
Supplementary material to Risk estimation and boundary

detection in Bayesian disease mapping

1 Introduction

This supplementary material accompanies the paper entitled "Risk estimation and boundary detection in Bayesian

disease mapping" and has the following sections. Section 2 describes the (MC)3 estimation algorithm used to

fit the model proposed in the main paper. Section 3 performs a sensitivity analysis assessing the robustness of

the proposed methodology to changing the prior distribution for the spatio-temporal random effects variance

parameter τ2. In Section 4 we test the performance of the proposed model under different sample sizes of the

candidate neighbourhood matrices which are generated by the graph-based optimisation algorithm in the first

stage. Section 5 presents the convergence diagnostics of the posterior distributions for a selection of parameters

of the proposed model in the motivating application. Section 6 presents the boundary detection performance of

the proposed model under a set of model-free scenarios, with the different numbers of expected cases taken into

account.

2 Inference

We note that the posterior probability distribution of W̃WW contains multiple modes during model development,

thus a Metropolis-coupled Markov chain Monte Carlo algorithm ((MC)3) used by Napier et al. [1] is adopted

to perform model inference.

2.1 (MC)3 algorithm

Suppose the (MC)3 algorithm runs V Markov chains in parallel, where each chain is labeled by v ∈ (1,2, . . . ,V ).

The temperature level for chain v is denoted by Tv, and we have 0 < TV < TV−1 <,. . . ,< T2 < T1 = 1. The first

chain with T1 = 1 is also known as the cold chain, and the posterior samples from the cold chain are used for

model inference. ΩΩΩvl denotes the collection of model parameters at the lth iteration of the Markov chain v and

in our context ΩΩΩvl = (βββ vl ,φφφ vl ,W̃WW vl ,τ
2
vl ,αvl). The (MC)3 algorithm is presented as follows.

1. Set starting values ΩΩΩv0 = (βββ v0,φφφ v0,W̃WW v0,τ
2
v0,αv0) in each chain for v = 1,2, . . . ,V .
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2. Repeat the following steps for each sampling iteration l = 1,2, . . . ,L .

(a) At iteration l repeat the following steps for each Markov chain for v = 1,2, . . . ,V , and each model

parameter ωvl ∈ ΩΩΩvl .

i. Propose a new value for ωvl , called ω∗
vl , from a proposal distribution g(ω∗

vl |ωvl).

ii. Accept ω∗
vl with probability p1,

p1 = min

{
f (ω∗

vl |YYY )Tv/g(ω∗
vl |ωvl)

f (ωvl |YYY )Tv/g(ωvl |ω∗
vl)

,1

}
,

where f (·) represents the full conditional distribution of ωvl or ω∗
vl .

iii. Generate a random variable, U1, that is uniformly distributed on the interval [0,1]; If U1 ≤ p1,

accept ω∗
vl as the next value in the chain v, i.e., ωv,l+1 = ω∗

vl . Otherwise, ωv,l+1 = ωvl .

(b) Randomly select two of the chains to couple the chains, e.g., chains j and k, and exchange their

values.

i. Swap chains j and k with probability p2, where

p2 = min

{
f (ΩΩΩkl |YYY )Tj f (ΩΩΩ jl |YYY )Tk

f (ΩΩΩ jl |YYY )Tj f (ΩΩΩkl |YYY )Tk
,1

}
.

ii. Generate a uniform random sample U2 ∼ Uniform(0,1); If U2 ≤ p2, then the proposed swap is

accepted and chains j and k exchange their values.

The (MC)3 algorithm is not applied to the parameters that are sampled using Gibbs sampling. The tem-

peratures are determined by a geometric progression, which is a common choice in the literature [2, 3]. The

geometrically spaced temperatures are given by Tv+1 = c ∗ Tv, with a scale factor c ∈ (0,1). The value of c

is altered within the algorithm to ensure the swaps of two chains are accepted between 20 % and 30% of the

time, thereby providing a sufficient amount of mixing [1]. The number of chains needed for adequate mixing

depends on the complexity of the data [4]. Exploratory model runs suggested that V = 5 coupled chains appear

to result in good mixing for both the simulated and real application data. The (MC)3 algorithm is written and

implemented in R [5] and C++ via the R package Rcpp [6, 7].
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3 Sensitivity analysis to changing the prior distribution for τ2

In the main paper we use an Inverse-Gamma (1, 0.01) prior for the variance parameter τ2 in the proposed model.

To assess the impact of the prior for τ2 on model performance, we re-run part of the simulation study by fit-

ting the proposed model separately with both Inverse-Gamma(0.001,0.001) and Inverse-Gamma(0.5,0.0005)

priors. Specifically, one hundred simulated data sets are generated as described in Section 4 of the main paper,

where we consider Z = 1,0.5,0.25. In generating the data ρ = 0.9 is used to simulate the random effects φφφ t at

each time period t and the expected numbers of disease cases are taken from the motivating data (i.e., SF = 1).

The proposed model is fitted to each data set using the three different choices of Inverse-Gamma (IG) prior

distribution for τ2, and the results are summarised in Figures S1, S2 and S3, which display boxplots of RMSE,

95% coverage probabilities for risk estimates, DIC, pd and the AUC over all simulated data sets. The figures

show that changing the hyperparameters of the Inverse-Gamma prior for τ2 does not seem to have any substan-

tial effect on the ability of the proposed model in terms of both risk estimation and boundary detection, because

the differences in the values of the performance metrics are very minimal when the prior varies. Therefore the

proposed methodology appears to be robust to the choice of the hyperparameters of the prior Inverse-Gamma

distribution for τ2.
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Figure S1: Summary of the simulation results from changing the hyperparameters of the Inverse-Gamma (IG)
prior distribution for τ2 when Z = 1.
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Figure S2: Summary of the simulation results from changing the hyperparameters of the Inverse-Gamma (IG)
prior distribution for τ2 when Z = 0.5.
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Figure S3: Summary of the simulation results from changing the hyperparameters of the Inverse-Gamma (IG)
prior distribution for τ2 when Z = 0.25.

4 Sensitivity analysis to changing the value of M

In the main paper we generate M = 100 candidate neighbourhood matrices in stage one of the proposed approach

for both the simulation study and the real data analysis. To examine the impact of the value of M on model

performance, we re-run part of the simulation study by fitting the proposed model separately with both M = 20

and M = 50. Specifically, one hundred simulated data sets are generated as described in Section 4 of the main
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paper, where we consider Z = 1,0.5,0.25. In generating the data ρ = 0.9 is used to simulate the random effects

φφφ t at each time period and the expected numbers of disease cases are taken from the motivating data (i.e.,

SF = 1). The proposed model is fitted to each data set using the three different choices of M and the results are

summarised in Tables S1 and S2, which display median values of the RMSE, 95% coverage probabilities for

risk estimates, DIC, pd and the AUC for each model and scenario.

Tables S1 shows that the ability of our model to estimate disease risk appears to be robust under different

values of M, as the differences in RMSE and 95% coverage probabilities are minimal when M varies. Both the

proposed model and the LM model perform better than the RL model in terms of their lower RMSE, DIC and

pd values across three values of M. The RL model has an increased number of effective parameters (pd), and

this is because it enforces spatial smoothing between all pairs of neighbouring areas, even those that have very

different data values, which hence inflates the variance of the random effects and increases pd . In contrast, in

our model and the LM model the spatial random effects are only allowed to smooth towards their neighbours

that no boundary is present between them, i.e., those neighbours that have similar random effects values, which

leads to a reduction in the random effects variance τ2 and pd . Compared with the LM model, our model has

slightly higher coverages and smaller RMSE values, with a reduction of around 1% in RMSE on average. In

addition, the proposed model has a higher DIC and pd than the LM model in a number of scenarios. This is

because the neighbourhood matrix is fixed when estimating the disease risk in the LM model, whereas it is

treated as an additional parameter to be estimated by our approach.

Table S2 indicates that the ability of the proposed model to detect the true boundaries and non-boundaries

shows almost no sensitivity to the value of M, as the AUC values do not change greatly when M varies. When

Z = 1, the model produces high AUC values close to 1. As the magnitude of the boundaries gets smaller, the

AUC statistic decreases because smaller boundaries are more difficult to correctly identify, with values varying

between 0.90 and 0.96 for the scenario Z = 0.5, and between 0.82 and 0.91 for the scenario Z = 0.25. In

addition, we found that reducing the value of M results in a slight reduction in AUC, with reductions in median

AUC of 0.4% (Z = 1), 1.1% (Z = 0.5) and 2.9% (Z = 0.25) from the scenario M = 50 to M = 20, and 0.93%

(Z = 1), 0.74% (Z = 0.5) and 1.3% (Z = 0.25) from the scenario M = 100 to M = 50.
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Table S1: Median values of the RMSE, 95% credible interval coverages associated with the estimated risks,
Deviance Information Criterion (DIC), and the effective number of parameters (pd) for each model and scenario.
Here LM and RL refer to the models proposed by Lee et al. [8] and Rushworth et al. [9].

Metric Z M
Model

Proposed LM RL

RMSE 1 20 0.101 0.102 0.122
0.5 20 0.074 0.075 0.089
0.25 20 0.062 0.062 0.068
1 50 0.101 0.102 0.122
0.5 50 0.075 0.075 0.089
0.25 50 0.062 0.062 0.068
1 100 0.100 0.101 0.121
0.5 100 0.074 0.075 0.089
0.25 100 0.062 0.062 0.068

Coverage probability 1 20 0.962 0.960 0.953
0.5 20 0.956 0.957 0.955
0.25 20 0.949 0.942 0.948
1 50 0.961 0.961 0.952
0.5 50 0.957 0.957 0.954
0.25 50 0.949 0.941 0.949
1 100 0.963 0.960 0.954
0.5 100 0.958 0.956 0.954
0.25 100 0.951 0.944 0.948

DIC 1 20 13729.66 13711.89 14123.81
0.5 20 13462.59 13456.34 13762.87
0.25 20 13261.99 13252.31 13445.40
1 50 13700.64 13698.46 14115.55
0.5 50 13463.68 13455.32 13771.48
0.25 50 13247.11 13230.65 13429.77
1 100 13714.99 13701.59 14123.56
0.5 100 13473.27 13456.07 13770.36
0.25 100 13268.14 13259.73 13454.56

pd 1 20 980.99 975.21 1347.79
0.5 20 716.25 729.86 1005.98
0.25 20 518.84 505.16 653.17
1 50 982.00 988.15 1344.30
0.5 50 721.53 729.47 1007.82
0.25 50 516.92 502.42 650.05
1 100 992.45 988.89 1345.70
0.5 100 721.27 730.13 1007.26
0.25 100 521.50 509.29 653.65
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Table S2: Median values of the area under the ROC curve (AUC) for boundary identification for the proposed
model for each scenario. Values in brackets correspond to the 95% credible intervals.

Z M AUC

1 20 0.964 (0.938, 0.981)

1 50 0.968 (0.947,0.983)

1 100 0.977 (0.960, 0.985)

0.5 20 0.934 (0.910,0.958)

0.5 50 0.944 (0.912, 0.961)

0.5 100 0.951 (0.933, 0.965)

0.25 20 0.841 (0.835, 0.868)

0.25 50 0.865 (0.836, 0.893)

0.25 100 0.876 (0.846, 0.902)

5 Convergence diagnostic

The convergence of the posterior distributions for the model parameters in the analysis of the real data is diag-

nosed both by examining parameter trace plots and by Gelman-Rubin diagnostic [10]. It is infeasible to check

the convergence for all parameters in practice because there are a large number of parameters in the model.

Therefore here we only select four parameters, which are (β0,τ
2,φ100,1,φ129,3), to check their convergence.

Figure S4 shows trace plots of the posterior samples for (β0,τ
2,φ100,1,φ129,3), where each Markov chain is

represented in a different color. The figure shows that there is no clear pattern in the trace plots for all selected

parameters, suggesting that all the chains appear to have converged. In addition, the Gelman-Rubin diagnostic is

also used to check the convergence for multiple chains, with a value less than 1.1 indicating convergence of the

chains. Here the Gelman-Rubin statistics for the selected parameters are all smaller than 1.1 with a maximum

value of 1.01, which means that the posterior samples have converged.
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Figure S4: Trace plots of the posterior samples for selected parameters (β0,τ
2,φ100,1,φ129,3) from the proposed

model.



11

6 Summary of boundary detection performance under model-free scenarios

In this section we assess the boundary detection performance of the proposed approach under a set of model-free

scenarios. In these scenarios the disease risks θit of the areas with high, medium and low risk levels are fixed

at constant values of {exp(Z),1,exp(−Z)}, rather than being generated by simulating random effects using a

multivariate Gaussian distribution with a Leroux CAR covariance structure and a piecewise constant mean as

described in Section 5.1 of the main paper. In order to explore the impact of the number of expected cases on

boundary detection performance, the expected disease counts {Eit} from the motivating study are divided by

the scale factors (SF) of 1, 2 and 4. Thus SF = 1 corresponds to the motivating data, SF = 2 corresponds to

having a smaller number of expected counts, while SF = 4 represents a rare disease that has very small expected

counts. The observed disease counts {Yit} are then generated from a Poisson distribution with mean Eitθit . One

hundred simulated data sets are generated for each pairwise combination of Z = 1,0.5,0.25 and SF = 1, 2, 4.

The proposed model is applied to each data set, and the correctness of the boundary detection is presented

in Table S3, which displays the median AUC values as well as the corresponding 95% credible intervals across

the set of ROC curves calculated for each scenario. The boundary detection performance of the proposed model

under the model-free scenarios is similar to that displayed in the simulation study in the main paper. When the

size of the boundaries is not very small (Z > 0.25), the proposed model generally performs well in terms of

boundary identification and is robust to different numbers of expected cases, with relatively high AUC values

ranging between 0.876 and 0.978. The model obtains a lower AUC value when both the number of expected

cases and the magnitude of the boundaries are very small (i.e., SF = 4 and Z = 0.25), with a AUC value of 0.755.

The reason for this is that in this scenario the boundaries are difficult to be correctly identified based on their

small size and small numbers of disease cases. Overall, these conclusions are consistent with those provided in

the simulation study in the main paper.
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Table S3: Median values of the area under the ROC curve (AUC) for boundary identification for the proposed
model for each scenario. Values in brackets correspond to the 95% credible intervals.

Z SF AUC

1 1 0.978 (0.964, 0.986)

0.5 1 0.953 (0.928, 0.967)

0.25 1 0.878 (0.844, 0.903)

1 2 0.966 (0.931, 0.980)

0.5 2 0.922 (0.899, 0.944)

0.25 2 0.821 (0.793, 0.848)

1 4 0.948 (0.935, 0.961)

0.5 4 0.876 (0.856, 0.907)

0.25 4 0.755 (0.723, 0.771)

References

[1] Napier G, Lee D, Robertson C, Lawson A. A Bayesian space-time model for clustering areal units based

on their disease trends. Biostatistics. 2019;20(4):681-97.

[2] Kofke DA. On the acceptance probability of replica-exchange Monte Carlo trials. The Journal of chemical

physics. 2002;117(15):6911-4.

[3] Earl DJ, Deem MW. Parallel tempering: Theory, applications, and new perspectives. Physical Chemistry

Chemical Physics. 2005;7(23):3910-6.

[4] Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F. Parallel metropolis coupled Markov chain Monte

Carlo for Bayesian phylogenetic inference. Bioinformatics. 2004;20(3):407-15.

[5] R Core Team. R: A language and environment for statistical computing. Vienna, Austria; 2013.

[6] Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, et al. Rcpp: Seamless R and C++

integration. Journal of Statistical Software. 2011;40(8):1-18.



13

[7] Eddelbuettel D. Seamless R and C++ integration with Rcpp. Springer; 2013.

[8] Lee D, Meeks K, Pettersson W. Improved inference for areal unit count data using graph-based optimisa-

tion. Statistics and Computing. 2021;31(4):1-17.

[9] Rushworth A, Lee D, Mitchell R. A spatio-temporal model for estimating the long-term effects of air

pollution on respiratory hospital admissions in Greater London. Spatial and spatio-temporal epidemiology.

2014;10:29-38.

[10] Gelman A, Rubin DB, et al. Inference from iterative simulation using multiple sequences. Statistical

science. 1992;7(4):457-72.


	Introduction
	Inference
	MC algorithm

	Sensitivity analysis to changing the prior distribution for 2
	Sensitivity analysis to changing the value of M
	Convergence diagnostic
	Summary of boundary detection performance under model-free scenarios

