation for comparative of hydrodynamic effects in biochemical reactors using population balance model with varied inlet gas distribution profiles

  • Shenzhou Ni , Tong Zhao , Zehui Sun , Wei Wang and Kuizu Su EMAIL logo
Published/Copyright: January 5, 2024

Abstract

The operational efficiency of the airlift reactors relies significantly on the aeration and mixing provided by the inlet system. The diffused aeration system is the most energy-intensive component affecting the operation of the bioreactor, accounting for 45–75 % of the energy costs. This study presents a coupled CFD-PBM to investigate the collective impacts of multiple bubble diameters, variations in inlet gas distribution types, and flow rates on the hydrodynamic characteristics of bubble columns. The simulation results were validated through comprehensive comparisons with experimental data. The experimental data and simulations of the single bubble size model (SBSM) and multi-bubble size model (MBSM) were compared, proposing an enhanced inlet gas distribution type. The results indicate a close resemblance between the MBSM data and the experimental results, with an error margin not exceeding 5 %. Moreover, different flow rates were found to cause varying sensitivities in the bubble size distribution (BSD) within the column. Furthermore, the simulation results validate the similarity between lift coefficients and critical diameters to experiments and shed light on favorable conditions for reactor design. The key findings of this study encompass: (1) the use of MBSM can accurately predict the tower system characteristics; (2) the column circulation is intensified with small inlet bubble size and high gas velocity, which is favorable for chemical reactions and microbial aggregation to proceed; and (3) the BSD is not sensitive to the inlet gas distribution type at high flow rates.


Corresponding Author: Kuizu Su, Department of Civil Engineering, Hefei University of Technology, Hefei 230009, China; and Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei 230009, China, E-mail:

Funding source: The Key Common Technology Research and Development Project of Hefei

Award Identifier / Grant number: GJ2022SH10

Funding source: The National Natural Science Foundation of China

Award Identifier / Grant number: U19A20108

Funding source: The National Key R&D Program of China

Award Identifier / Grant number: 2019YFC0408502

Funding source: Science and Technology Projects of Anhui Provincial Group Limited for Yangtze-To-Huaihe Water Diversion

Award Identifier / Grant number: YJJH-ZT-ZX-20230706545

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: The authors gratefully acknowledge the financial supports by the Key Common Technology Research and Development Project of Hefei (GJ2022SH10), the National Natural Science Foundation of China (U19A20108), the National Key R&D Program of China (2019YFC0408502), and the Science and Technology Projects of Anhui Provincial Group Limited for Yangtze-To-Huaihe Water Diversion (YJJH-ZT-ZX-20230706545).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

Notations

C D,dis

disperse phase drag coefficient, dimensionless

C D,vis

viscous/cap drag coefficient

C D,cap

dimensionless

C L

lift coefficient, dimensionless

C T

turbulent diffusion coefficient, dimensionless

C VM

virtual mass force coefficient, dimensionless

d b

bubble size, m

F

inter-phase momentum exchange term, kg/m2 s2

f bv

breakup frequency, dimensionless

F D

drag force, kg/m2 s2

F L

lift force, kg/m2 s2

F VM

virtual mass force, kg/m2 s2

F wl

wall lubrication force, kg/m2 s2

g

gravitational force, m/s2

g b(V′)

frequency of breakup, m3/s

H D, H L

aeration/static liquid level height, m

k

turbulent kinetic energy per unit mass, m2/s2

n

number density of bubbles, 1/m3

p

pressure, Pa

p ij

aggregation probability of collisions

Pr

Prandtl number, dimensionless

Re

Reynolds number, dimensionless

Sr

Strouhal number, dimensionless

St

Stokes number, dimensionless

u

phase velocity, m/s

U g

superficial gas velocity, m/s

We

Weber number, dimensionless

Greek letters

α

phase holdup, dimensionless

β b(V|V′)

probability density function of bubble breakup

Γ(V,V′)

bubble coalescence rate, 1/s

ε

turbulent energy dissipation rate, m2 s−3

μ t

turbulent viscosity, kg/m s

ξ

eddy size, ξ = λ/d, dimensionless

π

pi, equals 3.14159

ρ i

phase density, kg m−3

σ

surface tension, N/m

Ω B

breakup rate, 1/s

Ω C

coalescence rate, m3/s

ω(V i , V j )

frequency of collision, m3/s

References

[1] X. Guan and N. Yang, “CFD simulation of bubble column hydrodynamics with a novel drag model based on EMMS approach,” Chem. Eng. Sci., vol. 243, 2021, Art. no. 116758, https://doi.org/10.1016/j.ces.2021.116758.Search in Google Scholar

[2] J. Chen and C. S. Brooks, “Experiments and CFD simulation of mass transfer and hydrodynamics in a cylindrical bubble column,” Chem. Eng. Sci., vol. 234, 2021, Art. no. 116435, https://doi.org/10.1016/j.ces.2020.116435.Search in Google Scholar

[3] G. Nadal-Rey, D. D. McClure, J. M. Kavanagh, B. Cassells, S. Cornelissen, D. F. Fletcher, and K. V. Gernaey, “Computational fluid dynamics modelling of hydrodynamics, mixing and oxygen transfer in industrial bioreactors with Newtonian broths,” Biochem. Eng. J., vol. 177, 2022, Art. no. 108265, https://doi.org/10.1016/j.bej.2021.108265.Search in Google Scholar

[4] E. Camarasa, C. Vial, S. Poncin, G. Wild, N. Midoux, and J. Bouillard, “Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column,” Chem. Eng. Process. Process Intensif., vol. 38, no. 4, pp. 329–344, 1999, https://doi.org/10.1016/s0255-2701(99)00024-0.Search in Google Scholar

[5] P. Rollbusch, M. Bothe, M. Becker, M. Ludwig, M. Grünewald, M. Schlüter, and R. Franke, “Bubble columns operated under industrially relevant conditions – Current understanding of design parameters,” Chem. Eng. Sci., vol. 126, pp. 660–678, 2015, https://doi.org/10.1016/j.ces.2014.11.061.Search in Google Scholar

[6] A. D. Anastasiou, A. D. Passos, and A. A. Mouza, “Bubble columns with fine pore sparger and non-Newtonian liquid phase: Prediction of gas holdup,” Chem. Eng. Sci., vol. 98, pp. 331–338, 2013, https://doi.org/10.1016/j.ces.2013.05.006.Search in Google Scholar

[7] X. Guan and N. Yang, “Bubble properties measurement in bubble columns: From homogeneous to heterogeneous regime,” Chem. Eng. Res. Des., vol. 127, pp. 103–112, 2017, https://doi.org/10.1016/j.cherd.2017.09.017.Search in Google Scholar

[8] A. Amaral, G. Bellandi, U. Rehman, R. Neves, Y. Amerlinck, and I. Nopens, “Towards improved accuracy in modeling aeration efficiency through understanding bubble size distribution dynamics,” Water Res., vol. 131, pp. 346–355, 2018, https://doi.org/10.1016/j.watres.2017.10.062.Search in Google Scholar PubMed

[9] M. R. Bhole, J. B. Joshi, and D. Ramkrishna, “CFD simulation of bubble columns incorporating population balance modeling,” Chem. Eng. Sci., vol. 63, no. 8, pp. 2267–2282, 2008, https://doi.org/10.1016/j.ces.2008.01.013.Search in Google Scholar

[10] M. N. Esperança, M. O. Cerri, V. T. Mazziero, R. Béttega, and A. C. Badino, “Hydrodynamic comparison of different geometries of square cross-section airlift bioreactor using computational fluid dynamics,” Int. J. Chem. React. Eng., vol. 21, no. 10, pp. 1291–1303, 2023, https://doi.org/10.1515/ijcre-2023-0010.Search in Google Scholar

[11] S. Salehi, A. Heydarinasab, F. P. Shariati, A. T. Nakhjiri, and K. Abdollahi, “Parametric numerical study and optimization of mass transfer and bubble size distribution in a gas-liquid stirred tank bioreactor equipped with Rushton turbine using computational fluid dynamics,” Int. J. Chem. Reactor Eng., vol. 19, no. 10, pp. 1115–1131, 2021, https://doi.org/10.1515/ijcre-2021-0083.Search in Google Scholar

[12] Q. Liu, X.-F. Liang, X.-J. Luo, and Z.-H. Luo, “A PBM-CFD model with optimized PBM-customized drag equations for chemisorption of CO2 in a bubble column,” Int. J. Chem. Reactor Eng., vol. 16, no. 5, pp. 20170174, 2018. https://doi.org/10.1515/ijcre-2017-0174.Search in Google Scholar

[13] Y. Liu, Z.-J. Wang, J.-y. Xia, C. Haringa, Y.-p. Liu, J. Chu, Y. P. Zhuang, and S.-L. Zhang, “Application of Euler Lagrange CFD for quantitative evaluating the effect of shear force on Carthamus tinctorius L. cell in a stirred tank bioreactor,” Biochem. Eng. J., vol. 114, pp. 209–217, 2016, https://doi.org/10.1016/j.bej.2016.07.006.Search in Google Scholar

[14] S. N. Saleh, A. A. Mohammed, F. K. Al-Jubory, and S. Barghi, “CFD assesment of uniform bubbly flow in a bubble column,” J. Petrol. Sci. Eng., vol. 161, pp. 96–107, 2018, https://doi.org/10.1016/j.petrol.2017.11.002.Search in Google Scholar

[15] H. A. Jakobsen, H. Lindborg, and C. A. Dorao, “Modeling of bubble column reactors: Progress and limitations,” Ind. Eng. Chem. Res., vol. 44, no. 14, pp. 5107–5151, 2005, https://doi.org/10.1021/ie049447x.Search in Google Scholar

[16] M. Pourtousi, J. N. Sahu, and P. Ganesan, “Effect of interfacial forces and turbulence models on predicting flow pattern inside the bubble column,” Chem. Eng. Process. Process Intensif., vol. 75, pp. 38–47, 2014, https://doi.org/10.1016/j.cep.2013.11.001.Search in Google Scholar

[17] X. Zhang, P. Zhu, S. Li, W. Fan, and J. Lian, “CFD-PBM simulation of hydrodynamics of microbubble column with shear-thinning fluid,” Int. J. Chem. Reactor Eng., vol. 19, no. 2, pp. 125–138, 2021, https://doi.org/10.1515/ijcre-2020-0172.Search in Google Scholar

[18] L. Xu, B. Yuan, H. Ni, and C. Chen, “Numerical simulation of bubble column flows in churn-turbulent regime: Comparison of bubble size models,” Ind. Eng. Chem. Res., vol. 52, no. 20, pp. 6794–6802, 2013, https://doi.org/10.1021/ie4005964.Search in Google Scholar

[19] L. Shen, Q. Wu, Q. Ye, H. Lin, J. Zhang, C. Chen, R. Yue, J. Teng, H. Hong, and B.-Q. Liao, “Superior performance of a membrane bioreactor through innovative in-situ aeration and structural optimization using computational fluid dynamics,” Water Res., vol. 243, 2023, Art. no. 120353, https://doi.org/10.1016/j.watres.2023.120353.Search in Google Scholar PubMed

[20] Silva, A. C. B., Esperança, M. N., Pereira, R. D., Badino, A. C., & Bettega, R. (2023). Numerical and experimental estimation of global gas holdup in a bubble column using computational fluid dynamics (CFD). J. Braz. Soc. Mech. Sci. Eng., vol. 45, no. 10, pp. 9, Art. no. 531, https://doi.org/10.1007/s40430-023-04433-1.Search in Google Scholar

[21] X. Zhang and Z. Luo, “Bubble size modeling approach for the simulation of bubble columns,” Chin. J. Chem. Eng., vol. 53, pp. 194–200, 2023, https://doi.org/10.1016/j.cjche.2022.02.005.Search in Google Scholar

[22] H. M. Hulburt and S. Katz, “Some problems in particle technology: A statistical mechanical formulation,” Chem. Eng. Sci., vol. 19, no. 8, pp. 555–574, 1964, https://doi.org/10.1016/0009-2509(64)85047-8.Search in Google Scholar

[23] J. Morchain, M. Pigou, and N. Lebaz, “A population balance model for bioreactors combining interdivision time distributions and micromixing concepts,” Biochem. Eng. J., vol. 126, pp. 135–145, 2017, https://doi.org/10.1016/j.bej.2016.09.005.Search in Google Scholar

[24] N. Qiao, S. Yue, J. Cheng, C. Wang, X. Wang, Y. Shi, and D. Yu, “A gas distributor capable of multiple injection directions to improve the gas–liquid dispersion performance in the airlift loop reactor,” Biochem. Eng. J., vol. 190, 2023, Art. no. 108770, https://doi.org/10.1016/j.bej.2022.108770.Search in Google Scholar

[25] W. Fan, L. J. Yuan, and X. Qu, “CFD simulation of hydrodynamic behaviors and aerobic sludge granulation in a stirred tank with lower ratio of height to diameter,” Biochem. Eng. J., 2018, S1369703X18301578, https://doi.org/10.1016/j.bej.2018.05.012.Search in Google Scholar

[26] K. Guo, T. Wang, Y. Liu, and J. Wang, “CFD-PBM simulations of a bubble column with different liquid properties,” Chem. Eng. J., vol. 329, 2017, https://doi.org/10.1016/j.cej.2017.04.071.Search in Google Scholar

[27] A. Kaliman, D. Rosso, S. Y. Leu, and M. K. Stenstrom, “Fine-pore aeration diffusers: Accelerated membrane ageing studies,” Water Res., vol. 42, nos. 1-2, pp. 467–475, 2008, https://doi.org/10.1016/j.watres.2007.07.039.Search in Google Scholar PubMed

[28] Z. Huang, D. D. McClure, G. W. Barton, D. F. Fletcher, and J. M. Kavanagh, “Assessment of the impact of bubble size modelling in CFD simulations of alternative bubble column configurations operating in the heterogeneous regime,” Chem. Eng. Sci., vol. 186, pp. 88–101, 2018, https://doi.org/10.1016/j.ces.2018.04.025.Search in Google Scholar

[29] D. Zhang, N. G. Deen, and J. A. M. Kuipers, “Numerical simulation of the dynamic flow behavior in a bubble column: A study of closures for turbulence and interface forces,” Chem. Eng. Sci., vol. 61, no. 23, pp. 7593–7608, 2006, https://doi.org/10.1016/j.ces.2006.08.053.Search in Google Scholar

[30] C. Morel, “Interfacial forces and momentum exchange closure,” in Mathematical Modeling of Disperse Two-Phase Flows, vol. 114, Springer, Cham, Berlin, 2015, pp. 159–190.10.1007/978-3-319-20104-7_8Search in Google Scholar

[31] E. T. Duman, A. Kose, Y. Celik, and S. S. Oncel, “Design of a horizontal-dual bladed bioreactor for low shear stress to improve hydrodynamic responses in cell cultures: A pilot study in Chlamydomonas reinhardtii,” Biochem. Eng. J., vol. 169, 2021, Art. no. 107970, https://doi.org/10.1016/j.bej.2021.107970.Search in Google Scholar

[32] M. Ishii and N. Zuber, “Drag coefficient and relative velocity in bubbly, droplet or particulate flows,” AIChE J., vol. 25, no. 5, pp. 843–855, 1979, https://doi.org/10.1002/aic.690250513.Search in Google Scholar

[33] H. Hessenkemper, T. Ziegenhein, R. Rzehak, D. Lucas, and A. Tomiyama, “Lift force coefficient of ellipsoidal single bubbles in water,” Int. J. Multiphase Flow, vol. 138, 2021, Art. no. 103587, https://doi.org/10.1016/j.ijmultiphaseflow.2021.103587.Search in Google Scholar

[34] S. C. P. Cheung, G. H. Yeoh, and J. Y. Tu, “On the numerical study of isothermal vertical bubbly flow using two population balance approaches,” Chem. Eng. Sci., vol. 62, no. 17, pp. 4659–4674, 2007, https://doi.org/10.1016/j.ces.2007.05.030.Search in Google Scholar

[35] S. P. Antal, R. T. Lahey, and J. E. Flaherty, “Analysis of phase distribution in fully developed laminar bubbly two-phase flow,” Int. J. Multiphase Flow, vol. 17, no. 5, pp. 635–652, 1991, https://doi.org/10.1016/0301-9322(91)90029-3.Search in Google Scholar

[36] A. D. Burns, T. Frank, I. Hamill, and J.-M. Shi, “The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows,” in 5th International Conference on Multiphase Flow, ICMF, 2004, pp. 1–17.Search in Google Scholar

[37] S. A. Hussain, B. Micael, M. Tommaso, and L. Jean-Michel, “CFD simulations of an air-water bubble column: Effect of luo coalescence parameter and breakup kernels,” Front. Chem., vol. 5, pp. 68–83, 2017. https://doi.org/10.3389/fchem.2017.00068.Search in Google Scholar PubMed PubMed Central

[38] H. Luo, Coalescence, breakup and liquid circulation in bubble column reactors, 0961, 1993.Search in Google Scholar

[39] H. Luo and H. F. Svendsen, “Theoretical model for drop and bubble breakup in turbulent dispersions,” AIChE J., vol. 42, pp. 1225–1233, 1996, https://doi.org/10.1002/aic.690420505.Search in Google Scholar

[40] F. Lehr, M. Millies, and D. Mewes, “Bubble-size distributions and flow fields in bubble columns,” AIChE J., vol. 11, p. 48, 2002.10.1002/aic.690481103Search in Google Scholar

[41] P. Chen, J. Sanyal, and M. P. Dudukovi, “Numerical simulation of bubble columns flows: Effect of different breakup and coalescence closures,” Chem. Eng. Sci., vol. 60, no. 4, pp. 1085–1101, 2005, https://doi.org/10.1016/j.ces.2004.09.070.Search in Google Scholar

[42] C. Xing, T. Wang, and J. Wang, “Experimental study and numerical simulation with a coupled CFD–PBM model of the effect of liquid viscosity in a bubble column,” Chem. Eng. Sci., vol. 95, no. Complete, pp. 313–322, 2013, https://doi.org/10.1016/j.ces.2013.03.022.Search in Google Scholar

[43] P. Chen, J. Sanyal, and M. P. Dudukovic, “CFD modeling of bubble columns flows: Implementation of population balance,” Chem. Eng. Sci., vol. 59, no. 22, pp. 5201–5207, 2004, https://doi.org/10.1016/j.ces.2004.07.037.Search in Google Scholar

[44] K.-Z. Su and H.-Q. Yu, “Gas holdup and oxygen transfer in an aerobic granule-based sequencing batch reactor,” Biochem. Eng. J., vol. 25, no. 3, pp. 201–207, 2005, https://doi.org/10.1016/j.bej.2005.05.004.Search in Google Scholar

[45] R. Plascencia-Jatomea, F. J. Almazán-Ruiz, J. Gómez, E. P. Rivero, O. Monroy, and I. González, “Hydrodynamic study of a novel membrane aerated biofilm reactor (MABR): tracer experiments and CFD simulation,” Chem. Eng. Sci., vol. 138, pp. 324–332, 2015, https://doi.org/10.1016/j.ces.2015.08.004.Search in Google Scholar

[46] M. E. Díaz, A. Iranzo, D. Cuadra, R. Barbero, F. J. Montes, and M. A. Galán, “Numerical simulation of the gas–liquid flow in a laboratory scale bubble column: Influence of bubble size distribution and non-drag forces,” Chem. Eng. J., vol. 139, no. 2, pp. 363–379, 2008, https://doi.org/10.1016/j.cej.2007.08.015.Search in Google Scholar

[47] T. Wang and J. Wang, “Numerical simulations of gas–liquid mass transfer in bubble columns with a CFD–PBM coupled model,” Chem. Eng. Sci., vol. 62, no. 24, pp. 7107–7118, 2007, https://doi.org/10.1016/j.ces.2007.08.033.Search in Google Scholar

[48] Y. T. Shah, B. G. Kelkar, S. P. Godbole, and W. D. Deckwer, “Design parameters estimations for bubble column reactors,” AIChE J., vol. 28, no. 3, 2010, https://doi.org/10.1002/aic.690280302.Search in Google Scholar

[49] K. Akita and F. Yoshida, “Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns,” Ind. Eng. Chem. Process Des. Dev., vol. 13, no. 1, pp. 84–91, 1974, https://doi.org/10.1021/i260049a016.Search in Google Scholar

[50] I. Roghair, M. Van Sint Annaland, and H. J. A. M. Kuipers, “Drag force and clustering in bubble swarms,” AIChE J., vol. 59, no. 5, pp. 1791–1800, 2013, https://doi.org/10.1002/aic.13949.Search in Google Scholar

[51] M. V. Tabib, S. A. Roy, and J. B. Joshi, “CFD simulation of bubble column—An analysis of interphase forces and turbulence models,” Chem. Eng. J., vol. 139, no. 3, pp. 589–614, 2008, https://doi.org/10.1016/j.cej.2007.09.015.Search in Google Scholar

[52] X. Guo, Q. Zhou, J. Li, and C. Chen, “Implementation of an improved bubble breakup model for TFM-PBM simulations of gas–liquid flows in bubble columns,” Chem. Eng. Sci., vol. 152, pp. 255–266, 2016, https://doi.org/10.1016/j.ces.2016.06.032.Search in Google Scholar

Received: 2023-08-31
Accepted: 2023-12-20
Published Online: 2024-01-05

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2023-0167/html
Scroll to top button