Supplementary Material

Lauren D. Liao, Emilie Højbjerre-Frandsen, Alan E. Hubbard, and Alejandro Schuler*

Supplementary Material for the Article "Prognostic Adjustment with Efficient Estimators to Unbiasedly Leverage Historical Data in Randomized Trials"

Appendix A Expectation calculation when incorporating unobserved covariate

By definition, an unobserved covariate U is never seen in real data but we include such a variable in simulation. We aim to demonstrate that even if the outcome model can be learned perfectly from historical data, if there exists an unobserved shift between the historical and trial sample, then the learned historical outcome model (prognostic model) can never be equivalent to the trial outcome model. We explicitly write out the expectation of the outcome Y given treatment A, baseline covariates W, and data set indicator D using an unobserved covariate U.

$$E[Y|A, W, D = d] = \int E[Y|A, W, U = u, D = d]p(u|A, W, D = d)du$$

A shift in the distribution $p(u|A, W, D=1) \neq p(u|A, W, D=0)$ of the unobserved covariate U will generally result in unequal conditional expectations, i.e., $E[Y|A, W, D=1] \neq E[Y|A, W, D=0]$.

This shift is the basis of the simulation for Figure 3.B. In our simulation, we have $U|A,W,D=1\sim \mathrm{Unif}(0,1)$ and $U|A,W,D=0\sim \mathrm{Unif}(\underline{u},\overline{u})$ where the limits underline(u), overline(u) increase or decrease past 0 or 1 depending on the desired magnitude of covariate shift. The "oracle" prognostic score is

Lauren D. Liao, Alan E. Hubbard, Alejandro Schuler, Division of Biostatistics, University of California, Berkeley, CA, USA

Emilie Højbjerre-Frandsen, Biostatistics Methods and Outreach, Novo Nordisk A/S, Denmark

2 — Liao et al. DE GRUYTER

given by E[Y|A,W,D=1], i.e. always integrating over the correct (trial) density $U|A,W,D=1 \sim \mathrm{Unif}(0,1)$.

By framing shifts in the conditional mean as shifts in an unobserved covariate we can directly control the magnitude of the change instead of manually specifying different conditional mean functions.

Appendix B Discrete super learner specifications for simulation and case study.

Appendix B.1 Discrete super learner specifications

Machine learning is performed through discrete super learner that the targeted maximum likelihood estimator internally leverages. For simplicity, the prognostic model is built using the discrete super learner as well. A discrete super learner selects from a set of candidate models (i.e., the library) to obtain a single, best prediction model via cross-validation. In this section, we describe the exact tuning parameters and set up for the simulation and case study.

Appendix B.2 Simulation set up

Cross-validation: 5-fold cross-validation is used to select the best candidate learner in the library for historical sample size 1,000, and 10-fold cross-validation for historical sample size less than 1,000.

Cross-fit: 5-fold Cross-fitting is employed.

Discrete super learner library: Multivariate Adaptive Regression Splines with the highest interaction to be to the 3rd degree, linear regression, extreme gradient boosting with specifications: learning rate 0.1, tree depth 3, crossed with trees specified 25 to 500 by 25 increments. Cases with fitted prognostic score include an augmented library that includes candidate learners with prognostic score in addition.

Discrete super learner specifications: loss function is specified to be the mean square error loss.

Appendix B.3 Case study set up

Cross-validation: 20-fold cross-validation is used to select the best candidate learner in the library.

Cross-fit: 20-fold Cross-fitting is employed.

Discrete super learner library: Multivariate Adaptive Regression Splines with the highest interaction to be to the 3rd degree, logistic regression, extreme gradient boosting with specifications: learning rate 0.1, tree depths 3, 5, and 10, crossed with trees specified 25 to 500 by 25 increments, random forest with trees specified 25 to 500 by 25 increments, k-nearest neighbor of specification 3, 4, 5, 7, and 9 number of nearest neighbors, k. Cases with *fitted* prognostic score include an augmented library that includes candidate learners with prognostic score in addition to without.

Discrete super learner specifications: loss function is specified to be the mean log likelihood loss.

Selected prognostic model: The selected learner from 20-fold cross validation is a linear regression model for both the reanalyses with n=419 and n=100. Details are written in Appendix H.

Appendix C Simulation results for different data generation processes

Tab. 1: Mean of empirically estimated bias, variance, and standard errors of them for the targeted maximum likelihood estimator with or without prognostic score across different DGPs. For all the scenarios the conditional means are shared with the heterogeneous effect DGP, except for the constant effect DGP. Unless otherwise specified $(\tilde{n}, n) = (1000, 250)$.

Scenario	Estimator $prog.$	Bias	Var.	SE Bias	SE var.	RMSE	Power	Coverage
heterogeneous effect	TMLE	-0.031	5.918	0.048	0.041	2.432	0.660	0.956
	$egin{array}{c} none \ \mathrm{TMLE} \ fitted \end{array}$	-0.081	4.843	0.064	0.005	2.201	0.727	0.955
	$\begin{array}{c} fittea \\ TMLE \\ oracle \end{array}$	-0.066	4.827	0.036	0.004	2.197	0.743	0.955
	$rac{ ext{linear}}{ ext{none}}$	-0.005	11.113	0.026	0.026	3.332	0.413	0.953
	$_{fitted}^{ m linear}$		10.438	0.037	0.030	3.231	0.421	0.952
	$\begin{array}{c} { m linear} \\ {\it oracle} \end{array}$	-0.083	10.485	0.037	0.029	3.237	0.425	0.951
	$\begin{array}{c} \text{unadjusted} \\ none \end{array}$	-0.015	10.373	0.009	0.011	3.219	0.439	0.951
heterogeneous effect second specification	$_{none}^{\mathrm{TMLE}}$	0.052	0.929	-0.003	0.008	0.965	0.788	0.943
secona specification	${ m TMLE} \ fitted$	0.056	0.886	0.005	0.006	0.942	0.811	0.947
	${ m TMLE} \ oracle$	0.050	0.893	-0.006	0.006	0.946	0.813	0.943
	linear none	0.077	1.400	0.020	0.008	1.185	0.598	0.947
	$\begin{array}{c} \text{linear} \\ \text{fitted} \end{array}$	0.016	0.980	0.025	0.003	0.990	0.740	0.951
	linear oracle	0.014	0.993	0.010	0.003	0.996	0.745	0.949
	$\begin{array}{c} \text{unadjusted} \\ none \end{array}$	0.060	1.350	-0.002	0.010	1.163	0.615	0.952
constant effect	$_{none}^{\mathrm{TMLE}}$	0.024	0.108	-0.001	0.000	0.330	0.656	0.945
	${ m TMLE} \ fitted$	0.015	0.075	0.010	0.000	0.274	0.790	0.956
	$\stackrel{ ext{TMLE}}{oracle}$	0.011	0.073	0.004	0.000	0.271	0.816	0.958
	$_{none}^{\mathrm{linear}}$	0.043	0.406	0.030	0.001	0.639	0.200	0.948
	$egin{aligned} & & ext{linear} \ & & & ext{fitted} \end{aligned}$	0.015	0.070	0.012	0.000	0.265	0.814	0.964
	$\begin{array}{c} \stackrel{\circ}{\text{linear}} \\ oracle \end{array}$	0.017	0.064	0.011	0.000	0.254	0.849	0.963
	$\begin{array}{c} \text{unadjusted} \\ none \end{array}$	0.010	0.815	-0.015	0.001	0.903	0.153	0.941
small observed shift	$_{none}^{\mathrm{TMLE}}$	-0.081	5.757	0.080	0.042	2.400	0.648	0.959

6 — Liao et al. DE GRUYTER

Scenario	Estimator prog.	Bias	Var.	SE Bias	SE var.	RMSE	Power	Coverage
	TMLE	-0.133	5.513	0.058	0.039	2.350	0.686	0.950
	$fitted \\ TMLE \\ oracle$	-0.098	4.918	0.014	0.004	2.219	0.738	0.959
	linear none	-0.068	11.084	0.027	0.028	3.328	0.409	0.951
	linear fitted	-0.061	11.147	0.023	0.028	3.338	0.407	0.950
	linear	-0.125	10.429	0.041	0.031	3.230	0.426	0.947
	$\begin{array}{c} oracle \\ unadjusted \\ none \end{array}$	l -0.078	10.683	-0.043	0.011	3.268	0.439	0.946
small unobserved shift	TMLE	-0.084	6.257	-0.028	0.039	2.502	0.642	0.948
	none TMLE	-0.121	5.761	0.001	0.015	2.402	0.661	0.949
	$fitted \\ TMLE \\ oracle$	-0.102	4.989	-0.003	0.004	2.235	0.718	0.956
	$rac{linear}{none}$	-0.049	10.546	0.112	0.026	3.246	0.401	0.955
	$\begin{array}{c} { m linear} \\ { m \it fitted} \end{array}$	-0.105	10.170	0.121	0.026	3.189	0.405	0.955
	linear oracle	-0.105	9.934	0.123	0.030	3.152	0.419	0.956
	unadjusted none	l -0.035	9.879	0.083	0.011	3.142	0.429	0.947
small historical sample $(\tilde{n}, n) = (100, 250)$	$_{none}^{\mathrm{TMLE}}$	0.055	6.042	0.008	0.033	2.457	0.687	0.950
(100, 200)	${ m TMLE}$	0.009	5.996	-0.017	0.026	2.447	0.677	0.947
	TMLE oracle	0.007	4.916	0.018	0.004	2.216	0.739	0.945
	linear none	0.120	11.066	0.030	0.026	3.327	0.412	0.954
	linear fitted	0.054	10.940	0.001	0.029	3.306	0.415	0.950
	linear oracle	0.042	10.812	-0.012	0.028	3.287	0.426	0.952
	unadjusted none	0.058	10.415	0.004	0.011	3.226	0.451	0.957
small trial sample $(\tilde{n}, n) = (1000, 100)$	$_{none}^{\mathrm{TMLE}}$	0.088	29.818	-0.150	0.208	5.459	0.216	0.944
(n, n) = (1000, 100)	TMLE	-0.028	14.931	-0.152	0.042	3.862	0.361	0.947
	fitted $TMLE$ $oracle$	0.004	14.034	-0.103	0.041	3.744	0.377	0.949
	$rac{ ext{linear}}{ ext{none}}$	0.098	35.371	-0.239	0.273	5.945	0.206	0.931
	linear fitted	-0.044	34.146	-0.278	0.300	5.841	0.198	0.929
	linear oracle	-0.022	34.290	-0.276	0.296	5.853	0.199	0.934
	none	0.232	27.199	-0.109	0.061	5.218	0.228	0.945

Appendix D Empirical standard error estimates

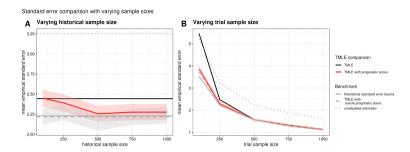


Fig. 1: Mean empirical standard errors across estimators when historical and trial sample sizes are varied using the heterogeneous DGP. When the historical sample size is varied (Appendix Figure 1.A), the trial is fixed at n=250. When the trial size is varied (Appendix Figure 1.B), the historical sample is fixed at $\tilde{n}=1000$. We show the standard errors with 95% confidence interval for the Monte Carlo simulation as shown in Morris et. al (2019) (1).

Appendix E Case study data summary

Data name	Trial ID	Duration	Titration Blinding target type		Number of participants	
			(mmol/L)		randomized	completed
New RCT	NN9068-4229	26 weeks	4.0-5.0	Open-label	210	206
	NN9068-4228	104 weeks	4.0-5.0	Open-label	504	481
	NN1250-3579	52 weeks	4.0-5.0	Open-label	257	197
	NN1250-3586	26 weeks	4.0-5.0	Open-label	146	136
	NN1250-3672	26 weeks	4.0-5.0	Open-label	230	201
	NN1250-3718	26 weeks	4.0-5.0	Open-label	234	209
	NN1250-3724	26 weeks	4.0-5.0	Open-label	230	206
	NN1250-3587	26 weeks	4.0-5.0	Open-label	278	254
Historical	NN9535-3625	30 weeks	4.0-5.5	Open-label	365	343
	NN2211-1697	26 weeks	< 5.0	Double-blinded	34	219
	NN5401-3590	26 weeks	3.9-5.0	Open-label	264	232
	NN5401-3726	26 weeks	3.9-5.0	Open-label	extension	209
					of 3590	
	NN5401-3896	26 weeks	3.9-5.0	Open-label	149	137
	NN1436-4383	26 weeks	4.4-7.2	Double-blinded	122	119
	NN1436-4465	16 weeks	4.4-7.2	Open-label	51	51
	NN1436-4477	78 weeks	4.4-7.2	Open-label	492	477

Tab. 2: Summary of case study data provided by Novo Nordisk A/S. The new RCT data is highlighted in grey. The historical data consists of all the data sets that are not highlighted. The number of participants refers to the number of participants receiving the existing daily insulin treatment IGlar.

Appendix F Summary of continuous measurements of the baseline

Tab. 3: Summary of the continuous baseline covariates.

	Historical sample	New random trial sample
sample size	3311	419
age (years) N mean (SD) median min; max	3311 57.34 (9.92) 58.00 21.00; 85.00	419 56.67 (10.28) 58.00 25.00; 83.00
alanine aminotransferase (U/L) N mean (SD) median min; max	3303 29.51 (17.97) 25.00 2.50; 333.00	419 26.63 (15.48) 23.00 6.00; 138.00
albumin (g/dL) N mean (SD) median min; max	3306 4.48 (0.28) 4.50 2.50; 5.90	419 4.51 (0.25) 4.50 3.80; 5.20
alkaline phosphatase (U/L) N mean (SD) median min; max	3305 75.99 (23.50) 73.00 19.00; 261.00	419 71.82 (22.31) 68.00 20.00; 196.00
as partate aminotransferase (U/L) N mean (SD) median min; max	3299 23.22 (12.13) 20.00 6.00; 227.00	419 21.38 (9.86) 19.00 6.00; 89.00
basophils blood (%) N mean (SD) median min; max	3284 0.53 (0.38) 0.40 0.00; 4.40	419 0.39 (0.22) 0.40 0.00; 1.60
body mass index (kg/m^2) N mean (SD) median min; max	3309 30.72 (5.69) 30.22 16.01; 56.39	419 31.22 (4.82) 31.00 20.00; 43.30
body weight (kg) N mean (SD) median min; max	3309 86.27 (19.82) 84.90 36.30; 171.70	419 88.30 (17.41) 86.30 50.98; 145.33
change from baseline to week 26 HbA1c N mean (SD) median min; max	2642 -1.48 (1.01) -1.40 -5.30; 2.60	399 -1.81 (1.01) -1.70 -6.20 ; 1.20

	Historical sample	New random trial sample
creatinine (umol/L)		
N	3308	419
mean (SD)	74.14 (18.56)	73.60 (15.64)
median min; max	72.00 23.00; 409.00	72.00 36.00; 121.00
diabetes duration (years)		
N	3311	419
mean (SD)	9.67 (6.36)	9.55 (6.26)
median min; max	8.67 0.30; 49.65	8.47 0.44; 34.24
<u> </u>	0.30, 43.03	0.44, 54.24
diastolic blood pressure (mmHg) N	3309	419
mean (SD)	78.85 (8.53)	79.12 (8.37)
median	80.00	80.00
min; max	47.00; 116.00	57.00; 109.00
eosinophils Blood (%)	2204	410
N mean (SD)	3284 2.65 (2.35)	419 2.56 (2.06)
median	2.10	2.00
min; max	0.00; 43.70	0.00; 15.20
erythrocytes (10 ¹² /L)		_
N (GD)	3297	419
mean (SD) median	4.68 (0.45) 4.70	5.08 (0.48) 5.00
min; max	3.10; 7.40	3.60; 7.50
fasting plasma glucose (mmol/L)		
N (GD)	3268	411
mean (SD) median	9.81 (2.65) 9.50	9.55 (2.53) 9.20
min; max	2.70; 22.60	3.60; 29.20
haematocrit blood (%)		
N (GD)	3264	419
mean (SD) median	42.49 (4.16) 42.50	45.28 (4.24) 45.50
min; max	22.80; 60.50	31.20; 58.40
hemoglobin A1C at baseline (%)		
N	3311	419
mean (SD)	8.39 (0.92)	8.28 (1.01)
median	8.30	8.10
min; max	6.60; 12.80	6.50; 13.50
high density lipoprotein cholesterol (mmol/L) N	3277	410
mean (SD)	1.18 (0.33)	1.21 (0.35)
median	1.14	1.14
min; max	0.21; 3.99	0.31; 2.69
height (m)	2211	410
N mean (SD)	3311 1.67 (0.10)	419 1.68 (0.09)
median	1.67	1.68
min; max	1.36; 2.03	1.43; 2.01
low density lipoprotein cholesterol (mmol/L)		
N moon (SD)	3270	409
mean (SD)	2.46 (0.94)	2.42 (1.01)

	Historical sample	New random trial sample
median min; max	2.36 0.00; 6.73	2.28 0.10; 7.10
leukocytes $(10^9/L)$ N mean (SD) median min; max	3297 7.33 (1.93) 7.10 2.80; 17.60	419 7.93 (2.04) 7.80 3.60; 15.80
lymphocytes blood (%) N mean (SD) median min; max	3284 30.00 (7.88) 29.70 4.60; 71.00	419 29.39 (7.66) 28.70 10.70; 55.10
monocytes blood (%) N mean (SD) median min; max	3284 5.88 (2.19) 5.70 0.00; 21.70	419 5.83 (2.30) 5.70 0.50; 17.20
neutrophils blood (%) N mean (SD) median min; max	3284 60.93 (8.68) 61.10 16.60; 91.60	419 61.83 (9.00) 62.20 25.20; 86.50
potassium (mmol/L) N mean (SD) median min; max	3304 4.48 (0.42) 4.49 3.10; 7.00	419 4.53 (0.41) 4.50 3.30; 6.50
pulse (beats/min) N mean (SD) median min; max	3310 75.31 (10.00) 75.00 45.50; 118.00	419 75.56 (9.34) 76.00 52.00; 108.00
sodium (mmol/L) N mean (SD) median min; max	3303 139.73 (2.81) 140.00 121.00; 154.00	419 140.19 (2.44) 140.00 132.00; 148.00
systolic blood pressure (mmHg) N mean (SD) median min; max	3309 131.53 (14.40) 131.00 90.00; 200.00	419 129.69 (13.69) 130.00 96.00; 171.00
thrombocytes $(10^9/L)$ N mean (SD) median min; max	3269 240.18 (64.34) 233.00 13.00; 611.00	419 244.27 (64.91) 242.00 63.00; 477.00
total bilirubin (umol/L) N mean (SD) median min; max	3304 8.10 (4.33) 7.00 0.00; 36.00	419 8.12 (4.73) 7.00 1.00; 33.00

total cholesterol (mmol/L)

	Historical sample	New random trial sample		
N mean (SD) median	3284 4.54 (1.13) 4.43	410 4.59 (1.28) 4.43		
min; max	0.93; 13.93	2.02; 11.37		
triglycerides (mmol/L) N mean (SD) median min; max	3279 2.07 (1.78) 1.65 0.24; 34.25	410 2.23 (2.36) 1.70 0.38; 27.80		

Appendix G Summary of categorical baseline covariates of the case study

Tab. 4: Summary of the continuous baseline covariates.

	Historic N	cal sample (%)	New ran	dom trial sample (%)
sample size	3311		419	
sex				
female	1480	(44.7)	173	(41.3)
male	1831	(55.3)	246	(58.7)
race				
Asian	820	(24.8)	65	(15.5)
Black or African American	183	(5.5)	< 5	
Other	67	(2.0)	< 5	(00.0)
White	2241	(67.7)	346	(82.6)
smoking status	0.44	(= 0)		(10.0)
current	241	(7.3)	53	(12.6)
never	910	(27.5)	249	(59.4)
previous	378	(11.4)	116	(27.7)
region				
Asia	748	(22.6)	57	(13.6)
Europe	1303	(39.4)	228	(54.4)
North America	1015	(30.7)	89	(21.2)
South Africa South America	91 154	(2.7)	$0 \\ 45$	(10.7)
South America	134	(4.7)	40	(10.7)
ethnicity	101	(10.0)	20	(10.0)
Hispanic or Latino	461	(13.9)	68	(16.2)
not Hispanic or Latino	2806	(84.7)	351	(83.8)
titration target				
3.9-5.0 mmol/l	410	(12.4)	0	
4.0-5.0 mmol/l	2236	(67.5)	419	(100.0)
4.4-7.2 mmol/l	665	(20.1)	0	
blinding				
double-blinded	122	(3.7)	0	
open-label	3189	(96.3)	419	(100.0)
Biguanides				
yes (continued in trial)	2873	(86.8)	369	(88.1)
yes (discontinued in trial)	248	(7.5)	27	(6.4)
no	190	(5.7)	23	(5.5)
Sulfonylureas				
yes (continued in trial)	436	(13.2)	< 5	
yes (discontinued in trial)	1485	(44.9)	0	
no	1390	(42.0)	> 414	
DPP4				
yes (continued in trial)	278	(8.4)	< 5	
yes (discontinued in trial)	361	(10.9)	> 123	
no	2672	(80.7)	> 285	
other blood glucose				
lowering drugs				
yes (continued in trial)	< 5		0	

	Historic N	al sample (%)	New rand	dom trial sample (%)
yes (discontinued in trial) no	> 79 > 3220		0 419	(100.0)
Alpha Glucosidase inhibitor yes (continued in trial) yes (discontinued in trial) no	87 69 3155	(2.6) (2.1) (95.3)	0 0 419	(100.0)
combination of blood glucose lowering drug yes (continued in trial) yes (discontinued in trial) no	32 36 3243	(1.0) (1.1) (97.9)	0 8 411	(1.9) (98.1)
Thiazolidinediones yes (continued in trial) yes (discontinued in trial) no	78 29 3204	(2.4) (0.9) (96.8)	20 0 399	(4.8) (95.2)
SGLT2i yes (continued in trial) yes (discontinued in trial) no	175 15 3121	(5.3) (0.5) (94.3)	> 383 > 25 < 5	
GLP-1 receptor agonist yes (continued in trial) yes (discontinued in trial) no	79 13 3219	(2.4) (0.4) (97.2)	0 0 419	(100.0)

Appendix H Missing pattern of the case study

To clean and curate the 14 data sets we imputed the HbA1C at week 26 value. For the historical sample the imputation was made using an ANCOVA model with last observed HbA1C measurement before landmark visit, time point of last measurement, baseline HbA1C, discontinuation prior to week 26 indicator and study-id as adjustment covariates. For the new trial data a similar approach was employed. However, in this case the last observed HbA1C measurement before landmark visit week 26, time point of last measurement, baseline HbA1C, discontinuation prior to week 26 indicator, region, treatment indicator and pre-study OADs were used as adjustment covariates. This was done in order to use a similar imputation as used in the original analysis.

After imputing the HbA1C at week 26 value a total 94.4% of the participants had complete data for the combined historical and new trial data. The missingness of the covariates is displayed below. For the covariates we included missingness indicators and respectively imputed covariates using random forest (2). This was done seperately on the historical and new trial data. The normalized root mean square error was 0.218 for continuous covariates and proportion of falsely classified is 0.004 for the historical data sample. The normalized root mean square error was 0.010 for continuous covariates and proportion of falsely classified is 0.023 for the new trial data. The missingness indicators of the historical sample did all overlap with the missingness indicators from NN9068-4229 trial. Since some of the covariates had near zero variance, were colinear or had large absolute correlation with each other we removed some of the covariates.

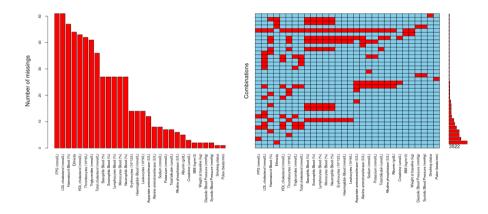


Fig. 2: Number of missing covariates (left) and combination of missingness of covariates (right).

Due to near zero variance, collinearity or high absolute correlation between the covariates, we excluded some of the values. Thus the baseline covariates used in the model where reduced to the following:

- age
- diabetes duration
- body mass index
- HbÅ1C
- height
- weight

- Alanine aminotransferase
- Albumin
- Alkaline phosphatase
- Aspartate aminotransferase
- Basophils
- Creatinine

Eosinophils

- Erythrocytes

fasting plasma glucose
 Haematocrit

HDL cholesterol
 LDL cholesterol
 Leukocytes
 Lymphocytes

Lymphocytes
Monocytes
Potassium
Sodium
Thrombosytes
Total bilirubin
Total cholesterol

Triglycerides

Diastolic blood pressure

pulse

Systolic blood pressure

- country - sex - race

smoking status

region
ethnicity
Biguanides

- DPP4 - SGLT2I

- Previous OADs

Appendix I Case study prognostic score

A linear model was chosen by the super learner for the prognostic score. The explicit form is stated below with all the covariates being found at the baseline visit: 8.064 - 0.005803 * age + 0.006858 * duration of diabetes (years) -0.04832 baseline body mass index -0.6984 baseline HbA1c - 1.597 * baseline height + 0.01584 * baseline weight - 0.0001571 * Alanine aminotransferase -0.1717 * Albumin -0.001101 * Alkaline phosphatase + 0.0007458 * Aspartate aminotransferase + 0.01894 * Basophils + 0.0001417 * Creatinine + 0.00002099 * Eosinophils + 0.07384* Erythrocytes - 0.003852* Fasting plasma glucose - 0.01072* Haematocrit plasma gluc+ 0.1456 * HDL cholesterol -0.02274 * LDL cholesterol + 0.009920 * Leukocytes + 0.002362 * Lymphocytes + 0.001950*Monocytes + 0.01634*Potassium + 0.001422*Sodium + 0.0003064*Double + 0.001630*Double + 0.001630* Thrombocytes - 0.01402 * Bilirubin -0.009623* Cholesterol + 0.01402 * Triglycerides -0.001623 * Diastolic blood pressure + 0.0003186 * Pulse -0.0003957 * Systolic blood pressure -0.09003*Canada -0.2896 * Spain -0.1609 * Finland -0.1386 *Hungary +0.1513 * India +0.1667 *Russia -0.04964 * Slovakia -0.1002 *Slovenia + 0.01340 * USA + 0.05908 * Male -0.1359 * Race white-0.07616 * current smoker + 0.01871 * never smoked -0.05815 * previous smoker + 0.1683 * Europe -0.1080 * ethnicity not Hispanic or Latino + 0.005146 * Biguanides discontinued + $0.05\overline{3}03$ * no Bigunaides used + 0.07725 * Dipeptidyl peptidase-4 inhibitor discontinued. The covariates are not demeaned. All the categories of the categorical variables included in the model have a main term, meaning that there is no reference group.

References

- [1] Morris TP, White IR, Crowther MJ. Using simulation studies to evaluate statistical methods. Statistics in medicine. 2019;38(11):2074-102.
- [2] Stekhoven DJ, Bühlmann P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28(1):112-8.