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In Section A, we give some useful notations. In Section B, we provide the regularity
conditions for Theorem 1 of the main paper. In Section C, we define the variance estimators
for V() and V) and provide consistent estimators. In Section D, we introduce a few
lemmas for proving our main results. In Section E, we prove Theorem 1, Corollary 1 and
Corollary 2 of the main paper. In Section I, we give an example where MMRM-II is less
precise than ANCOVA. In Section G, we provide the missing data mechanism for MAR in
the simulation study. In Section H, we provide additional simulations under homogeneity

and homoscedasticity.

A Notations

Throughout the proofs, we use Y, Y (j), Yy, Y;(j) instead of Y, Y;(5), Yir, Yie(J) to represent
random variables from the distribution P for conciseness. The same notation is used for

MvM(j)7MtaMt(j)7X7A'



Let 1x be the column vector of length K with each component equal to 1, Ox be the
column vector of length K with each component equal to 0, and e; be the column vector
of length K with the ¢-th entry 1 and the rest 0. Let Ix be the K x K identity matrix.
Let ® be the Kronecker product. Let I be the indicator function, i.e. T{A} = 1 if event
A is true and 0 otherwise. For any random vector W with finite second-order moment,
we define W = W — E[W] and Var(W) = E[WWT} For two random vectors W
and Wy, we define Cov(W, W) = E[ﬁhﬁ?;] Let {0, 1}% be the set of K-dimensional
binary vectors, i.e. {0,1}% = {(xy,...,2x)" : 2 € {0,1},¢t = 1,... K}. For any matrix

(or vector), we use || - || to denote its Ly matrix (or vector) norm. For any vector v =
(v1,...,v1), we use diag{v} or diag{v, : L =1,..., L} to denote an L x L diagonal matrix
with the diagonal entries being (vq,...,vr). For any sequence xy,...,x,,..., we define

Px=n" Z?:l Li-

B Regularity conditions

The regularity conditions for Theorem 1 are assumed on estimating equations ypANCOVA),

pMMRM) 0 o MMEM) - ohich are defined by Equations (1), (3), and (5) below, respec-
tively. Each of p(ANCOVA) =y (MMEM) 1y qp IMMEM) 4 5 g-dimensional function of random
variables (A, X,Y, M) and a set of parameters 8 € R?, where ¢ and 8 vary among estima-
tors, and A are embedded in 6. Without causing confusion, we use (A, X, Y, M;0) to
represent any of the above three estimating equations. As we show in the proof of Theorem
1 below, each of the ANCOVA, MMRM-I, MMRM-II and IMMRM estimators is an M-
estimator, which is defined as the solution of A to the equations P,y (A, X, Y, M;60) = 0.

The regularity conditions are similar to those used in Section 5.3 of van der Vaart



(1998) in their theorem on estimating equations ¢ for showing asymptotic normality of
M-estimators for independent, identically distributed data. The regularity conditions are
given below:

(1) 8 € O, a compact set in R

(2) El||v(5, X, Y (j), M(5);0)||*] < oo for any 8 € © and j € {0,...,J}.

(3) There exists a unique solution in the interior of ®, denoted as 6, to the equations

> mERp(5, X, Y (5), M(j); 0)] = 0.

=0

(4) For each j € {0,...,J}, the function 8 — ¥(j, x,y, m;8) is twice continuously
differentiable for every (x,y, m) in the support of (X,Y (j), M (j)) and is dominated by
an integrable function u(X,Y (j), M (5)).

(5) There exist a C' > 0 and and integrable function v(X,Y (j), M (7)), such that,
for each entry ¢,.,r = 1,...,q, of ¥, Hag—getw(j,w,y,m;H)H < v(x,y,m) for every
(4,2, y,m) in the support of (4, X,Y (j), M(j)) and 0 with ||@ — 0| < C.

6) E {H%d)(j,X,Y(j),M(j);O)‘B0”1 < oo forje{0,...,J} and

d 9
SonE | e X Y6 MG6)|, |

is invertible.



C Variance estimators in Theorem 1

For an M-estimator 8 € R defined by P,(A, X, Y, M;60) = 0, its sandwich variance

estimator under simple randomization is defined as

~ ~ 0
Va.0) = L { P | A X v, 0036)

09}} { P |04, X, v, M:0)9(4, XY, M:0)' |}

i

Since A is embedded in 8, we can find C € R’*4 such that A = CO. Then the variance

0
{Pn {a—otp(A,X,Y, M;0)

estimator of A under simple randomization is defined as C\an(v,b, a)CT.
For each est € {ANCOVA, MMRM-I, MMRM-II,IMMRM}, the variance estimator
VY s calculated by CV, (Y 8)CT. We note that the MMRM-I estimator and

MMRM

MMRM-II estimator share the same estimating equations 1/)( ) with different spec-

ifications of u(X) as described in Equation (2).



We next define V& for est = ANCOVA, MMRM-I, MMRM-II. Define
(P,I{S = s} X)(P,I{S = s}X)T

Var(E[X|S) =3 PuI{S = s}

seS

Var(X) =P, XX — (P,X)(P,X)",

— (P X)(P X))

Con(X V(i) = P,S A= D xy, — pxp A=y,

T Ty

by, = Var(X) " Cov(X, Yk(j)),

J
b = > mVar(X)'Cou(X, Y (j)),
j=0

Z = (/I;KO_/BKa---a/I;KJ_/I;K)>
G: (EKO_I/B\X7"’)BKJ_BX)7
L=(-1, I,),

where By is the MLE of B in the MMRM-I working model (2).

Following Equation (16), we define

~ 1 ~ ~ — ~ ~ ~
Vq(,LANCOVA) = Vq(,LANCOVA) - —L[dzag{wj_l(b[(j - bK)TVCLT(E[X|S])(bK] - bK) . ] = 0, N
n

— 2 Var(E[X|S)Z]L".

Following Equation (15), we define

- 1 ~ ~ . ~ ~
VMMINED — Y MMIMD — — T [diag{n;" (bi; — Bx) Var(BE[X|S])(bx; = Bx) : 5 =0,...
n

— 3V Var(E[X|S)VIL".

Similarly, we define

~ 1 ~ ~ — ~ ~ ~
V%MMRM_H) = V,ELMMRM_H) - —L[dwg{wj_l(b;q - bK)TVCLT(E[X|S])(bK] - bK) : j = O, Ce
n

— 2 Var(E[X|S)ZL".

,J}

T}
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D Lemmas

Lemma 1. Let ¥ € RE*K be q positive definite matriz. For each m € {0,1}%\ {0k}, let

Ny, = Zfil my be the number of ones in m and tp, 1 < -+ < tmp,, denote the ordered list
of locations of ones in m, i.e., my =1 ift € {tm1,- .- tmmn,,} and 0 otherwise. We define
D =€, --- €, | € REX™™ and

Vi (2) = I{m € {0,1}* \ {0x}}D,,(D, £D,,,)'D, € RF*¥,

which are deterministic functions of m and .
Let M = (M, ..., Mg) be a K-dimensional binary random vector taking values in

{0,1}5. We assume that P(M = 1) > 0. Then the following statements hold.
(1) E[Vm(X)] is well-defined and positive definite.

(2) e ElVyM(Z)|tex < P(Mg = 1)"'ejZex. The equality holds if and only if either
of the following conditions holds: (i) K =1 or (ii) P(My = 1, Mk = 0)oyx = 0 for
t=1,...,K — 1, where o, = e/ Xex is the (t, K)-th entry of X.

(3) Let A € REXE pe q positive definite matriz. Then
e BV (D) tex < epE[Vau(A)TE[VM(A)EV M (A)E[Va(A)] tex. The equal-
ity holds if and only if
P(M = m)e E[Vy(A)] 'V (A) = P(M = m)e E[Vp(E)] Vi (2) for all
m € {0, 1}¥.

(4) Let B € REXE be q positive semi-definite matriz. Then
e;Bex < e E[Vy(E)] 'EVu(E)BV (D) E[VMm(E)] tex. The equality holds if
and only if P(M = m)e; E[V ()] 7V, (2)B does not vary across m € {0, 1},



(5) Letting C € RE*E be q positive definite matrix such that C—3 is positive semi-definite,
then e (E[Vp(C)] ™t — B[V (Z)] Hex > e (C — Xek.

Proof. (1) By definition, for any m € {0,1}%\ {0k}, D,, is full column rank. Since X is
positive definite and n; < K, then D, $D,,, is positive definite and V,,, = D,,(D,]. ¥D,,,)'D,
is positive semi-definite. In particular, for the case m = 1k, V,, = X! and so is
positive definite. Since E[Vam(X)] = >, ciox\(0x) VmEP (M = m) and we assume
P(M = 1g) > 0, then for any x € R,

' E[Vyle =2 Vi, xP(M = 1) + > x'V,xP(M =m)

mef{0,1}X\{0x 1k}
>x'Vy, xP(M = 1g)

> 0,
which implies that E[V ] is positive definite and so invertible.

(2) Consider the case K = 1. we have that X reduces to a positive number o and V,,,(¢) =
I{m = 1}07!. Then ey E[V,,(0)] lex = P(Ti:l)a = P(Mi(zl)e}EeK. We next consider
the case that K > 2. Define Qx = {m € {0,1}* \ {ex} : mg = 1} and Q_x = {m €

{0,1}¥\ {0x} : mg = 0}. Then we have

D,, Ox_1 D,
D,, = - if m e Qg and D,,, = . ifme Q_g,
025:1 mg—1 1 025:1 mt

where D,,, € RE-D*(ZiZime=1) s a matrix taking the first K —1 rows and first (35, m;—1)
columns of D,,, if m € Qx and f)m € RE-DX(ZiZime) g the first K — 1 rows of f)m if

m € Q_g. We further define ¥_x _j € RE-DXE-D 53 o € RE-! and 0 = e} Zex



such that

Using the formula of block matrix inversion, we can compute that, if m € Q. then

v (2) Am —O'_lAmE,KJ(
—0 'Sk Am 0T 0TS ARS gk

and, if m € Q_g, then

Am 01(,1
V(D) = | ,

where Am = ﬁm{ﬁ;(E_K7_K — E_K’KZ—_FKyK/U)]Sm}ilﬁ; € R(Kil)X(Kil) if m e Qg
and A, = Dp{D] X x_xD,,}'D] € RE-DXE-D if ;m ¢ Q_x. Here Ay, is well
defined for each m € Qg | JQ_k since ]5;2]57,1 is positive definite. In addition, if m = ey,

then D,,, = ex and V,,, = 0 'exe). Hence
m m K

E[VM(E)] _ ZmeQKUQ_K pmAm — ZmEQK pmgilAmE—K,K
B ZmEQK pma_lEjK’KAm ZmEQK pm(U_l + U_QET——K,KAmsz,K) "‘peKO'_l
Since we have shown that E[Vp;(X)] is positive definite and P(Mg = 1) = pe, +

ZmGQK Pm, by using the formula of block matrix inversion again, we have

(ex E[Vm(E)] " ex)™

= P(MK == 1)0-_1 + Z pm0_2ZjK’KAmE—K,K

meQ g

— (> pm0 B kA Y PmAm) (D pmo AT k)

meQg meQr U i meQg

= P(MK = 1)0'_1 + U_QEIKJ({GQK — G’QK(G’QK + GQiK)_lGQK}E_KJ(,



where Gg, = ZmeQK PmAm and Gq_, = ZmeQ_K PmAm.
For Gq,., we note that 1x € Qg with p;,, > 0and G4, = {E,K7,K—E,K7KE—_FK7K/O'}_1
is positive definite. Hence Ggq, is positive definite. Furthermore, Gq_, > 0 by definition.

Then

Goy — (Gax +Ga )™
= (GQK + GQfK)_l{(GQK + GQfK)Gégl((GQK + Gka) - (GQK + Gka)}(GQK + GQfK>_1
= (GQK + G97K>71(G97K + GQfKGéiGng)(GQK + GfLK)il

(ex B[Vm(Z)] lex)™
Dot + 0__22—_FK7K{GQK - GQK(GQK + G‘Q_K)_lGQK}E_K7K

)
= P(Mg =1)o7 ' + 072! xGa, {GgL — (Ga, + Ga_,) " }Ga, Dk x
)

which completes the proof of e E[Va(X)] tex < P(Mizl)e}EeK.

We next examine when e E[Va ()] lex = m:eIEEeK. Since Géi is posi-
tive semi-definite, then the above derivation shows that the equality holds if and only if

Z—IK,KGQK(GQK + GQ,K>_1G97K = 0. Noting that
GQK(GQK + GQfK)_lGﬁfK - GQK - GQK(GQK + GQ—K>_1GQK

is symmetric, the equality holds if and only if EIK’KGQJ{ (Ga,+Ga_ ) 'Ggq, = 0. Since



(Ga, + Gq_, ) 'Gq, is positive definite, we get

1
P(My = 1)

= E—IKJ(GQ_K(GQK + GQ_K)ilGQK =0

exEVpu(Z)] tex = eYex

= EIK,KGQ—KE_KyK — O

<~ Z pmE—_rKyK]Ajm{]5;2_](7_[(]5"1}_1]3;2_[(7[( =0

meQ_g
& mejKKf)m =0 for each m € Q_x

& P(My=1,Mg =0)oy gk =0 foreach t =1,..., K — 1,
where 0 = ejTEe K, which completes the proof.

(3) Denote cj;(A) = e E[Var(A)] 'V (A) and ¢, (X) = e E[Va(Z)] 1V (Z). We

have the following derivation:

El{ea(A) = ey ()3 {em(A) — enr(2)}]
= Elepy (A)Sem(A)] — Elep (A)Sem(B)] — Eley () Senm(A)] + Eley (B)Eenm ()]
= Elep(A)Sen(A)] — e B[V (E)] ek,

where the last equation comes from the fact that
Vm(A)EVpy(E) = Din(D,,AD,,) 'D;, 2D, (D,,XDy) " 'Dy, = Vir(A)
Vm(E)EVam(E) = D (D, ED,n) "D, Dy (D, ED,,) "Dy, = Vi (2).

Since X is positive definite, then we have E[cj,(A)Sear(A)] > e B[V ()] ek, which
is the desired inequality. The equality holds if and only if p,,{c, (A) — c;,;(2)} = 0} for
all m € {0,1}% \ {0}

10



(4) Define &}, = e E[V ()] 'V (2)B2. Here B: is well-defined since B is positive

semi-definite. Then we have

exEVu(D) ' E[Vy(Z) BV (D) E[VM(E)] 'ex — exBex

= Elx ] — Elzn] ' E[zag]

[M] >

Var(mX/Iet)

t

0.

1

v

The equality holds if and only if Var(x;,e;) = 0 for t = 1,..., K, which is equivalent to

:1:;/, being a constant vector.
(5) Define B = C — 3. The statement is proved by the following derivation:

exE[Vy(C)| ek

where the first inequality results from Lemma 1 (3), and the second inequality comes from

Lemma 1 (4). O

Lemma 2 (Kronecker product). Let A € R"*"2 B € R™*™ C € R"*" D € R™*"6 pe

random matrices. Then

(1) (A®B)(C®D)=(AC)® (BD),

11



(2) If A is independent of (B,C), then E[A ® B] = E[A] ® E[B] and E[(AC) ® B] =
E[(E[A]C) ® B].

(3) (A®@B)'=A"1@ B! if A and B are invertible.
(1) (A2B)T = AT @B,

(5) Suppose ny = na, ng = ny, A has eigenvalues Ay, ..., \n,, and B has eigenvalues

His- -, fng. Then A®B has eigenvalues \;jpj for eachi=1,...,ny andj =1,...,ns.

Lemma 3. Given Assumption 1, for eachj =0,...,J, let Z;(j) = h;(Y;(j), M;(j), X:) €
RY for some function h; such that E|||Z;(j)Z:()"||] < co. Then under stratified random-

1zation,
1 o= . . . d
T2 23 (1A =) 200) - mEZG) ) 4 NO.G)
where
G= ZWjE[VaT{Z(jHS}] + Var (Z WjE[Z(j)|S]> :
Furthermore,
Y mEZ(HZG) ) - E |3 mZ0)| E > m26)| —G = E[U(diag{n} —nx)U']

is positive semi-definite, where
U = (E[Z(0)[5],..., E[Z(J])|5])

7T:(7T0,...,7TJ)T.

12



Proof. Let § ={1,..., R} denote the levels in S. Using the fact that F[Z;(j)|S = S| =
Y ses {8 = sYE[Z(5)S = ] and E[Z;(j)] = X5 P(S = $)E[Z(j)|S = s], we have

n

1 J
X (1= 51200 - 20
1 < e«
ﬁllggm—w—s}( )~ EL20)ls = 51
+Z\/ﬁ( llI{S o) )ZW] IS =]
*2;\r2 (I{Ai = j, 5 = s} = m;1{S: = 5}) EIZ(})IS = 5]

= (1 @ L) LY +u'LP + v, LY,

Z?:ll{Az:],SZ:S} R
\/ﬁ{ Yo I{Si = s} -\ s) =y

J=0 J=0

v, = (Z?:lj{si:S}E[Z(j)‘SZS] :(7,8) €{0,...,J} XS)T,

n
where (zjs : (4,s) € {0,...,J} X 8) = (Tgy,-- s Tgps-- -, Typys---Typ) | and (zjs @ s €
S)=(x),..., xp)" for any vectors x;, € RY.

13



We next show that

Lo 0 ¥, 0 0
L@ [ &N 0 |,| O diag{ps} — psps 0 ’
L 0 0 0 O+1)Lx(J+1)L

where

3 = bdiag{m;P(S = s)Var{Z(j)|S = s} : (j,s) € {0,...,J} x S},
ps=(P(S=1),....,P(S=R))",

where bdiag{Vjs : (j,s) € {0,...,J} x S} represents a block diagonal matrix with Vj
being the {(s — 1)R+ j + 1}-th diagonal block. The proof can be found in Lemma C.1 and
C.2 of Appendix C of Bugni et al. (2019). The only difference is that Z;(j) is substituted
for Y;(j) and all the arguments still hold.

By the delta method, we have (1(J+1)L®Iq)T]L£}) +u'L? 4 N(0,G) and v, Ly v with
v = (P(S=s)E[Z(j)|S=s]:(j,8) €{0,...,J} xS). Using Slutsky’s theorem twice, we

get the desired asymptotic normal distribution.

14



Finally, we have the following derivation:

> netz)a)') - £ |Yora)| £ |3 mat)| -
j= 7= ; = . -
=> '1-E Z%’Z(J) E Z%Z(j)]

-2

J
>~ E[2()Z())
>~ E[Z()Z(5)

_E|E ijzu)‘s E ijZ(])S +E ijZ(]) E ijZ(j)]
= S wEEZGISEZGIS] - B | £ |3 nz)|s| B Zwm\s]

= E[U(diag{m} — 7 "U'].
Since diag{m} = wn ", then we get E[U(diag{m} —mnw")U'] is positive semi-definite. []

Lemma 4. Given Assumption 1, under simple or stratified randomization, each data vector
(A;, Y, M, X;) is identically distributed and, fori=1,...,n , A; is independent of W,
and P(A; = j) = m;.

Let P* denote the distribution of (A;, Y ;, M;, X;) and E* be the associated expectation.
Define Z = f(Y,M,X) and Z(j) = f(Y(j),M(j),X) such that E[Z(j)?] < oo for
j=0,...,J. Then E*[I{A = j}Z| = n;E[Z(j)] and E*[I{A = j}Z|S] = m; E[Z(§)|5] for
j=0,...J.

Proof. See Lemma 4 and Lemma 3 in the Supplementary of Wang et al. (2023). The only
difference of proof is that A = 1 is substituted by A =j for j =1,...,J, and (Y, M) are
substituted for (Y, M). O

15



E Proofs

E.1 Proof of Theorem 1

Outline of the proof: Consider the estimator ﬁ(esw for each
est € {ANCOVA, MMRM-I, MMRM-TI, IMMRM}. We first show that A" is an M-
estimator. We then apply Theorem 1 of Wang et al. (2023) to show that A" is model-

est)  The influence function

robust and asymptotically linear with influence function IF(
TF©Y is the same under simple and stratified randomization. Next, we prove the asymp-
totic normality by Lemma 3, which is a central limit theorem for sums of random vectors
under stratified randomization that generalizes Lemma B.2 of Bugni et al. (2019). Next,

(est) and derive the asymptotic covariance matrix i.e., V(Y and \Nf(eS“), for

we calculate I F
which the detailed algebra is given in Lemma 5 and Lemma 6. Finally, we compare the

asymptotic covariance matrices, where Lemma 1 is used to handle missing data.

Proof of Theorem 1. The ANCOVA estimator can be computed by solving
PapANCOVA (A X Y M 6) = 0, where

1
PANCON (A, XY, M;0) = [{My = 1}(Yic — fo — XJJ@UI{A =j}-BxX)| A |,
i=1 x
(1)
where A = (I{A =1},...,I{A = J})" is a vector of treatment assignment indicator and
0 = (Bo, Bar,---,Bas,Bx)" . Hence AP e an Meestimator.

The MMRM-I and MMRM-II working models can be rewritten in one formula below:
Y =8+ Ik ®A) B, + U(X)Tﬁu(X) +¢, (2)

16



where By = (Bo, - -, Box) " € RY, B4 = (Barr, -, Basi, -+, Baire, - Basr) " € RJKwBu(X) <

R? are column vectors of parameters, u(X) € R%®*¥ is a matrix function of X, and the
error terms € ~ N(0,3X), where ¥ € RF*K i a positive-definite covariance matrix. For
MMRM-I, ¢, = p (the dimension of X), u(X) = X1} and Bux)y = Bx. For MMRM-II,
q=pK, u(X)=Ix® X and B, x) = Bx1s - Bxr) "

Under the working model, the random error vectors €;,7 = 1,...,n, are assumed to
be independent (of each other and of {(A;, X;)}%,), identically distributed draws from
N(0,X). Denote ¥ = X(a), where @ = (ay,...,az)" € RL is the vector of unknown
parameters in 3. For example, o consists of the lower triangular and diagonal entries of
¥ if no structure is assumed on X.

For each 7, let n; = Zfi | M;; be the number of non-missing outcomes and Y7 € R™ be
the observed outcomes if n; > 0. Let ¢;; < --- <t,,, denote the ordered list of visits when
the outcomes are not missing. For example, ¢;; is the first non-missing visit for subject i.
We define Dy, = [er,, e, ... €, ] € R We use the subscript M) to note that
Dy, is a deterministic function of M;. Then Y = Dy, Y;. The observed data vector for
each i is (Y7, M;, A;, X,).

Denote the full set of parameters as @ = (3", a")", where 8 = (ﬂg,ﬁ},ﬁ&x))T.
We further define Q = [Ix (Ix ® A)T w(X)T]". We let Q; denote Q with A;, X;
substituted for A, X. It follows that Q8 = By + (Ix ® A;)" B4 + u(X;) Byx). Then
we have Y?|(A;, X;,M;,M; # 0x) ~ N(Dj,; Q3,Dy,; ¥Dy,) under the MMRM-I
or MMRM-II working model assumptions and missing completely at random (MCAR).

The corresponding log likelihood function conditional on {A;, X;, M;} , is a constant

17



independent of the parameter vector € plus the following:
1 n
— 5 2 H{M; # 0} {log|D}, IDas | + (Y7 = D1, Q) 8) (D1, ZDar) " (Y7 — Dy, Q7 B}
i=1

= —% ZI{Mi # 0} {log|Dyy, D, | + (Y — Q/ B) 'Dar, (D, EDas,) ‘D (Y — Q! B)}

i=1

- gpnzw; Y°|A, X, M),
where we define

1(0;Y°|A, X, M)

= —I{M # Ok} {log|D;EDn| + (Y — Q' B) 'Dam(DpEDar) "Dy (Y — Q' B)} -

To derive the estimating functions for the corresponding maximum likelihood estimator,
we use the following results to compute the differential of 1(6; Y °|A, X, M) with respect
to 8. By Equation (8.7) of Dwyer (1967), we have 2261Px=0ul) _ /(DT $D,,)~'D],.

Using the chain rule of matrix derivatives (MacRae et al., 1974, Theorem 8), we have

0log(|Dp,EDa|) — tr (@log(’DX/IEDMD 22

)
_ T -1InT

Mo
By Theorem 5 of MacRae et al. (1974), we have

D], ¥Dy,) " by
9D >D) :—(D&EDM)*DL%DM(DLEDM)—P

Oa; a;

Denoting Vs (X) = I{M # 0x}Dps (D3, EDps) 1Dy, we have shown that

Vm(E) %
oy VM(E)OT%VM(E)'

Using the above results, the estimating functions for the MLE 0 for 6 under MMRM.-I

18



or MMRM-II are

pMMEM (A XY M 6)

_ QVum(Y —Q'B) 3)
—tr(VarZZ) + (Y - Q") VarZVa (Y -Q'8), I=1,....L |
which implies that A (MMENED and A(MMRM_H) are M-estimators. In the above expression

of pMMEM) " wwe omit () from Vs (X) for conciseness. We note that Vs is a random

RKXK

matrix taking values in and defined in the same way as in Lemma 1.

The IMMRM working model (3) can be written as
Y =B+ (k@A) Ba+ (k@ X) Broox + (kX0 A) Bax +ea,  (4)

where By, B4, A are defined in Equation (2), By, ox = (Bx1:- - ﬁ}K)T, Bix € RIPK
with the {Jp(k — 1) + J(m — 1) + j}-th entry being Bax,, r for j = yJk=1,...,K
and m=1,...,p, and €4 = Zj:OI{A = j}e;, where ; ~ N(O, Ej) and (go,...,€y) are
independent of each other. Let a; € R’ be the unknown parameters in Yiforj=0,...,J.
We define v = (8, , B4, ,BITK®X, Bix) and @ = (A, v, af,...,a)". Following a similar

procedure to MMRM-I, the estimating functions for the MLE B(IM D under IMMRM are

PpPMEM (4 XY, M 9)

Bajk + X Baxjx — Dy, j=1,...,J
RV (Y —R')
| a4 =} (~tr(Van i) + (¥ = RT) Van 2 Vau (Y ~RT)), | ©)
j=0,...,J,1=1,...,L
where R=[Ix (Ix®A)" Ix2X)' Ix®X®A)"]|" and
Vam = V(3 H{A = j}E)) = {M # 03Dy (3o I{A = j}D 3, EDa) ' Dy,

(IMMRM ~(IMMRM
Hence A ) , as the first J entries of 0 ) , is an M-estimator.
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For each est € {ANCOVA, MMRM-I, MMRM-II, IMMRM}, we have just shown that

-~ (est)

A is an M-estimator. By Assumption 1 and regularity conditions, we apply Theorem

1 of Wang et al. (2023) and get, under simple or stratified randomization,

-~ (est)

1 n
V(A A'SY) = Jn ZE 1 TF'Y(A;, XY, M;) + 0,(1), (6)

where A gsatisfies E*[w,/)(eSt)(A,X,Y,M; 0)] = 0 with E* defined in Lemma 4, and
ITF(©Y) represents the J-dimensional influence function. We note that Theorem 1 of Wang
et al. (2023) is developed for binary treatment (i.e. J = 1) and scalar outcome (i.e.
K = 1), but their proof can be easily generalized to accommodate multiple treatment arms
and repeated measured outcomes (as in Example 3 of Wang et al., 2023).

We next show A(MMRM-I) is model-robust. By E* [@b(MMRM) (A, X,Y,M;0)] = 0, we

have
E'ValY =8, - Ik ® A)'8, —u(X)'B,  }] =0,
Bk © AV {Y =B, = (e 2 )8, —u(X) T8, ] =0,

which are first 2K equations in E*[4)(A, X, Y, M;8)] = 0, where V,, = V (X MMRM-D))
with SMMEM-D f6ing the probability limit of 3(&) under MMRM-I. By the MCAR as-

sumption and Lemma 4, the first K equations imply that

E*[V ]

B

{EY ()] - B, - B,, — E[(X)'B, 4} =0,

7=0
where 3,; = (BAjl,...,,BAjK)T for j =1,...,J and B,; = Of. Similarly, the (K +1) —
2Kth equations imply that, for j=1,..., Kandt=1,... K,

Ele] Vo {EY (j)] ~ B, ~ B, ~ E[u(X)TB,  l}m, = 0.
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The above two sets of equations and the positivtiy assumption imply that, for j =0,...,J,
* . T _

The assumption P(M(j) = 1x) > 0 and Lemma 1 (1) implies that E*[V,,] is invertible.

Then the above equations imply that, for j =1,...,J,

B, =B, — By = EIY()] - E[Y(0)]

and hence AMMRMD (ﬁAlK, Bk

the MMRM-II estimator by substituting Va; (Z™MMEMIDY for V- which implies that

~ (MMRM-II
A( ) is model-robust. Also, since the ANCOVA estimator is a special case of the

)T = A*. The above proof also applies to

MMRM-IT estimator setting K = 1, we get that the ANCOVA estimator is model-robust.

~ (IMMRM
Following a similar procedure, we next show that A( ) is model-robust. We have

that, for j =1,...,J,
BNV, {EY ()] - B, ~ B, ~ Ellx © X) B, ]~ Ellx 0 X ©e) B, J}m, = 0.
and
ENoa{EY (0)] - B, — E[(Le  X)8, _ J}m =0,

where V5, = I{M(j) # 0} D (D, 2 Dags)) 1D 1) with B being
the probability limit of ¥;(a;) in the IMMRM model (3) for j =0, ..., J. The assumption
P(M(j) = 1) > 0 and Lemma 1 (1) implies that E[V,,,] is invertible. Thus, for
j=1,...,J,

EY() - EY(0)] =8, +El(Ik® X ®e) B,
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which implies E[Vic(j)] = EVi(0)] = 8, + EIX]"B ;1

»MMEM) 1) dicates that B K TEX ]T,BAX =4 weget A; = E[Yk(j)] — E[Yk(0)] =
IMMRM)

Since the first equation of

A7, which completes the proof of model-robustness of A

We next prove that /n(A A A") weakly converges to a normal distribution, un-
der simple or stratified randomization. Given Equations (6), it suffices to show that
\/Lﬁ S ITFEY(A, X4, Y, M) weakly converges to a normal distribution. Under simple
randomization, (A;, X;,Y;, M;),i =1,...,n are independent to each other and identically
distributed. Since the regularity conditions implied that I F(" has finite second moment,
then the central limit theorem implies the desired weak convergence. Furthermore, we have
V) — Vars(JFE(A XY, M)). Under stratified randomization, we define Z;(j) =
IFEY (5, X;,Y(j), Mi(j)) for j =0,...,J. Then IF©V(A; X, Y, M) =37 [ I{A; =
j}Z:(j). Since EX[TFY(A, X, Y, M)] = 0, Lemma 4 implies that Y7 7;E[Z;(j)] = 0.
By the regularity conditions, we apply Lemma 3 and get

foFest (4, X, Y3, M) fzz (H{A = J}Z:(5) ~ ;E1Z:())])  N(0.G),

which completes the proof of asymptotic normality. In addition, Lemma 3 also implies that
{}(est) - V(est)_
For the ANCOVA, MMRM-I, MMRM-II and IMMRM estimators, the influence func-

tions by Lemmas 5 and 6 are given below:

] F(ANCOVA) _ [ (ANCOVA) (Y — h(A, X)}, (7)
[FOMNMENED — MMM (v QT 3), ®)
J FMMRM-ID) _ p(MMRM-II) {Y —h(A, X)}, (9)
JF(MMRM) _ 7 (IMMRM)(y~ _ RTZ) +Lr' (X — E[X]), (10)
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where

L= (_1J I]) c RJX(J-HL)’

T(ANCOVA) _ I{A =0} [{MKzl}e IH{A=J} I{MKzl}e !
70 P*(MKzl) Ko Wi P*(MKzl) K
I{A= I{A= T
TMMRM-D) _ ( { O}XME*[XM]—leK ..... { J}yME* [yM]—leK> :
0 T
T(MMRM—H) _ (QXME* [21\4]—161<7 el QXME* [XM]_16K> ’
70 T
I{A=0 . B H{A=J . 2
p(IMMRM) _ (%XOME [MOM] 1eK,..., { - }!JME [XJM] 1€K> ’

Y -h(A, X)= Z[{A =jH{Y — E[Y(j)] — Cov* (Y, X) Var(X) (X — E[X])},

Y -Q'8=Y H{A=j} {¥Y() - BIY ()] - 1(X - EIX]) "B, }
Y -R'y =Y HA=j}{Y () - EY ()] - Con(Y (). X)Var(X)™ (X - EIX])}

r= (bK0> cee bKJ)>
where

Vi =V (EOM) = Viy (B[(Y - Q'Y -Q'8)']),
Vi = Vi (EOMHD) = Vi (B {Y — (A, X)HY — h(4, X)}T)),

I{A=j
ij :XM(Z§IMMRM)) =Vu (E* {%(Y _ RT"_)')(Y _ RTZ)T}) =0,
J
£ 1
,3X=Var(X)_1C’ov*(Y,X) - Vali ,

bKj = VCLT(X)_ICOU<X7 YK(])): j =0,..., J.
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Furthermore, we have

~ 1
ANCOVA) __ . —1 _T v« (ANCOVA) Lo T

VOMRMD _ dmg{e;E* Vad B [ VSNV | BV e =0, } L',
(12)

V(MMRM-ID) _ 1, diag{e[T(E* EM]—l E* [Wj—leZgMMRM'H)yM] E* [YM}_I ex:j=0,..., J} L',
(13)

VIMMRM) _ (diag{er E*[m;V p) e 1§ =0,...,J} +1 Var(X)r) L, (14)
where

S (ANCOVA) _ +(MMRMID) _ p {M{Y — h(A, X)H{Y —h(A, X)),

=j =j
T

g — g (12 2Ty - aigr - |

T
We next compute V&%, Lemma 6 implies that, for j = 0,...,J, E[Yx(j)|S] =
E[Yk(j)] + by, (E[X|S] — E[X]). Then using Equation (8), we get

E[IFMYE (G X5 Y(7), Mi(7))1S] = Lejamy (b — By) ' (B[X|S] - BIX]),

X

where €1 € R/*! has the (j + 1)-th entry 1 and the rest 0. Hence by Lemma 3, we have

V(MMRM-T) _ {7 (MMRM-T) _ Lidiag{r; " (b, — QX)TVar(E[X’S])(bKj —B,):i=0,...,J}
— v Var(E[X|S]))VILT, (15)
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where v = (bgo — B, ...,bxys — B.). similarly, we have VIMMEM) — y(IMMRM) 4
=X =X

V(ANCOVA) _ y/(ANCOVA) _ L{diag{r; Ybgj — br) " Var(E[X|9])(bxj —br):§j=0,...,J}
—z"Var(E[X|9))z]L", (16)
VMMEMAD, — {7 (MMRMAD 7 [giqq{n ! (by; — bi) Var(E[X|S])(bk; — bk) : j =0,....J}
—zVar(E[X|S])z" LT, (17)
where bx = Var(X) 'Cov*(X,Yg) and z = (bgo — bk, ..., brxs — br).
We next show VANCOVA) o yy(IMMRM) = By the definition of EE-ANCOVA) and E(IMMRM)

] Y

we have

$YANCOVA) _ 5+ (IMMRM) _ {Cov(Y (), X) — Cov* (Y, X)}Var(X) {Cou(X,Y (j)) — Cov*(X,Y)}

= =
is positive semi-definite, and

GLE(ANCOVA)BK = GI(Z;IMMRM)GK + (bKj — bK)TV(I’I"(X)(bKJ — bK)

=Jj
Using Equations (11) and (14) and the fact that Var(X) = E[Var(X|S)]+ Var(E[X|S]),
we have

V(ANCOVA) _ 37 (IMMRM)
_ V(ANCOVA) _ 37(ANCOVA) | 37(ANCOVA) _ 17 (IMMRM)
s V(ANCOVA) _ y7(ANCOVA) | 17(ANCOVA)

L (dzag{P (Mg =1)"" _1 TE(IMMRM)eK 2j=0,...,J}+ rTVar(X)r> L'

_ V(ANCOVA) _ {7(ANCOVA)

+ deiag{ﬂj_l(b;ﬁ —br) Var(X)(bg; —bg):j=0,...,J}L" —Lr"Var(X)rL"
= Lidiag{m; '(bx; — bx) ' E[Var(X|S)](bg; —bg) : j =0,...,J} —z' E[Var(X|S))z]L"
= LU {(diag{m} —nn") @ L,}UL", (18)
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where 7w = (m,...,7;)" and
75 (bro — bi) T E[Var(X|9)]2
U' =
77 (bxs — bg)TE[Var(X|S)]2
In the above derivation, the first “>” results from Lemma 1 (2), the second “>” comes

from P*(Mg =1) <1land Lz" = Lr'. Since diag{w} = wn ", then (diag{w}—nnw")®1,

is positive semi-definite (by Lemma 2) and hence V(ANCOVA) V (IMMRM)

We next show VMMEM-D) o y/(IMMRM) " [Jging the definition of Z;MMRM'I) and EEIMMRM),

we have §§-MMRM'I) — zglMMRM) = A;, where

Ay = {Con(Y (), X) = 1xBLVar(X) } Var(X) ™ {Cou(X, Y (7)) - Var(X)B, 11 |

is positive semi-definite. By Equations (12) and (14), we have

{[(MMRM-I) N {/(IMMRM)
=L dmg{e}E* Va7 E? [w;lyM(zglMMRW + ANV | E* V) ex i 5 =0, J} L'

— Ldiag{e E[m;V ] 'ex 1 j=0,...,J}L" = Lr ' Var(X)rL'

- Ldz’ag{e}E*[yM]—lE* [T Vo AV | B[V e : =0, J}LT — Lr'"Var(X) 'rL’
= Ldiag{m; ‘e Ajex : j=0,...,J}JLT —Lr"Var(X) 'rL"

= Ldiag{wj_l(bKj - QX)TVar(X)(bKj —By):i=0,..., JILT —Lv Var(X) 'vL",

where the first “>” results from Lemma 1 (3), the second “>” results from Lemma 1

(4) and the last equation comes from ejAjex = (bg; — QX)TVar(X)(bKj — B,) and

x)
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Lv' =Lr". By Equation (15) and Var(X) = E[Var(X|S)] + Var(E[X|S]), we have
v (MMRM-T) _ 7 (IMMRM)

— YV(MMRM-I) _ {}(MMRM-I) + {/—(MMRM-I) N {/(IMMRM)

> —L[diag{m; ' (bx; — QX)TVar(E[X|S])(bKj —By):i=0,....J}+ vVar(E[X|S])vT LT
+ Ldiag{m; ' (bx; — B,) Var(X)(bg; —B4) :j =0,...,J}ILT —Lv Var(X)vL'
= L{diag{r; " (bx; — B) EVar(X|9)](bx; — B) : j =0,...,J} = vE[Var(X|S)v L'

= LZ"{(diag{m} — ") @ ,}ZL", (19)

where
7 (bro — By ) E[Var(X|9)]2
7' =
7w (bis — By) T E[Var(X|S))z
Since diag{m} = 7w ", then we get VMMRM-D) 5 V (IMMRM) _ 7 (IMMRM)

(MMRM-IT)

Next, for showing V = VUIMMERM) ©we can follow a similar proof as in the

previous paragraph, where S MMRMD o substituted by Z(MMRM'H), and get
V(MMRM—H) . {/(IMMRM) t LUT{<dZCLg{7T} . ﬂ'ﬂ'T) ® IP}ULT,

which is positive semi-definite.
Finally, we give the necessary and sufficient conditions for V(est) = VIMMRM) " (agt) ¢

{ANCOVA, MMRM-I, MMRM-I1} in Proposition 1 below.

Proposition 1. Assume K > 1, Assumption 1 and reqularity conditions in the Supplemen-
tary Material. Fort =1,...,K andj =0,...,J, we denote by; = Var(X)'Cov{X,Y.(j)}.
Then VANCOVA) — \y(AMMRM) it 5 d only if either of the following two sets of conditions

(a-b) holds:
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(a) for each j=0,...,J, P(Mg(j)=1)=1 and
(1 —2I{J = 1}mo)(br; — bro) "E[Var(X|S)] = 0;

(b) foreacht=1,..., K —1and j=0,...,J,
P(My(j) = 1, Mg (j) = 0) Cov{Y;(j) — b, X, Y (j) — bj; X} = 0 and by; = .

In addition, VOMMEM-D) — Ny(AMMRM) ¢ 000 0 only if

(a’) for j =0,...,J and m € {0,1}\ {0k} with P*(M = m), e;{E[V, ]| "'V, —
E VM ™V,,} =0,

b’) for 7 =0,...,J and m € {0,1}5\ {0x} with P*(M =m), e, E[V,,]|'V, A is a
() J ) 9 » K M m*r]

constant vector,

.
(¢’) for j=0,....J, |bg; — BN — [{J = 1}m;(b; — bo)| E[Var(X|S)] =0,

where QQMRM'I) is the probability limit of Bx in the MMRM-I working model.

Also, VIMMRM-ID) _ \y(IMMRM) £ 0.0 only if

(a”) for j =0,...,J and m € {0,1}* \ {0k} with P*(M = m), e;{E[V, /]| "'V,,, —
E' V] "'V,n} =0,

(b7) for j=0,....J and m € {0,1}\ {0x} with P*(M =m),
ex B[V ™'V, {Cou(Y (j), X)—Cov* (Y, X)}Var(X) " {Cov(X, Y (j))-Cov*(X,Y)}
1S a constant vector,

(c”) forj=0,...,J, (1 —2I{J = 1}m)(bx; — bxo)  E[Var(X|S)] = 0.

Proof. We first derive the necessary and sufficient conditions for V(ANCOVA) — vy (IMMRM)

Recall the derivation, i.e., Equations (18), for showing VANCOVA) & yy(UIMMEM) i the proof
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of Theorem 1. By check the two inequalities and the last row in Equations (18). We have

V(ANCOVA) — yy(IMMRM) if and only if the following three conditions hold:

(i) L diag{rm; eK(ﬁZ?MMRM) — E* [V, ek :j=0,...,J}L =0,

(ii) {1 — P*(Mg = 1)}Ldiag{m; '(bx; — bx) Var(X)(bg; —bx) : j=0,..., J}LT =
(iii) LU{(diag{w} — 77 ") @ L,}UL" =

For Condition (i), Lemma 1 (2) and the assumption that K > 1 imply that the equation
holds if and only if P*(My =0, M, = 1)/ "™ ™e =0 fort =1,..., K — 1 and j =
0,...,J. Equation (10) implies that e;rgglMMRM)eK = Cov(Y(j) — bTX Yr(j) — b;{jX).
The MCAR assumption implies that P*(Mx = 0, M; = 1) = P(Mgk(j) = 0, My(j) = 1) for

j=0,...,J. Hence Condition (i) is equivalent to

(i) P(Mg(j) = 0, My(§) = 1)Cov(Y;(j) — b, X, Y (f) — bK]X) fort=1,...,K —1 and
j=0,...J.

Condition (ii) is equivalent to
(ii) P*(Mg =1) or Cov(Yk(j) —Yk(0),X)=0.

For Condition (iii), since LU {(diag{w} —7n")®1,}UL" is positive semi-definite, then it
is 0 if and only if all of its diagonal entries are 0. Denoting u; = E[Var(X|S)]2 (bx; — bx),
we get that the (j,j)-th entry of matrix LUg_,(diag{m} — wmw " )Ug_,L is

(v luj u]+7r01u0u0 (uj—uo) (uj—u[))
= ! ( ) ( )+ (L —m —my) _1 _1
ToW,; + T;U ToW; + T;Ug) + a T, Uy Uy + —U; U
0T 0% J0 0% 30 0 J ; 0 *0 0 J |
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which is equal to 0 if and only if either uy = u; = 0, or mp + 7m; = 1 and myu; + mug = 0.
The former case is equivalent to E[Var(X]S)]%(bKj —bgo) =0for j=1,...,K; and the
later case is equivalent to J = 1 and (m — 7o) E[Var(X|S)]2 (bxy — bx). Hence Condition

(iii) is equivalent to
(iii) (I{J =1}(m; —mo) + I{J > 1})E[Var(X|S)|(bk; —brx) =0for j=1,...,J.

Combining Conditions (i-iii) together, we observe that, P*(Mx = 1) = 1 in Condition (ii)
implies Condition (i), and Cov(Y k(j) —Y k(0), X) = 0 in Condition (ii) implies Condition

(iii). As a result, the three conditions can be summarized into two conditions, which are

(a) foreach j=1,...,J, P(Mkg(j)=1) =1 and
(1 — QI{J = 1}7T0>(bKj — bKo)TE[VCLT(X|S)] = 0;

(b) foreacht=1,..., K —1and j=0,...,J,
P(My(j) = 1, Mg(j) = 0) Cov{Y;(j) — b, X, Yk (j) — bj; X} = 0 and bg; = bxq.

For the MMRM-I estimator, the derivations, i.e., Equations (19), imply that VMMEM-I) —

VIMMEM) 3£ and only if the following conditions hold:

(i') for j = 0,...,J and m € {0, 1} \ {0k} with P*(M = m), e} {E[V, |V, —
E*[Vy]7'V,,} =0,

ii’) for j =0,...,J and m € {0,1}%\ {0g} with P*(M =m), e, E[V,,] 'V, A, is a
K j

constant vector,
(iii") LZ"{(diag{w} —nm") @ ,}ZL" = 0.

Similar to the analysis for Condition (iii), Condition (iii’) is equivalent to
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(111,) fOI'j == 1, ceey J, [bKJ —é(;;/[MRM-I) —]{J = 1}7Tj(b[(j — bKo)]TE[VCL’T‘(X|S)] = O,

which is the necessary condition given in Corollary 1.
For the MMRM-II estimator, similarly, we have VIMMEM-I) — 3y(IMMRM) if and only if

the following conditions hold:

(i) for j = 0,...,J and m € {0,1}" \ {Ox} with P*(M =m), ex{E[V 7]V, —
E*[YM]_lim} = 07

(ii”) for j =0,...,J and m € {0,1}* \ {0k} with P*(M = m),
ek BV ™'V {Cov(Y (5), X)—Cov* (Y, X)}Var(X)"H{Cov(X, Y (j))—Cov*(X,Y)}

is a constant vector,
(iii") LUT{(diag{r} — nn") @ L,}JULT = 0.

The Condition (iii”) is the same as Condition (iii), which is the necessary condition shown

in Corollary 1. O]

Lemma 5. Assume the same assumption as in Theorem 1. Then the influence functions
~ (ANCOVA)  —~ (MMRM-I ~ (MMRM-I
of Al ), Al " and A' ! are given by Equations (7), (8) and (9), re-

~ (ANCOVA
spectively. Under simple randomization, the asymptotic covariance matrixz of A( :

~ (MMRM-I ~ (MMRM-IT
Al " and A' ) are given by Equations (11), (12) and (13), respectively.

)

Proof. We first derive the influence function for the MMRM-I estimator. Theorem 1 of
Wang et al. (2023) implies that JFMMRMD (A X V' M; 0) = B l9pMMEM (4 X v M;0),

where B = E* [5%¢(MMRM)(A7X,Y,M; 0))0 0}. Using the formula (2) of op™MEM) e
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can show that

[ BV BV (T © A)T) BV pu(X)7] 0 |
b | Pl AV Bk AV (L ® A)T] B (L ® AV pu(X)T] 0
CEu(X)Vy  —EuX)VayuIxA)T]  —Eu(X)Vyu(X)T] By
i 0 0 By, oy

where Bsy, € R?" and Byy € R™™" are matrices not related to the influence function of

~ (MMRM-T) ) . . o
A . The zeros in the above matrix result from the following derivation:

0 0
B |Vas o VoY = QB = B |Var G Vi | E'TY - 8, - (10 A)7 B, — u(X) 7B

J
J J o —u(X)

=0,

and, similarly, E* [(IK ® A)XM%VM(Y — QTQ)] = 0. By the regularity conditions, B

j—

is invertible. To compute B™!, we define

I 0 0 0
oo | koAl T 0 0
—Fu(X)] 0 I, 0
0 0 0 I

T

and F = DBDT'. Since D is a lower triangular matrix and hence invertible, then F is
invertible. Since MCAR implies that E*[u(X)V | = E*[u(X)|E*[V,,] and E*[(Ix ®
AV ] = B[l @ AJE*[V,], then

—E*[V,,] 0 0 0
. 0 —E*[V ] ® Var (A) 0 0
0 0 ~Var{u(X)E*[Vp]?} Ba |
0 0 B, B,y
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where Var*(A) = E*[AA"] — E*[A]E*[A]T, Fy3 € R% is a matrix not related to the

influence function of B 4- Then

B'=D'F'D

[ BV, 0 0o o |
_p 0 —E*Vyl teVart (A 0 0
0 0 B3z Bsy
] 0 0 B;,Z B44 ]
| B o ~B[u(X) "By —E*[u(X)7|By
B C —FE* [Vt @ Var<(A)™! 0 0
| SByEu(X))] 0 Bss Bs
| —Bj,E"[u(X))] 0 BJ, By

where C = {E*[V ;] '@V ar*(A) '} E*Ix ® A] and By; € RE*K Bgy € R7%9, Byy € RI*"
and B44 € R"™" are matrices that are not related to the influence function of B 4 (as shown
below). Since 8 4 are the (K +1)-th, ..., ((J+1)K)-th entries in 8, we need the (K +1)-th,
., ((J + 1)K)-th rows of B™! to derive the influence function for B4, which are

[C —{E*[Vy] '@ Var*(A)~'} 0 0].
Then the influence function for ,[A"J’ A 18

{E" V] @ Var'(A) 7 HIx @ (A - E'[AD}IV, (Y - Q')

S : . ~ (MMRM-I)
which implies that the influence function for A is

JEOMMRMD — y7a,4 (AN (A — B* [ADerE V] "'V (Y - Q).
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Since Var*(A)™Y(A — E*[A]) = L(HA=0  HA=IHT e get the desired formula of

o ™y

IF(MMRM—I) )

We next compute Y — Q'8. By E*[py™™FW (A X Y, M;0)] = 0, we have 8 =
E* [QV QI 'E*[QV,,Y]. Recalling u(X) = X1} for the MMRM-I estimator and fol-

lowing a similar procedure for calculating B~!, we have

Ix 0 0 ! E*[V,,]™! 0 0
B=| —-EIx®A] Ix 0 0 E* [Vt @ Var<(A)! 0
—Eu(X)] o0 1, 0 0 Var{u(X)E*[V,,]2}
Iy 0 0 E* VY]
—EIx® Al Ix 0 E (Vy,Y)® Al |,
—Eu(X)] 0 I, E*u(X)V ), Y]

. . . e ~ 1LE*[V " _ .
which implies 8, = E*[Y ® A] and g; = 1}%*[%001} (Y, X)Var(X)~!. Since 3,
satisfies E*[Y — B, — (Ix ® A)T@A - u(X)Tgu(X)] =0, we get

Y-Q'8= Y — QL(I Kk®A)—1 Kﬁ}}. Then direct calculation gives the desired formula
of Y —Q'B.

We next calculate VMMRM-D

. Since ¥ is unstructured, the second set of estimating

’l,b(MMRM)

equations implies that, for each r,s =1,..., K and j =0,...,.J, we have

0=E"[~tr(Vyl(ere, +ee))+ (Y —Q'B) Vylee, +ee)Vy (Y —Q'B)]

= E"[2¢]{-Y + V(Y —Q'B)(Y — Q') Vi Je].

which implies that, for j = 0,...,J, E*[-V |+ E* [V, (Y —Q'8)(Y —Q'8) 'V, =
0. Since E*[V,,] = E*[XMZ(MMRM'I)XM], the regularity condition (3) implies that
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E(MMRM-I) _ E*[(Y _ QT@)(Y o QT@)T] Thus,

V/(MMRM-1T)
_ E[[F(MMRM-I)[F(MMRM-I)T]

Iy - Q)Y - Q7)Y

J

=L dmg{e}E*[yM]-lE* {
EX[Vy) lex:j=0,.. .,J} L'
~L dz‘ag{eLE* V] B [ VSOV | BV e =0, J} L.

For the MMRM-II estimator, we can follow a similar proof for the MMRM-I estima-
tor and get the desired influence function and asymptotic covariance matrix. The only
difference comes from u(X) = Iy ® X.

For the ANCOVA estimator, we observed that it is a special case of the MMRM-I

estimator setting K = 1. Then we have V,, = I{Mg = 1}(ejZANOVNe, )~ which

naturally implies the desired influence function and asymptotic covariance matrix. O]

Lemma 6. Assume the same assumption as in Theorem 1 and assume 3;,7 = 0,...,J
~ (IMMRM

are unstructured. Then the influence function of A( : is giwen by Equation (10) and

~ (IMMRM)

the asymptotic covariance matriz of A is given by Equation (14).

Proof. Following a similar procedure as in Lemma 5, we get that the influence function for

~ (IMMRM
Al Vs TFOMMRM) — 17, 4 17, where

Ui=(e@L)H ' (Ix ® A — E*[Vam ® AJE* V] HVam(Y —R')

Uy =(ex@L)' B, +(ex@XoL)' 8, —A"
where H = E*[Vp ® AAT] — E*[Van @ AJE* [V apg] " EX[Van @ AT,
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We next compute U;. Define §; € R’ has the J-th entry 1 and the rest 0. We have

E* Vam ® AAT] (ZE@ J® 8, 5T) ZE@ ' ©0;0]
and hence
— E*[Vapm] + E*[Van @ ATE* [Vapns @ AAT| LE* [V an ® A

J
= —E[VAM (ZE 7TJ/V /M ® 6T> (ZE 7TJ ® 6 6T> <Z E[ﬂ'jllyj//M] ® 6j//>

1 j'=1

J
—E*[Vam]+ Y Eln V0] ®6]6;

Jj=1

= —E[mNonm)-
Using the Woodbury matrix identity, we get

H'!'=FE' Vi @ AAT ' — E* [V @ AATE* [V @ A]
(=E* [Vam] + E* [Van @ AT E* [Vans @ AAT TV E* [V @ A7

E* Vi @ ATE* [V @ AAT] !

> Elr '®6;6] — (Ix ® 1,)(—E[mVop)) " (Ix ® 1))

7j=1

J
> Elr '®6;6] + E[mVop] "t ®1,1]

J=1
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Then we get

H_l(IK QKA — E*[VAM X A]E*[VAM]_l)

J J
(Z BlmVa ™ ©8;6] + ElmVo] ™ @ m]) (IK ® A=Y EmV B Vau] " © c%)
j=1

j=1

I
B

J
Bl V)™ @ 6;1{A = j} + ElmoVon) ' @ 1L,(1 - I{A=0}) = Y " E*[Vam| ' ®4;
j=1

1

— Elmo Vo " (E*[Vam] — ElmoVou)E* [Vam] ' ® 1,

<.
Il

B

Blm V)™ © 8;1{A = j} — ElmoVop] ™' @ 1,1{A = 0},
1

<.
Il

which implies that U; = LTMMMEWY (Y —RT). By E*fp™M™M (A XY, M; 0)] =
0, we have v = E*[RV 4,,R] 7' E*[RV 4,,Y|. Following a similar procedure for calculating

B in Lemma 5, we get
Y -R'y= ZI{A = Jj}{Y () — E[Y(j)] = Cov(Y (j), X)Var(X)" (X - E[X])}.

We next compute U,y. For each j =1,...,J, we have the j-th entry of U, is

T _ T *
5]’ U, = éAjK + gAXjKX - AJ"
. ~ (IMMRM) |
Since we have shown the model-robustness of A in the proof of Theorem 1, then

Al = @AJK + [_SXX],KE[X] and hence 5]»TU2 = gT (X — E[X]). By the formula of

AXK
Y — RTZ, we have

BixixX = EIX]) = (I{A = j} = I[{A=0})ex(Y ~R"9)

= Cov(Yi(j) — Yie(0), X)Var(X) (X — E[X])
— (bi; — bio) (X — E[X)),
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which implies U, = Lr" (X — E[X]).

IMMRM)

We next compute Vi , which is

For E*[U,Uj |, since E*[¢p™™* (A, XY, M)] = 0 imply that E*[V 40 (Y —R7)|X] =
0 and E*[(Ix ® A)Van(Y —R7)|X] =0, then E*[U;|X] = 0 and hence E*[U U, | =
E*[E*[U,|X]|UJ] = 0. Thus, VIMMEM) — E+[{, U] + E*[U,U]]. For E*[U U], since

Y. is unstructured for each j = 0,...,J, the second set of estimating equations zb(IMMRM)
implies that, for each r,s =1,..., K and j =0,...,J, we have
0=E" [~tr(VamI{A = j}(e,e] +ese]))
+(Y —R"y) ' VamI{A = j}(ee] +ee]))Vanu(Y —R'y)]
=E*2I{A=j}e/ {-Vam + Vau(Y —R'9)(Y —R"7) Vanlte,],
which implies that, for j =0,...,J,
El=m¥ ] + BV p I{A = jHY =R'9)(Y = R'y) V5] = 0. (20)

Hence
E* [U1U1T] =B [LT(IMMRM)VAM(Y _ RTZ)(Y _ RT,_Y)TVAMT(IMMRM)LT]

. 1 o .
=L diag {Pe;E[ij] YEX[VamI{A=3j}Y — RTZ)
J

(¥ —RT9) " Vand] B[V 0]l 5 =0, J}LT

=L diag{e; E[m;V,p] 'ex :j=0,...,J}L",

where the last equation results from Equation (20). Since E*[UyU, ] = Lr" Var(X)rLT,

we get the desired formula of V (IMMRM) O
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E.2 Proof of Corollary 1

Proof. The ANHECOVA estimator is a special case of the IMMRM model setting K = 1.
Hence the consistency and asymptotic normality under simple or stratified randomization

are implied by Theorem 1. Furthermore, by Equation (14), we have

V(ANHECOVA) _ 1, (dz’ag{P*(MK _ 1)—17Tj—1€}§(IMMRM)eK =0, T} rTVar(X)r> L.

Then, by Lemma 1 (2),
V/(ANHECOVA) _ 7 (IMMRM)

= Ldiag{r;'ej(P*(Mx = 1)ty (IMMEA) _ E[V,y] Vex:j=0,...,J}L

= 0,

with equality holds if and only if P(M,(j) = 1, Mg(j) = 0) Cov{Y;(j) — b/ X, Yk (j) —

J
blT(jX} =0foreacht=1,..., K —1and j =0,...,J. The final result comes from the

fact that C’ov{thjX,YK(j) — bIT(jX} =0. O

E.3 Proof of Corollary 2
Proof. By Equations (16) and (17), we have

V(ANCOVA) __ {7(ANCOVA)

_ {/—(MMRM-H) _ v (MMRM-II)

= L[diag{r; ' (bx; — bx) Var(E[X|S])(bx; — bx) : j =0,...,J} —z' Var(E[X|S])z]L".
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If J=1and m =m = 0.5, then L = (—1,1), b = 0.5(bx1 + bgo) and zLT = bg; — byy.

Hence

7(ANCOVA) _ 1/(ANCOVA)

1

= 2{bx1 — 0.5(bx1 + bro)} Var(E[X|S]){bx1 — 0.5(bx1 + bro)}

— (bg1 — bro) Var(E[X|S])(bk1 — bko)

=0.

We next compare VANCOVA) apq VMMRMID = By the definition of ZANCOVA) and
ngNCOVA), we have 23 (ANCOVA) Z(()ANCOVA) + ngNCOVA). Then Equation (11) im-
plies that VANCOVA) — 4P+ (M = 1) 1e, ZANCOD e Similarly, we have VVMMRMID —

de] B*[V ;] ex. Since SANCOVA) — si(MMRM-ID “tho Temma 1 (2) implies that, 1V (ANCOVA) _

7 (MMRM-TT) >, e}'{(E(ANCOVA) _ E(MMRM-II))eK —0.

MMRM-T) > 1/ (MMRM-IT)

Finally, we show V< Under two-armed equal randomization,

Equation (15) implies that
VMMBEMD _y (MMEMD — 4 (. — BV Var(E[X|S]){bx — B, }-

In addition, since 25MMRMD) — 53 (MMEMD 3 (MMENMD "By tion (12) implies that VMMEM-D —

de} E*[V ;] 'ex. By the definition of XZMMEMD 5y q Sy MMRMID e have

eI( (Z(MMRM-I) > (MMRM-H)) ex

=Var*(Yx) +§;VQT(X)§X — g;C’ov*(X, Vi) — Cov* (Y, X)B
—Var*(Yg) — bpVar(X)bg

= {bx — B, } Var(X){bx — B, }.
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Hence
y/ (MMRM-I) __ 1/ (MMRM-II)
_ /(MMRM-I) _ ‘7(MMRM-I) + V(MMRM-I) _ 1/ (MMRM-IT)
= —4{bg — QX}TVGT(E[X|S]){bK - éX} + 46;((E*[YM]_1 - E*[EM}_I)eK
> —A{bx — B, } ' Var(E[X|S)){bx — B, } + dej (ZOMMD — n(MMENED) e
= 4{bx — B, } E[Var(X|S){bx — B}

>0

— Y

where the inequality comes from Lemma 1 (5). O

F A counterexample showing MMRM-II is less pre-
cise than ANCOVA

We assume Assumption 1, simple randomization, m; = % Ty = %, and
=0,
4 3
Var(Y Var(Y (0)) = ,
3 4
1
P@,0) = P,1) = P(1,1) _g

where p,, = P*(M = m) for m € {0,1}*>. Then we have §§-ANCOVA) = pMMRMD

=9 -
Var(Y (j)) for j = 0,1. Furthermore,

4 1
Z(MMRM-II) _ 7TO;(()MMRM-H) I ﬂ_lggMMRM-II) _
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We define

C— 7Talz(()ANCOVA) D 9 4 -1
a a -1 4
Then, by Equation (11),
~ 1
174 A(ANCOVA) - - TC — 97.
a’/r( ) P(MK — 1) eK 277¢
To compute Var(AMMEM-IDY “rocall that V,, = Vg (SMMEMID)  Thep
— 10 — 0 0 — 4 -1
X(l,o) = ! ) 2(0,1) = L ) 2(171) = 115 145 )
0 0 % -—= =
1 15 15
which implies
_ 1 31 —4 — 4 31 4
Vul=) pmVpy=——= , BV =5
; 180\ —4 31 2L\ 4 31
In addition, we have
V., CV - ) w07 R I G, L L
Y 1,00vX 1,0 — » Y(0,1)YX(0,1) — » Y (1,)vYX(1,1) — £
(1,0) (1,0) 00 (0,1) (0,1) 0 % (1,1) L) ™ 5 49 76
which implies
529 —196

1
E*V,CVl =S pmV, . CV, = —
Z 600 \ _196 529

3 (ANCOVA)

Then, by §§MMRM'H) =3, and Equation (13), we have

VGT(A(MMRM_H)) = €1T<E* [iM]_lE* [iMCiM]E* [iM]_leK

4< L 520 —196 \ 4 4
21 600 \ _196 529 / 21\ 31
12486

o 8.3

Since 27 < 28.31, we have Var(ﬁ(ANCOVA)) < Var(ﬁ(MMRM-H))‘

42



G Missing data mechanism in the simulation study

Given (Y;(0),Y;(1),Y:(2), A;, Xi1) defined in Section 6.1 of the main paper, we define
Rii(j) as the residual of Yj;(j) regressing on X;; by a simple linear regression. We then

define the censoring time C; by the following sequential conditional model

0.511{A; = 2} Ria(4;)],

4. P(Ci =4 Xa, Ai, C; > 3,Ya, Yo, Yig) = 1—eapit{logit(0.96T)—0.74I{ A; < 2} Rig(A;)—
0.52T{A; = 2} Ris(A))],

Once we have C;, then M is defined as M = 1 if t < C; and 0 otherwise.

H Additional simulations under homogeneity and ho-

moscedasticity
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Table 1: Simulation results comparing candidate estimators with 50 samples per arm under
MCAR and MAR with no heterogeneity or heteroscedasticity. For each estimator, we
estimate the average treatment effect of TRT1 and TRT2, both comparing the control
group. The following measures are used: bias, empirical standard error (ESE), averaged
standard error (ASE), coverage probability (CP), probability of rejecting the null (PoR),
relative mean squared error compared to IMMRM (RMSE). For RMSE, a number bigger

than 1 indicates a larger mean squared error than IMMRM.

Group Bias ESE ASE CP(%) PoR(%) RMSE

ANCOVA TRT1 0.005 0.197 0.190 94.6 54  1.016

TRT2 0.004 0.196 0.190 94.6 99.9 1.032

MMRM.I TRT1 0.004 0.198 0.205 95.9 4.1  1.026

MCAR ~ TRT2 0.004 0.197 0.206 95.9 99.8  1.048
MMRM.II TRT1 0.006 0.193 0.186 94.3 5.7  0.976

7 TRT2 0.005 0.191 0.186 94.2 99.9  0.981

VMR TRT1 0.006 0.195 0.183 93.8 6.2 -

TRT2 0.005 0.193 0.183 93.5 99.9 -

ANCOVA TRT1 -0.001 0.197 0.191 94.9 5.2 0.99

TRT2 0.005 0.197 0.191 94.3 99.7  1.010

MMRM.I TRT1 0 0.197 0.208 96.6 3.4 0995

MAR ~ TRT2 -0.002 0.196 0.207 96 99.7  1.003
MMRMLIT TRT1 -0.001 0.195 0.187 94.9 0.2 0.969

7 TRT2 0 0.193 0.186 93.9 999 0.974

IMMRM TRT1 -0.002 0.198 0.185 93.7 6.3 -

TRT?2 0 0.196 0.184 93.4 99.8 -
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Table 2: Simulation results comparing candidate estimators with 200 samples per arm
under MCAR and MAR with no heterogeneity or heteroscedasticity. For each estimator,
we estimate the average treatment effect of TRT1 and TRT2, both comparing the control
group. The following measures are used: bias, empirical standard error (ESE), averaged
standard error (ASE), coverage probability (CP), probability of rejecting the null (PoR),
relative mean squared error compared to IMMRM (RMSE). For RMSE, a number bigger

than 1 indicates a larger mean squared error than IMMRM.

Group Bias ESE ASE CP(%) PoR(%) RMSE

ANcOya  TRTL 0002 0098 0097 948 5.2 1.032
TRT?2 0 0098 0.097 954 100 1.032

vnirapy TRTL 00020099 0104 96.3 3.7 1.054
MCAR © TRT2  0.001 0.099 0.104  96.1 100 1.054
vy TETL 0002 0096 0.095 944 5.6 1.000

© TRT2  0.001 0.096 0.095  95.2 100 0.989

gy TETL 00020096 0.095 944 5.6 -

TRT2 0.001 0.096 0.095  94.9 100 -

Ancoya  TRTL -0.001 0099 0098 947 5.4 1.032

TRT2  0.002 0.098 0.098  94.6 100 1.043

NIV 0 0099 0105  96.2 3.8  1.032

MAR © TRT2 -0.002 0.099 0.105 96 100 1.054
i TR 0 0.097 0.096  94.8 5.2 0.989

© TRT2 -0.001 0.096 0.095  94.7 100 0.989

oy TR 0 0097 0.096  94.4 5.6 -

TRT2 -0.001 0.096 0.095  94.5 100 -
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