Home Temperature effects on VO2 thin films deposited by RF sputtering for the degradation by photocatalysis of methylene blue and naproxen
Article
Licensed
Unlicensed Requires Authentication

Temperature effects on VO2 thin films deposited by RF sputtering for the degradation by photocatalysis of methylene blue and naproxen

  • Dwight Acosta , Carlos Magaña , Francisco Hernández , Gerardo Chavez-Esquivel EMAIL logo , Daniel Eduardo Cortes-Cordova , Lázaro Huerta and Omar Uriel Valdés-Martínez
Published/Copyright: July 31, 2020

Abstract

The temperature effect on VO2 thin films synthesized by RF sputtering on their morphological, optical, electrical properties and their activity in the photocatalytic degradation of methylene blue and naproxen was studied. Characterization results presented microcrystallinity for VO2 films treated at 50 and 100 °C. Nevertheless, the untreated films and films treated at 200 °C revealed characteristic peaks of monoclinic and tetragonal phases. SEM micrographs with elemental mapping of VO2 films showed granular morphology and a good oxygen dispersion along the film surface, possibly due to a restructuring on the film occasioned by particle coalescence and vanadium oxide island conformation. The electronic transmittance spectra showed the d–d transition characteristic for the square-pyramidal stereochemistry of vanadium (IV) ion, where the optical band interval was high for films treated at 50 °C. Raman spectroscopy results presented an increment in the V = O/V–O ratio as a function of temperature, probably related to superficial vanadium species formation. X-ray spectroscopy results showed the Onon-lattice/Olattice ratio values higher for films treated at 50 °C than the other films, related to an oxide character. The V 2p fit results presented V4+, V5+ regions and satellites for VO2 films thermal treated at 50 °C. The electrical resistivity on the VO2 films decreased as a function of temperature. Finally, the VO2 films thermal treated at 50 °C had higher photocatalytic activity in the degradation of methylene blue and naproxen compared to the other VO2 films, possibly associated with high electron mobility between the surface and the bulk, where the oxygen vacancies act as recombination sites for the e/h+ pairs during photocatalytic degradation.


Corresponding author: Gerardo Chavez-Esquivel, Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito de la Investigación Científica, Coyoacán, Mexico City, 04510, Mexico; Departamento de Ciencias Básicas, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, Azcapotzalco, Mexico City, 02200, Mexico, E-mail:

Acknowledgments

G. Chavez-Esquivel expresses his gratitude to UNAM for the postdoctoral DGAPA scholarship and thanks for the help of Roberto Hernández and Diego Quiterio, technicians from the IF-UNAM Central Microscopy Laboratory.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge and appreciate the financial support of the DGAPA-UNAM IN-102419 project.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abreu, E., M. Liu, J. Lu, K. G. West, S. Kittiwatanakul, W. Yin, S. A. Wolf, and R. D. Averitt. 2012. “THz Spectroscopy of VO2 Epitaxial Films: Controlling the Anisotropic Properties through Strain Engineering.” New Journal of Physics 14: 1–19.10.1088/1367-2630/14/8/083026Search in Google Scholar

Acosta, D., G. Chavez-Esquivel, C. Magaña, F. Hernández, A. Pérez-Pacheco, and L. Huerta. 2019. “Physical Properties and Phase Transition Observed in Vanadium Oxide Thin Films Deposited by RF Magnetron Sputtering.” Materials Research Express 6 (056415): 1–12, https://doi.org/10.1088/2053-1591/ab047c.Search in Google Scholar

Allgeyer, D. F., and E. H. Pratz. 1992. “XPS Analysis of Thin Oxide Films on Chemically Treated Aluminum Alloy Surfaces Using a High-Energy Mg/Zr Anode.” Surface and Interface Analysis 18 (7): 465–74, https://doi.org/10.1002/sia.740180702.Search in Google Scholar

Barna, P. B., and M. Adamik. 1998. “Fundamental Structure Forming Phenomena of Polycrystalline Films and the Structure Zone Models.” Thin Solid Films 317: 27–33, https://doi.org/10.1016/s0040-6090(97)00503-8.Search in Google Scholar

Behnajady, M. A., N. Modirshahla, and R. Hamzavi. 2006. “Kinetic Study on Photocatalytic Degradation of CI Acid Yellow 23 by ZnO Photocatalyst.” Journal of hazardous materials 133 (1–3): 226–32, https://doi.org/10.1016/j.jhazmat.2005.10.022.Search in Google Scholar

Botto, I. L., M. B. Vassallo, E. J. Baran, and G. Minelli. 1997. “IR Spectra of VO2 and V2O3.” Materials Science Communication 50: 267–70, https://doi.org/10.1016/s0254-0584(97)01940-8.Search in Google Scholar

Burcham, L. J., G. Deo, X. Gao, and I. E. Wachs. 2000. “In situ IR, Raman, and UV–Vis DRS Spectroscopy of Supported Vanadium Oxide Catalysts during Methanol Oxidation.” Topics in Catalysis 11 (1–4): 85–100.10.1023/A:1027275225668Search in Google Scholar

Cavalleri, A., C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer. 2001. “Femtosecond Structural Dynamics in VO 2 during an Ultrafast Solid-Solid Phase Transition.” Physical Review Letters 87 (23): 23740-1-4, https://doi.org/10.1103/physrevlett.87.237401.Search in Google Scholar

Chen, Y., S. Zhang, F. Ke, C. Ko, S. Lee, K. Liu, B. Chen, J. W. Ager, R. Jeanloz, V. Eyert, and J. Wu. 2017. “Pressure–Temperature Phase Diagram of Vanadium Dioxide.” Nano Letter 17 (4): 2512–6, https://doi.org/10.1021/acs.nanolett.7b00233.Search in Google Scholar

Demeter, M., M. Neumann, and W. Reichelt. 2000. “Mixed-valence Vanadium Oxides Studied by XPS.” Surface Science 454–456 (20): 41–4, https://doi.org/10.1016/s0039-6028(00)00111-4.Search in Google Scholar

Ding, X. L., W. Xue, Y. P. Ma, Y. X. Zhao, X. N. Wu, and S. G. He. 2010. “Theoretical Investigation of the Selective Oxidation of Methanol to Formaldehyde on Vanadium Oxide Species Supported on Silica: Umbrella Model.” The Journal of Physical Chemistry C 114 (7): 3161–9, https://doi.org/10.1021/jp9112415.Search in Google Scholar

do Nascimento Salvador, P. C., J. Dal Pupo, R. D. De Lucas, R. A. de Aguiar, F. B. Arins, and L. G. Guglielmo. 2016. “The VO2 Kinetics of Maximal and Supramaximal Running Exercises in Sprinters and Middle-Distance Runners.” The Journal of Strength and Conditioning Research 30 (10): 2857–63.10.1519/JSC.0000000000001366Search in Google Scholar

Donev, E. U., J. I. Ziegler, R. F. HaglundJr, and L. C. Feldman. 2009. “Size Effects in the Structural Phase Transition of VO2 Nanoparticles Studied by Surface-Enhanced Raman Scattering.” Journal of Optics A: Pure and Applied Optics 11: 1–8, https://doi.org/10.1088/1464-4258/11/12/125002.Search in Google Scholar

Dong, B., N. Shen, C. Cao, Z. Chen, H. Luo, and Y. Gao. 2016. An Abnormal Phase Transition Behaviour in VO2 Nanoparticles Induced by an M1–M2–R Process: Two Anomalous High (>68 °C) Transition Temperatures.” RSC Advances 56: 1–18.10.1039/C6RA07009DSearch in Google Scholar

Émond, N., B. Torriss, and M. Chaker. 2018. “Natural and Induced Growth of VO2 (M) on VO2 (B) Ultrathin Films.” Scientific Reports 8 (7153): 1–8, https://doi.org/10.1038/s41598-018-25656-6.Search in Google Scholar

Fan, A., L. Fan, Q. Li, J. Liu, and B. Yea. 2014. “The Identification of Defect Structures for Oxygen Pressure dependentVO2 Crystal Films.” Applied Surface Science 321: 464–8, https://doi.org/10.1016/j.apsusc.2014.10.057.Search in Google Scholar

Fernández, J., J. Kiwi, C. Lizama, J. Freer, J. Baeza, and H. D. Mansilla. 2002. “Factorial Experimental Design of Orange II Photocatalytic Discolouration.” Journal of Photochemistry and Photobiology A: Chemistry 151 (1–3): 213–9, https://doi.org/10.1016/s1010-6030(02)00153-3.Search in Google Scholar

Guimond, S., M. Abu Haija, S. Kaya, J. Lu, J. Weissenrieder, S. Shaikhutdinov, H. Kuhlenbeck, H. J. Freund, J. Dӧbler, and J. Sauer. 2006. “Vanadium Oxide Surfaces and Supported Vanadium Oxide Nanoparticles.” Topics in Catalysis 38 (1–3): 117–25, https://doi.org/10.1007/s11244-006-0076-8.Search in Google Scholar

Hu, K., Y. Yang, B. Hong, J. Zhao, Z. Luo, X. Li. X. Zhang, Y. Gu, X. Gao, and C. Gao. 2017. “Thickness-dependent Anisotropy of Metal-Insulator Transition in (110)-VO2/TiO2 Epitaxial Thin Films.” Journal of Alloys and Compounds 699: 575–80, https://doi.org/10.1016/j.jallcom.2016.12.412.Search in Google Scholar

Huang, W., X. Yin, C. Huang, Q. Wang, T. Miao, and Y. Zhu. 2010. “Optical Switching of a Metamaterial by Temperature Controlling.” Applied Physics Letters 96: 261908-1–3, https://doi.org/10.1063/1.3458706.Search in Google Scholar

Ji, H., D. Liu, H. Cheng, C. Zhang, L. Yang, and D. Ren. 2017. “Infrared Thermochromic Properties of Monoclinic VO2 Nanopowders Using a Malic Acid-Assisted Hydrothermal Method for Adaptive Camouflage.” RSC Advances 7: 5189–94, https://doi.org/10.1039/c6ra26731a.Search in Google Scholar

Jiang, M., Y. Li, S. Li, H. Zhou, X. Cao, S. Bao, Y. Gao, H. Luo, and P. Jin. 2014. “Room Temperature Optical Constants and Band Gap Evolution of Phase Pure M1-VO2 Thin Films Deposited at Different Oxygen Partial Pressures by Reactive Magnetron Sputtering.” Journal of Nanomaterials 2014: 183954-1–6, https://doi.org/10.1155/2014/183954.Search in Google Scholar

Kawashima, T., H. Matsui, and N. Tanabe. 2003. “New Transparent Conductive Films: FTO Coated ITO.” Thin Solid Films 445 (2): 241–4, https://doi.org/10.1016/s0040-6090(03)01169-6.Search in Google Scholar

Ko, C., and Z. Yang. 2011. “Ramanathan. Work Function of Vanadium Dioxide Thin Films across the Metal-Insulator Transition and the Role of Surface Nonstoichiometry.” ACS Applied Materials & Interfaces 3 (9): 3396–401, https://doi.org/10.1021/am2006299.Search in Google Scholar PubMed

Lee, S., T. L. Meyer, C. Sohn, D. Lee, J. Nichols, D. Lee, S. S. Ambrose Seo, J. W. Freeland, T. W. Noh, and H. N. Lee. 2015. “Electronic Structure and Insulating Gap in Epitaxial VO2 Polymorphs.” APL Materials 3: 126109-1–7, https://doi.org/10.1063/1.4939004.Search in Google Scholar

Leroux, C., G. Nihoul, and G. van Tendeloo. 1998. “From VO2 (B) to VO2 (R): Theoretical Structures of VO2 Polymorphs and In situ Electron Microscopy.” Physical Review B 57 (9): 5111–21.10.1103/PhysRevB.57.5111Search in Google Scholar

Li, S. Y., N. R. Mlyuka, D. Primetzhofer, A. Hallén, G. Possnert, G. A. Niklasson, and C. G. Granqvist. 2013. “Bandgap Widening in Thermochromic Mg-Doped VO2 Thin Films: Quantitative Data Based on Optical Absorption.” AIP Applied Physics Letters 103: 161907-1–4, https://doi.org/10.1063/1.4826444.Search in Google Scholar

Liang, L., K. Li, C. Xiao, S. Fan, J. Liu, W. Zhang, W. Xu, W. Tong, J. Liao, Y. Zhou, B. Ye, and Y. Xie. 2015. “Vacancy Associates-Rich Ultrathin Nanosheets for High Performance and Flexible Nonvolatile Memory Device.” Journal of the American Chemical Society 137: 3102–8, https://doi.org/10.1021/jacs.5b00021.Search in Google Scholar PubMed

Lin, Y. H., W. C. Hung, Y. C. Chen, and H. Chu. 2014. “Photocatalytic Degradation of 1, 2-dichloroethane by V/TiO2: The Mechanism of Photocatalytic Reaction and Byproduct.” Aerosol and Air Quality Research 14: 280–92, https://doi.org/10.4209/aaqr.2013.02.0053.Search in Google Scholar

Liu, H. W., L. M. Wong, S. J. Wang, S. H. Tang, and X. H. Zhang. 2013. “Effect of Oxygen Stoichiometry on the Insulator-Metal Phase Transition in Vanadium Oxide Thin Films Studied Using Optical Pump-Terahertz Probe Spectroscopy.” Applied Physics Letters 103: 151908-1–5, https://doi.org/10.1063/1.4824834.Search in Google Scholar

Long, R., B. Qu, R. Tan, Y. Sun, X. Tan, W. Ying, B. Pan, Y. Xiong, and Y. Xie. 2012. “Identifying Structural Distortion in Doped VO2 with IR Spectroscopy.” Physical Chemistry Chemical Physics 14: 7225–8, https://doi.org/10.1039/c2cp40392g.Search in Google Scholar

Luo, Y., W. Guo, H. H. Ngo, L. D. Nghiem, H. J. Zhang, S. Liang, and X. C. Wang. 2014. “A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment.” Science of the Total Environment 473–474: 619–41, https://doi.org/10.1016/j.scitotenv.2013.12.065.Search in Google Scholar

Martin, S. T., C. L. Morrison, and M. R. Hoffmann. 1994. “Photochemical Mechanism of Size-Quantized Vanadium Doped TiO2 Particles.” Journal of Physical and Chemical 98: 13695–704, https://doi.org/10.1021/j100102a041.Search in Google Scholar

Mecartney, M. L., and M. Rühle. 1989. “In situ transmission Electron Microscopy Observations of the Monoclinic to Tetragonal Phase Transformation in Tetragonal ZrO2.” Acta Metallurgica 37 (7): 1859–63, https://doi.org/10.1016/0001-6160(89)90070-9.Search in Google Scholar

Moatti, A., R. Sachan, V. R. Cooper, and J. Narayan. 2019a. “Electrical Transition in Isostructural VO2 Thin-Film Heterostructures.” Scientific Reports 9 (3009): 1–10, https://doi.org/10.1038/s41598-019-39529-z.Search in Google Scholar PubMed PubMed Central

Moatti, A., R. Sachan, S. Gupta, and J. Narayan. 2019b. “Vacancy-driven Robust Metallicity of Structurally Pinned Monoclinic Epitaxial VO2 Thin Films.” ACS Applied Materials and Interfaces 11 (3): 3547–54, https://doi.org/10.1021/acsami.8b17879.Search in Google Scholar PubMed

Molinari, J. E., and I. E. Wachs. 2010. “Presence of Surface Vanadium Peroxo-Oxo Umbrella Structures in Supported Vanadium Oxide Catalysts: Fact or Fiction?” Journal of the American Chemical Society Comunications 132: 12559–61, https://doi.org/10.1021/ja105392g.Search in Google Scholar PubMed

Monfort, O., T. Roch, M. Gregor, L. Satrapinskyy, T. Plecenik, A. Plecenik, and G. Plesch. 2014a. “Formation of Vanadium Oxide Thin Films Prepared from Aqueous Sol-Gel System.” Key Engineering Materials 605: 79–82, https://doi.org/10.4028/www.scientific.net/kem.605.79.Search in Google Scholar

Monfort, O., T. Roch, L. Satrapinskyy, M. Gregor, and T. Plecenik. 2014b. “Reduction of V2O5 Thin Films Deposited by Aqueous Sol–Gel Method to VO2 (B) and Investigation of its Photocatalytic Activity.” Applied Surface Science 322: 21–7, https://doi.org/10.1016/j.apsusc.2014.10.009.Search in Google Scholar

Morin, F. J. 1959. “Oxides Which Show a Metal-To-Insulator Transition at the Neel Temperature.” Physical Review Letters 3 (1): 34–6, https://doi.org/10.1103/physrevlett.3.34.Search in Google Scholar

Nakajima, M., N. Takubo, Z. Hiroi, Y. Ueda, and T. Suemoto. 2008. “Photoinduced Metallic State in VO2 Proved by the Terahertz Pump-Probe Spectroscopy.” Applied Physics Letters 92 (1): 011907-1–3, https://doi.org/10.1063/1.2830664.Search in Google Scholar

Nakano, M., K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura. 2012. “Collective Bulk Carrier Delocalization Driven by Electrostatic Surface Charge Accumulation.” Nature 487: 459–62, https://doi.org/10.1038/nature11296.Search in Google Scholar

Nguyen, V. D. N., and D. Yn. 2018. “Sakulchaicharoen N Herrera JE. The Reducibility and Cluster Size of Vanadium Oxide as Potential Descriptors of its Catalytic Activity in the Partial Oxidation of Ethanol.” International Journal of Chemical Reactor Engineering 16 (4): 1–12, https://doi.org/10.1515/ijcre-2017-0165.Search in Google Scholar

Nicholas, N. J., G. da Silva, S. Kentish, and G. W. Stevens. 2014. “Use of Vanadium(V) Oxide as a Catalyst for CO2 Hydration in Potassium Carbonate Systems.” Industrial and Engineering Chemistry Research 53: 3029–39, https://doi.org/10.1021/ie403836e.Search in Google Scholar

Qiu, H., M. Yang, Y. Dong, H. Xu, B. Hong, Y. Gu, Y. Yang, C. Zou, Z. Luo, and C. Gao. 2015. “The Tetragonal-like to Rutile Structural Phase Transition in Epitaxial VO2/TiO2 (001) Thick Films.” New Journal of Physics 17: 1–8, https://doi.org/10.1088/1367-2630/17/11/113016.Search in Google Scholar

Ruzmetov, D., D. Heiman, B. B. Claflin, V. Narayanamurti, and S. Ramanathan. 2009. “Hall Carrier Density and Magnetoresistance Measurements in Thin Film Vanadium Dioxide across the Metal-Insulator Transition.” Physical Review B 79 (153107): 1–16, https://doi.org/10.1103/physrevb.79.153107.Search in Google Scholar

Sakar, A., and G. G. Khan. 2019. “The Formation and Detection Techniques of Oxygen Vacancies in Titanium Oxide-Based Nano-Structures.” Nanoscale 11: 3414–44.10.1039/C8NR09666JSearch in Google Scholar

Sakthivel, S., M. V. Shankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann, and V. Murugesan. 2004. “Enhancement of Photocatalytic Activity by Metal Deposition: Characterisation and Photonic Efficiency of Pt, Au and Pd Deposited on TiO2 Catalyst.” Water Research 38: 3001–8, https://doi.org/10.1016/j.watres.2004.04.046.Search in Google Scholar

Schilbe, P. 2002. “Raman Scattering in VO2.” Physica B: Condensed Matter 316–317: 600–2, https://doi.org/10.1016/s0921-4526(02)00584-7.Search in Google Scholar

Shahbazi Kootenaei, A. H., J. Towfighi, A. Khodadadi, and Y. Mortazavi. 2015. “Characterization and Deactivation Study of Mixed Vanadium and Potassium Oxide Supported on Microemulsion-Mediated Titania Nanoparticles as Catalyst in Oxidative Dehydrogenation of Propane.” International Journal of Chemical Reactor Engineering 13 (1): 9–19, https://doi.org/10.1515/ijcre-2014-0105.Search in Google Scholar

Shao, Z., X. Cao, H. Luo, and P. Jin. 2018. “Recent Progress in the Phase-Transition Mechanism and Modulation of Vanadium Dioxide Materials.” NPG Asia Materials 10: 581–605, https://doi.org/10.1038/s41427-018-0061-2.Search in Google Scholar

Shin, S., S. Suga, M. Taniguchi, M. Fujisawa, H. Kanzaki, A. Fujimori, H. Daimon, Y. Ueda, K. Kosuge, and S. Kachi. 1990. “Vacuum-ultraviolet Reflectance and Photoemission Study of the Metal-Insulator Phase Transitions in VO2, V6O13, and V2O3.” Physical Review B 41 (8): 4993–5009, https://doi.org/10.1103/physrevb.41.4993.Search in Google Scholar PubMed

Silversmit, G., D. Depla, H. Poelman, G. B. Marin, and R. De Gryse. 2004. “Determination of the V2p XPS Binding Energies for Different Vanadium Oxidation States (V5+ to V0+).” Journal of Electron Spectroscopy and Related Phenomena 135 (2–3): 167–75, https://doi.org/10.1016/j.elspec.2004.03.004.Search in Google Scholar

Song, Z., L. Zhang, F. Xia, N. A. S. Webster, J. Song, B. Liu, H. Luo, and Y. Gao. 2016. “Controllable Synthesis of VO2 (D) and Their Conversion to VO2 (M) Nanostructures with Thermochromic Phase Transition Properties.” Inorganic Chemistry Frontiers 3: 1035–42, https://doi.org/10.1039/c6qi00102e.Search in Google Scholar

Srivastava, R., and L. Chase. 1971. “Raman Spectrum of Semiconducting and Metallic VO2.” Physical Review Letters 27: 727–30, https://doi.org/10.1103/physrevlett.27.727.Search in Google Scholar

Srivastava, A., H. Rotella, S. Saha, B. Pal, G. Kalon, S. Mathew, M. Motapothula, M. Dykas, P. Yang, E. Okunishi, D. D. Sarma, and T. Venkatesan. 2015. “Selective Growth of Single Phase VO2 (A, B, and M) Polymorph Thin Films.” APL Materials 3: 026101-1–7, https://doi.org/10.1063/1.4906880.Search in Google Scholar

Strelcov, E., A. Tselev, I. Ivanov, J. D. Budai, J. Zhang, J. Z. Tischler, I. Kravchenko, S. V. Kalinin, and A. Kolmakov. 2012. “Doping-based Stabilization of the M2 Phase in Freestanding VO2 Nanostructures at Room Temperature.” Nano Letters 12: 6198–205, https://doi.org/10.1021/nl303065h.Search in Google Scholar PubMed

Vora, J. J., S. K. Chauhan, K. C. Parmar, S. B. Vasava, S. Sharma, and L. S. Bhutadiya. 2008. “Kinetic Study of Application of ZnO as a Photocatalyst in Heterogeneous Medium.” E-Journal of Chemistry 6 (2): 531–6.10.1155/2009/139753Search in Google Scholar

Walter, A., R. Herbert, C. Hess, and T. Ressler. 2010. “Structural Characterization of Vanadium Oxide Catalysts Supported on Nanostructured Silica SBA-15 Using X-Ray Absorption Spectroscopy.” Chemistry Central Journal 4 (3): 1–20, https://doi.org/10.1186/1752-153x-4-3.Search in Google Scholar

Wan, M., M. Xiong, N. Li, B. Liu, S. Wang, W. Y. Ching, and X. Zhao. 2017. “Observation of Reduced Phase Transition Temperature in N-Doped Thermochromic Film of Monoclinic VO2.” Applied Surface Science 410: 363–72, https://doi.org/10.1016/j.apsusc.2017.03.138.Search in Google Scholar

Wang, Y., Z. Zhang, Y. Zhu, Z. Li, R. Vajtai, L. Ci, and P. M. Ajayan. 2008. “Nanostructured VO2 Photocatalysts for Hydrogen Production.” ACS Nano 2 (7): 1492–6, https://doi.org/10.1021/nn800223s.Search in Google Scholar PubMed

Wu, Y. F., L. L. Fan, S. M. Chen, S. Chen, C. W. Zou, and Z. Y. Wu. 2013. “Spectroscopic Analysis of Phase Constitution of High Quality VO2 Thin Film Prepared by Facile Sol-Gel Method.” AIP Advances 3: 042132-1–10, https://doi.org/10.1063/1.4802981.Search in Google Scholar

Wu, Y., L. Lele Fan, Q. Qinghua Liu, S. Shi Chen, W. Weifeng Huang, F. Feihu Chen, G. Guangming Liao, C. Chongwen Zou, and Z. Ziyu Wu. 2015. “Decoupling the Lattice Distortion and Charge Doping Effects on the Phase Transition Behaviour of VO2 by Titanium (Ti4+) Doping.” Scientific Reports 5 (9328): 1–8, https://doi.org/10.1038/srep09328.Search in Google Scholar PubMed PubMed Central

Yang, Y., P. Duan, Y. Niu, and L. Dai. 2009. “Orthogonal Array Design for Optimization of Additives Assisted Cycol-Dehydration of 1,4-Butanediol to Tetrahydrofuran in Near-Critical Water.” International Journal of Chemical Reactor Engineering 7: 1–18, https://doi.org/10.2202/1542-6580.1865.Search in Google Scholar

Yang, Z., C. Ko, and S. Ramanathan. 2011. “Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions.” The Annual Review of Materials Research 41: 337–67, https://doi.org/10.1146/annurev-matsci-062910-100347.Search in Google Scholar

Zhou, J., Y. Gao, X. Liu, Z. Chen, L. Dai, C. Cao, H. Luo, M. Kanahira, C. Sun, and L. Yan. 2013. “Mg-doped VO2 Nanoparticles: Hydrothermal Synthesis, Enhanced Visible Transmittance and Decreased Metal-Insulator Transition Temperature.” Physical Chemistry Chemical Physics 15: 7505–11, https://doi.org/10.1039/c3cp50638j.Search in Google Scholar PubMed

Zhu, S., X. Yang, G. N. Wang, L. L. Zhang, H. F. Zhu, and M. X. Huo. 2011. “Facile Preparation of P-25 Films Dip-Coated Nickel Foam and High Photocatalytic Activity for the Degradation of Quinoline and Industrial Wastewater.” International Journal of Chemical Reactor Engineering 9 (1): 1–14, https://doi.org/10.1515/1542-6580.2605.Search in Google Scholar

Zimmermann, R., R. Claessen, F. Reinert, P. Steiner, and S. Hüfner. 1998. “Strong Hybridization in Vanadium Oxides: Evidence from Photoemission and Absorption Spectroscopy.” Journal of Physics: Condensed Matter 10 (25): 5697–704, https://doi.org/10.1088/0953-8984/10/25/018.Search in Google Scholar

Received: 2019-11-28
Accepted: 2020-06-26
Published Online: 2020-07-31

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Editorial
  2. Preface: Special issue dedicated to the International Energy Conference, IEC-2019, Morelia, México “towards energy sustainability with a social approach”
  3. Special Issue Articles
  4. Controlled Evaluation in a Diesel Engine of the Biofuel Obtained with Ni/γ-Al2O3 Nanoparticles in the Hydrodeoxygenation of Oleic Acid
  5. Environmental Problems and the State of Compliance with the Right to a Healthy Environment in a Mining Region of México
  6. Heterojunctions for Photocatalytic Wastewater Treatment: Positive Holes, Hydroxyl Radicals and Activation Mechanism under UV and Visible Light
  7. Ultrasound-assisted extraction of phenolic compounds from avocado leaves (Persea americana Mill. var. Drymifolia): optimization and modeling
  8. Flow characteristics of the Rushton and pitched blade turbines in turbulent and laminar mixing
  9. Modelling and multi-objective optimization for simulation of hydrogen production using a photosynthetic consortium
  10. Heterogeneous PVC cation-exchange membrane synthesis by electrospinning for reverse electrodialysis
  11. Hydrodesulfurization of dibenzothiophene using NiMoWS catalysts supported on Al–Mg and Ti–Mg mixed oxides
  12. Hydrodynamics of a modified up-flow anaerobic sludge blanket reactor treating organic fraction of municipal solids waste
  13. Temperature effects on VO2 thin films deposited by RF sputtering for the degradation by photocatalysis of methylene blue and naproxen
  14. Post-combustion artificial neural network modeling of nickel-producing multiple hearth furnace
  15. Effect of organic loading rate on anaerobic digestion of raw cheese whey: experimental evaluation and mathematical modeling
Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2019-0214/html
Scroll to top button