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1 Identification of HTE
Here we identify the HTE in the point-treatment setting discussed in the paper. Recall the HTE is the
average treatment effect within stratum 𝑣, Ψ(𝑣) = 𝐸[𝑌 1 | 𝑉 = 𝑣] − 𝐸[𝑌 0 | 𝑉 = 𝑣]. Consider the term
𝐸[𝑌 𝑎 | 𝑉 = 𝑣] and now iterate expectation over 𝑊 :

𝐸[𝑌 𝑎 | 𝑉 = 𝑣] =
∫︁
𝒲

𝐸[𝑌 𝑎 | 𝑤, 𝑉 = 𝑣]𝑑𝑃𝑣(𝑤)

Now we assume conditional ignorability. Specifically that within stratum 𝑣, once we condition on confounders
𝑊 , treatment assignment is independent of potential outcome, 𝑌 𝑎 ⊥ 𝐴 | 𝑊, 𝑉 = 𝑣. This implies that
𝐸[𝑌 𝑎 | 𝑤, 𝑉 = 𝑣] = 𝐸[𝑌 𝑎 | 𝐴 = 𝑎, 𝑤, 𝑉 = 𝑣],

𝐸[𝑌 𝑎 | 𝑉 = 𝑣] =
∫︁
𝒲

𝐸[𝑌 𝑎 | 𝐴 = 𝑎, 𝑤, 𝑉 = 𝑣]𝑑𝑃𝑣(𝑤)

Now, we assume consistency. That is, the outcome actually observed under treatment assignment 𝐴 = 𝑎

actually equals the outcome that would occur under treatment 𝐴 = 𝑎, i.e. 𝑌 𝑎 = 𝑌 . This would be violated
if, for instance, there is non-adherence to treatment assignment. This yields,

𝐸[𝑌 𝑎 | 𝑉 = 𝑣] =
∫︁
𝒲

𝐸[𝑌 | 𝐴 = 𝑎, 𝑤, 𝑉 = 𝑣]𝑑𝑃𝑣(𝑤)

So we have identified each term of Ψ(𝑣) as a regression averaged over 𝑃𝑣(𝑤) = 𝑃 (𝑤 | 𝑉 = 𝑣). Note that
we implicitly make a positivity and non-adherence assumption. By conditioning on 𝐴 = 𝑎 within 𝑊 and
𝑉 , we are assuming that treatment probability is bounded 0 < 𝑃 (𝐴 = 1 | 𝑤, 𝑣) < 1 or else we would be
conditioning on a zero-probability even. Causally, it would suggest that there is some level and 𝑊 within
stratum 𝑉 where we only observed patients assigned to one of the two treatments. We cannot estimate a
causal contrast between the two groups in this region of the data without (likely incorrect) extrapolation.
Moreover, for a particular sample we have assumed that each subjects potential outcome 𝑌 𝑎𝑖

𝑖 is unaffected
by others’ treatment assignment. If subject 𝑗’s treatment assignment impacts subject 𝑖’s potential outcome,
then we would have had to index the potential outcome with this treatment as well, 𝑌

𝑎𝑖,𝑎𝑗

𝑖 .

*Corresponding author: Arman Oganisian, Brown University, Department of Biostatistics, Providence, RI, USA, e-mail:
arman_oganisian@brown.edu
Nandita Mitra, University of Pennsylvania, Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, PA,
USA
Jason A. Roy, Rutgers University, Department of Biostatistics and Epidemiology, Piscataway, NJ, USA



2 A. Oganisian et al., Supplement

2 Posterior Derivations
Here we provide a derivation of the posterior distribution of each 𝑃𝑣 using Dirichlet Distributions - the
finite-dimensional analogue of the Dirichlet Process. This is to supplement the conjugacy results used in the
main text. Suppose our model for the conditional covariate distribution, 𝑃𝑣(𝑊 ) = 𝑃 (𝑊 | 𝑉 = 𝑣), is

𝑃𝑣(𝑊 | 𝜋𝑣) =
𝑛∑︁

𝑖=1
𝜋𝑣

𝑖 · 𝛿𝑊𝑖
(𝑊 )

We have 𝐾 such distributions for each of the 𝐾 levels of 𝑉 . Consider the Dirichlet prior on each 𝜋𝑣 =
(𝜋𝑣

1 , 𝜋𝑣
2 , . . . , 𝜋𝑣

𝑛) conditional on the 𝜋 = (𝜋1, 𝜋2, . . . , 𝜋𝑛) and 𝛼

𝜋𝑣 | 𝜋, 𝛼𝑣 ∼ 𝐷𝑖𝑟(𝛼𝑣𝜋)

Now place Dirichlet hyperprior on 𝜋:
𝜋 | 𝛾 ∼ 𝐷𝑖𝑟(𝛾1𝑛)

Note that the 𝐻𝐵𝐵 corresponds to setting 𝛾 = 0 and that 𝛼𝑣 is user-specified but we will leave 𝛾 as it is
for now. So the joint posterior is

𝑝(𝜋1, 𝜋2, . . . 𝜋𝐾 , 𝜋 | 𝛼𝑣, 𝛾, 𝑊, 𝑉 ) ∝
{︁ 𝐾∏︁

𝑣=1

Γ(
∑︀𝑛

𝑖=1 𝛼𝑣𝜋𝑖)∏︀𝑛
𝑖=1 Γ(𝛼𝑣𝜋𝑖)

𝑛∏︁
𝑖=1

(𝜋𝑣
𝑖 )𝛼𝑣𝜋𝑖+𝛿𝑣(𝑉𝑖)−1

}︁
𝑝(𝜋 | 𝛾)

(1)

The objective is to sample the 𝜋𝑣. To do this, we sample from the joint and simply ignore draws of 𝜋. Note
that the joint can be expressed as a marginal posterior for 𝜋 and independent conditional posteriors for 𝜋𝑣

𝑝(𝜋1, 𝜋2, . . . 𝜋𝐾 , 𝜋 | 𝛼𝑣, 𝛾, 𝑊, 𝑉 ) = {
𝐾∏︁

𝑣=1
𝑝(𝜋𝑣 | 𝜋, 𝛼𝑣, 𝛾, 𝑊, 𝑉 )}𝑝(𝜋 | 𝛼𝑣, 𝛾, 𝑊, 𝑉 )

Thus to sample from the joint, we first sample 𝜋 from the marginal posterior. Then conditional on 𝜋, we
can sample the 𝜋𝑣 independently. These are exactly Step 1 and 2, respectively, in the algorithm of Section
3.1. We now derive this marginal posterior and then turn to the conditional posteriors of 𝜋𝑣. To get the
marginal, integrate out each of the 𝜋𝑣 in (1)

𝑝(𝜋 | 𝛼𝑣, 𝛾, 𝑊, 𝑉 ) ∝
{︁ 𝐾∏︁

𝑣=1

∫︁
Π𝑣

Γ(
∑︀𝑛

𝑖=1 𝛼𝑣𝜋𝑖)∏︀𝑛
𝑖=1 Γ(𝛼𝑣𝜋𝑖)

𝑛∏︁
𝑖=1

(𝜋𝑣
𝑖 )𝛼𝑣𝜋𝑖+𝛿𝑣(𝑉𝑖)−1𝑑𝜋𝑣

}︁
𝑝(𝜋 | 𝛾)

∝
{︁ 𝐾∏︁

𝑣=1

Γ(𝛼𝑣)∏︀𝑛
𝑖=1 Γ(𝛼𝑣𝜋𝑖)

∏︀𝑛
𝑖∈𝑆𝑣

Γ(𝛼𝑣𝜋𝑖 + 1)
∏︀𝑛

𝑖/∈𝑆𝑣
Γ(𝛼𝑣𝜋𝑖)

Γ(𝛼𝑣 + 𝑛𝑣)

}︁
𝑝(𝜋 | 𝛾)

Above, Π𝑣 is the 𝑛-dimensional simplex we integrate over. This result follows because the integral is over
the kernel of a Dirichlet distribution, with concentration parameter vector 𝛼𝑣𝜋𝑖 + 𝛿𝑣(𝑉𝑖) and recognizing
that

∑︀𝑛
𝑖=1 𝛼𝑣𝜋𝑖 = 𝛼𝑣 since 𝜋𝑖 sum to 1. Continuing the derivation, we cancel like terms from the numerator

and denominators and note that Γ(𝛼𝑣𝜋𝑖 + 1) = 𝛼𝑣𝜋𝑖Γ(𝛼𝑣𝜋𝑖). Therefore, Γ(𝛼𝑣𝜋𝑖+1)
Γ(𝛼𝑣𝜋𝑖) = 𝛼𝑣𝜋𝑖 and we have

𝑝(𝜋 | 𝛼𝑣, 𝛾, 𝑊, 𝑉 ) ∝
{︁ 𝐾∏︁

𝑣=1

Γ(𝛼𝑣)𝛼𝑛𝑣
𝑣

Γ(𝛼𝑣 + 𝑛𝑣)

}︁
(

𝑛∏︁
𝑖=1

𝜋𝑖)𝑝(𝜋 | 𝛾)

Now, note that in the last line the term in brackets is constant with respect to 𝜋, so we can eliminate it
and maintain proportionality. Then, substituting the prior 𝑝(𝜋 | 𝛾 = 0) = 𝐷𝑖𝑟(0𝑛) ∝

∏︀𝑛
𝑖=1 𝜋−1

𝑖 ,

𝑝(𝜋 | 𝛼𝑣, 𝛾, 𝑊, 𝑉 ) ∝ (
𝑛∏︁

𝑖=1
𝜋𝑖)

𝑛∏︁
𝑖=1

𝜋−1
𝑖 ∝

𝑛∏︁
𝑖=1

𝜋1−1
𝑖
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This is the kernel of 𝐷𝑖𝑟(1𝑛) - the posterior of Rubin’s bootstrap. Thus, to draw from this marginal posterior,
we can draw 𝜋 ∼ 𝐷𝑖𝑟(1𝑛). This is the distribution we sample from in Step 1 of the algorithm in Section 3.1.

Now, the conditional posterior of each 𝜋𝑣 conditional on 𝜋 is much simpler. Just absorb all terms not
involving 𝜋𝑣

𝑖 in (1) into the proportionality constant and we have

𝑝(𝜋𝑣 | 𝜋, 𝛼𝑣, 𝛾, 𝑊, 𝑉 ) ∝
𝑛∏︁

𝑖=1
(𝜋𝑣

𝑖 )𝛼𝑣𝜋𝑖+𝛿𝑣(𝑉𝑖)−1

Which is proportional to a 𝜋𝑣 ∼ 𝐷𝑖𝑟
(︁

𝛼𝑣𝜋1 + 𝛿𝑣(𝑉1), 𝛼𝑣𝜋2 + 𝛿𝑣(𝑉2), . . . , 𝛼𝑣𝜋𝑛 + 𝛿𝑣(𝑉𝑛)
)︁

. This is the
distribution we sample from in Step 2 of the algorithm in Section 3.1.

3 Simulation Details

3.1 Main manuscript simulation

Fig. 1: histogram of the observed covariate values in stratum 4 (the sparse stratum) from a single simulation run in the
gamma setting. The red line shows the true gamma density we simulated from. Values of 𝑊 ∈ [2.32, 4.62] are plausible
- under the true gamma density, there is ≈ 10% probability on this interval. However, we observe no data in this interval
within stratum 4 due to the small sample. Unlike the empirical distribution, the HBB borrows points in this interval that
appear in the other strata.

Here we provide details for the simulation study in Section 4 of the main manuscript. In each setting,
we simulate 1000 data sets with 𝑛 = 300 subjects as follows. For 𝑖 = 1, . . . , 300
1. Simulate stratum allocation:

𝑉𝑖 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚(1; 4
10 ,

3
10 ,

2
10 ,

1
10)

The parameter vectors gives the probability of assignment to stratum 1, 2, 3, and 4, respectively.
2. Simulate 10-dimensional confounder vector 𝑊𝑖 = (𝑊 𝑝

𝑖 )𝑝=1:10 ,

𝑊𝑖 | 𝑉𝑖 = 𝑣 ∼ 𝑝(𝑊 | 𝑉 = 𝑣)

The form of 𝑝(𝑊 | 𝑉 = 𝑣) varies with simulation setting and is specified below.
3. Simulate treatment assignment, 𝐴𝑖, from Bernoulli with probability

𝑃 (𝐴 = 1 | 𝑊𝑖, 𝑉𝑖 = 𝑣) = 𝑒𝑥𝑝𝑖𝑡(𝜂𝑣 + 𝑊 ′
𝑖 𝛽)
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4. Simulate binary outcome, 𝑌𝑖, from a Bernoulli with probability

𝑃 (𝑌 = 1 | 𝑊𝑖, 𝑉𝑖 = 𝑣) = 𝑒𝑥𝑝𝑖𝑡(−1 + 𝛾𝑣 + 𝑊 ′
𝑖 𝜃 + 𝑎𝑣𝐴𝑖)

Note in the above that 𝑊𝑖 impacts both treatment assignment (via 𝛽) and outcome (via 𝜃) - so it is a
confounder. Similarly, 𝑉𝑖 impacts both treatment assignment (via 𝜂𝑣) and outcome (via 𝛾𝑣). Note that the
conditional treatment effect, 𝑎𝑣, varies across stratum - so this is a complex scenario with treatment effect
heterogeneity across strata. This yields a simulated data set {𝑌𝑖, 𝐴𝑖, 𝑊𝑖, 𝑉𝑖}𝑖=1:𝑛. We simulate 1000 such
data sets across four settings. Figure 1 provides an illustration of the distribution of 𝑊 within stratum 4.

The covariate distribution 𝑝(𝑊 | 𝑉 ) has a different family governed by different parameters in each of
the two settings:
1. 𝑊 𝑝

𝑖 | 𝑉 = 𝑣 ∼ 𝑁(𝜇𝑣, 1) where 𝜇𝑣 ∈ {−2, 0, 2, 4} for 𝑣 = 1, . . . 4, respecting order. Marginal of 𝑉 , the
distribution of 𝑊 is a location mixture of normals.

2. 𝑊 𝑝
𝑖 | 𝑉 = 𝑣 ∼ 𝐺𝑎𝑚(𝑠ℎ𝑎𝑝𝑒 = 1

2 𝜏𝑣, 𝑟𝑎𝑡𝑒 = 1
2 ). Here 𝜏𝑣 ∈ {8, 6, 4, 1} for 𝑣 = 1, . . . 4, respecting order.

Both settings share these simulation parameters:
– Set 𝛽 = 𝜃 = (1, −1, 1, −1, 1, −1, 1, −1, 1, −1).
– Set 𝜂𝑣 ∈ (0, −.5, .5, .5) for 𝑣 = 1, . . . , 4 in order.
– 𝛾𝑣 ∈ (−.1, −.5, .1, .5) for 𝑣 = 1, . . . , 4 in order.
– 𝑎𝑣 ∈ (1, −1.5, 1, 1.5) for 𝑣 = 1, . . . , 4 in order.

Using each simulated dataset, we specify the following logistic regression

𝑃 (𝑌 | 𝐴, 𝑊, 𝑉 = 𝑣) = 𝑒𝑥𝑝𝑖𝑡
(︁

𝜔0 + 𝜔𝑣 + 𝑊 ′𝜔𝑊 + 𝜔*
𝑣𝐴

)︁
Normal priors with mean zero and standard deviation 3 were placed on each parameter. We obtain
𝑀 = 5000 posterior samples {𝜔0, 𝜔

(𝑚)
1 , . . . , 𝜔

(𝑚)
4 , 𝜔

(𝑚)
𝑊 , 𝜔

*(𝑚)
1 , . . . , 𝜔

*(𝑚)
4 }𝑚=1:𝑀 after discarding the first

5000 draws as burn-in. Sampling was done via hamiltonian monte carlo as implemented in Stan. These
samples were combined with HBB as described in Section 3.1.

3.2 Additional simulation results exploring interactions

In addition to the simulation results above, we ran another set exploring the impact of strong interactions
between 𝑊 and 𝐴 within each stratum of 𝑉 . We specify a logistic outcome model as in the previous
simulation, but now with interactions terms between 𝐴 and 𝑊 included. We run 1000 simulations with
𝑁 = 500 each and report the results in Table 1. Note that on average across simulations, stratum 4 has
(1/10) * 500 = 50 subjects to estimate an outcome model with 22 (intercept, 10 𝑊 main effect coefficients,
a main treatment effect coefficient, and 10 𝑊 − 𝐴 interaction coefficients) parameters. So this is rather
severe sparsity setting. Focusing on the performance in this sparse stratum, we see that the causal effect
estimate using HBB outperforms the other confounder distribution estimates in terms of MSE, however the
95|% posterior interval has higher 95% frequentist coverage.

The HBB borrows more information about 𝑊 from other strata, thus the outcome model extrapolates
the - leading to significant posterior uncertainty. This is reflected in the much wider posterior interval width
of the HBB in each of the settings. On the flip side, the empirical and BB estimates yield 95% intervals
with undercoverage. Because insufficient information about 𝑊 exists, our estimate doesn’t capture the full
range across which 𝑊 modifies the treatment effect 𝐴 in stratum 4. Thus, producing intervals that are too
narrow.
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Tab. 1: Additional Simulation results: Relative (Rel.) MSE, absolute bias, empirical variance of the posterior mean along
with the width and coverage of the 95% credible interval across 1,000 simulation runs. MSE is computed as average of the
squared difference between posterior mean and truth across simulations. Empirical variance is computed as the variance of
the 1,000 posterior mean causal effect estimates. Data were generated as described in the main text, but with interactions
between treatment and confounders within strata.

Gaussian Mixture Gamma Mixture
Model Rel. MSE Bias Var. Width Cov. Rel. MSE Bias. Var. Width Cov.

Stratum 1 Emp. 0.95 0.000 0.003 0.188 0.934 0.80 0.011 0.003 0.195 0.904
BB 0.95 0.000 0.003 0.197 0.948 0.80 0.011 0.003 0.205 0.918
HBB 1 0.005 0.003 0.241 0.981 1 0.015 0.004 0.240 0.921
Oracle 0.96 0.002 0.003 0.190 0.929 0.96 0.002 0.004 0.247 0.94

Stratum 4 Emp. 1.84 0.013 0.010 0.346 0.925 1.80 0.080 0.014 0.426 0.878
BB 1.84 0.013 0.010 0.368 0.931 1.80 0.080 0.014 0.434 0.881
HBB 1 0.025 0.005 0.534 1 1 0.021 0.011 0.460 0.972
Oracle 1.91 0.012 0.010 0.351 0.923 0.94 0.008 0.010 0.452 0.974

3.3 Additional simulation results exploring homogenous confounder distributions

In additional to the simulations in the main text described in Section 3.1, we ran an experiment that
considered a scenario in which the true confounder distribution is the same across strata. Specifically
𝑃𝑣(𝑊 ) = 𝑁10(0̄10, 𝐼10) for each 𝑣. All other settings are the same as described in Section 3.1 and the results
are described in Table 2.

Tab. 2: Additional Simulation results: exploring homogenous 𝑁10(0̄10, 𝐼10) confounder distributions across strata. Results
reported across 1,000 simulation runs.

Standard normal covariates in each stratum
Model Rel. MSE Bias Var. Width Cov.

Stratum 4 Emprical 1.05 0.005 0.014 0.46 0.955
BB 1.05 0.005 0.014 0.48 0.956
HBB 1 0.002 0.013 0.46 0.949
Oracle 0.99 0.002 0.013 0.46 0.949

This setting is a favorable for HBB relative to separate estimation because the HBB’s partial-pooling
leverages more information from the other strata and - because all the stratum-specific distributions are the
same - this does not come at the expense of additional finite-sample bias. All methods perform similarly
since the confounder distribution is the same across strata. HBB has slightly lower finite-sample bias and
more precise (it produces an interval with 95% coverage, but with a narrower interval on average than BB).

4 Data Analysis Details
Here we provide additional details about the data analysis in the main text. In the parametric Poisson
model, we include the following covariates for each stratum except gynecological cancer.
– treatment: binary with one indicating proton.
– race: categorical with levels white, black, and other.
– sex: binary with one indicating male.
– insurance: categorical with levels medicare, private, and other.
– body-mass index: normalized.
– age: normalized
– charlson index: logged.
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Tab. 3: Summary statistics of covariates across cancer strata. Sample average and standard deviation - 𝑁, (%) - are
reported for continuous covariates - 𝑎𝑣𝑔.(𝑠𝑑). Count and proportions are reported for categorical covariates. The abbrevia-
tions are gynecological (gyn), pancreas/duodenum/hepatobiliary (p/d/h), esophagus/gastric (e/g), and head/neck (h&n).

Cancer Type
Anal Brain E/G Gyn H&N Lung P/D/H Rectum

Variable N=80 N=231 N=148 N=34 N=435 N=325 N=91 N=124
Male 29 (36.2) 140 (60.6) 120 (81.1) 0 ( 0.0) 336 (77.2) 167 (51.4) 54 (59.3) 78 (62.9)
Race

Black 15 (18.8) 14 ( 6.1) 13 ( 8.8) 18 (52.9) 54 (12.4) 82 (25.2) 24 (26.4) 29 (23.4)
White 64 (80.0) 209 (90.5) 131 (88.5) 16 (47.1) 362 (83.2) 224 (68.9) 64 (70.3) 89 (71.8)
Other 1 ( 1.2) 8 ( 3.5) 4 ( 2.7) 0 ( 0.0) 19 ( 4.4) 19 ( 5.8) 3 ( 3.3) 6 ( 4.8)

Insurance
Medicare 21 (26.2) 59 (25.5) 80 (54.1) 9 (26.5) 103 (23.7) 155 (47.7) 39 (42.9) 40 (32.3)
Private 55 (68.8) 166 (71.9) 63 (42.6) 21 (61.8) 321 (73.8) 161 (49.5) 49 (53.8) 78 (62.9)
Other 4 ( 5.0) 6 ( 2.6) 5 ( 3.4) 4 (11.8) 11 ( 2.5) 9 ( 2.8) 3 ( 3.3) 6 ( 4.8)

Age 58 (9.3) 56 (15.0) 66 (12.0) 56 (14.4) 59 (10.0) 66 (10.3) 66 (9.4) 59 (13.7)
CCI 3.80 (2.84) 2.70 (1.06) 3.24 (1.45) 2.47 (1.11) 2.72 (1.28) 3.42 (1.70) 3.36 (1.43) 2.77 (1.11)

Summary statistics are given in Table 3. For gynecological cancer, there is no need to adjust for sex. We
specify𝑁(0, 1) priors on all covariates except in the following instances: in the models for E/G, brain, anal,
and rectum, we use tighter 𝑁(0, .1) priors on the other race coefficient. Similarly, for the P/D/H model we
use a 𝑁(0, .1) prior on other insurance. The tight priors are to regularize coefficients that explode due too
little variation in insurance status or race in a particular stratum. Non-bayesian analyses typically omit such
variables (equivalent to a prior that the coefficient is exactly 0), but we choose to include them with a tight
prior around 0 as a compromise. Note that the 𝑁(0, 1) prior may seem overly informative, but on the log
scale it is quite flat. It puts sufficient volume at incident rate ratios within exp(±1.96) or within (.14, 7.1).

For posterior sampling, we use hamiltonian monte carlo as implemented in Stan. We call Stan in R using
the rstan package. For inference, we retain 10000 posterior draws after a 10000 burn-in. After obtaining
these draws, we use HBB as described in Section 3.1.

For the BART model, we adjust for all of the same covariates. Draws of 𝑓𝑣 under particular treatments
were obtained using the BayesTree R package. We retain 1000 posterior draws for inference after discarding
the first 1000 as burn-in. For the BART hyperpriors, we increase the power parameter from the default
of 2 to 3. This is to favors more shallow trees which provides more regularization. After draws of 𝑓𝑣 are
obtained, we combine with HBB draws as described in Section 3.1.

Finally, we note that the effects in the gynecological cancer model, in particular, is highly variable. As
there were only 4 subjects treated with proton therapy in this stratum and none of the four had events, this
coefficient is not identifiable with data. This is manifest in the large interval in both the Poisson and BART
models.

In order to more directly compare the results of the parametric Poisson model and the nonparametric
BART model, we compute the implied probability of at least one adverse event under the Poisson model.
Specifically, recall that the parametric Poisson model is fit to outcome 𝑌 , the count of adverse events.
BART is fit to binary outcome 𝑌 = 𝐼(𝑌 > 0). Thus we can equivalently express the causal odds

Ψ(𝑣) = 𝐸[𝑌 1 | 𝑉 = 𝑣]/(1 − 𝐸[𝑌 1 | 𝑉 = 𝑣])
𝐸[𝑌 0 | 𝑉 = 𝑣]/(1 − 𝐸[𝑌 0 | 𝑉 = 𝑣])

= 𝑃 [𝑌 1 > 0 | 𝑉 = 𝑣]/(1 − 𝑃 [𝑌 1 > 0 | 𝑉 = 𝑣])
𝑃 [𝑌 0 > 0 | 𝑉 = 𝑣]/(1 − 𝑃 [𝑌 0 > 0 | 𝑉 = 𝑣])

So, it is possible to compare the results by post-processing the posterior draws of the Poisson model to
compute the posterior probability of at least 1 event rather than the expected count - without need to refit
the model. The results are displayed in Figure 2 - where the BART results from the main manuscript are
reproduced in the right panel and the Poisson results are in the left panel.

The estimates are generally consistent between the models, except the parametric model tends to
yield narrower intervals due to the smoother model. BART tends to have slightly wider intervals (e.g. in
the p/d/h stratum) - perhaps consistent with the bias-variance trade off that comes with parametric and
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Fig. 2: Posterior mean and 95% credible interval estimates of stratum-specific causal odds ratio of at least one adverse
event under Poisson model (left) and BART (right).

nonparametric models in general.

As an additional sensitivity, we have also repeated the Poisson analysis for several values of 𝑀 = 0
to 𝑀 = 435 (the size of the largest observed stratum). The idea behind this stems from the fact that the
HBB is a compromise between two extremes. With 𝑀 = 0, the HBB reduces to the posterior mean of the
stratum-specific BB where no information is borrowed. On the other extreme, as 𝑀 gets large, we shrink
completely to the overall empirical distribution across all strata. So, for the same outcome model, the range
of possible results as we toggle 𝑀 is determined by the discrepancy between these two distributions - by
construction the HBB will yield an answer “between” these two.

Fig. 3: Posterior mean results for the Poisson data analysis for a range of 𝑀 .

A sensitivity analysis could be done by computing the causal effect posterior obtained under both the
BB and the overall empirical distribution. If they very different, then changing 𝑀 won’t change results too
much. If they differ greatly, then increasing 𝑀 can be impactful.
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In Figure 3 we have plotted the results of the Poisson model analysis of the photon-proton data in
Figure 3 of the manuscript. In the paper we reported results with HBB setting 𝑀 = 100 - but here we show
results of the HBB under different 𝑀 . Note that as we increase 𝑀 , results move from the BB estimate at
one extreme to the overall empirical at the other. These two extremes are not that different across strata
and so we don’t expect 𝑀 to make a huge difference in this particular analysis. At the same time, this also
acts as a sensitivity for the usual BB: if the BB results were very different from results based on the overall
empirical, then the analyst may want to consider whether some partial pooling is necessary and may want
to justify why they made the very informative prior decision to not pool if it would have made a difference.
On the other hand, if the difference is small, then they may feel more comfortable with the BB.

5 Hyperparameter Updating
In the manuscript, we propose setting 𝛼𝑣 empirically. Here we illustrate how one could take a fully Bayesian
approach and update 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑣) under some prior 𝑔𝛼(𝛼; 𝜈), where 𝜈 are the prior hyperparameters.
The goal is not to sample from the joint posterior

𝑝(𝜋1, 𝜋2, . . . 𝜋𝐾 , 𝜋, 𝛼 | 𝑊, 𝑉 ) = 𝑝(𝜋1, 𝜋2, . . . 𝜋𝐾 , 𝜋 | 𝛼, 𝑊, 𝑉 ) · 𝑝(𝛼 | 𝑊, 𝑉 )

Thus provided, we can find the marginal 𝑝(𝛼 | 𝑊, 𝑉 ), then we can sample in two steps. Update 𝛼 by
drawing from the marginal posterior. Then, conditional on draws of 𝛼 and the data we draw from the
conditional of the weights as illustrated in the main manuscript. Under the HBB, the data model is
𝑃𝑣(𝑊 | 𝜋𝑣) =

∑︀𝑛
𝑖=1 𝜋𝑣

𝑖 · 𝛿𝑊𝑖
(𝑊 ), where 𝜋𝑣 | 𝜋, 𝛼𝑣 ∼ 𝐷𝑖𝑟(𝛼𝑣𝜋) and 𝜋 |∼ 𝐷𝑖𝑟(0𝑛) and 𝛼 ∼ 𝑔𝛼(𝛼; 𝜈). So,

the marginal posterior is obtained by integrating the weights over the 𝑛−dimensional simplex Π𝑣,

𝑝(𝛼 | 𝑊, 𝑉 ) =
∫︁
Π

∫︁
Π1

∫︁
Π2

· · ·
∫︁

Π𝐾

𝑝(𝜋1, 𝜋2, . . . 𝜋𝐾 , 𝜋, 𝛼 | 𝑊, 𝑉 )𝑑𝜋𝐾 . . . , 𝑑𝜋2, 𝑑𝜋1𝑑𝜋

∝
∫︁
Π

{︁ 𝐾∏︁
𝑣=1

∫︁
Π𝑣

Γ(
∑︀𝑛

𝑖=1 𝛼𝑣𝜋𝑖)∏︀𝑛
𝑖=1 Γ(𝛼𝑣𝜋𝑖)

𝑛∏︁
𝑖=1

(𝜋𝑣
𝑖 )𝛼𝑣𝜋𝑖+𝛿𝑣(𝑉𝑖)−1𝑑𝜋𝑣

}︁ 𝑛∏︁
𝑖=1

𝜋−1
𝑖 𝑑𝜋 𝑔𝛼(𝛼; 𝜈)

∝
∫︁
Π

{︁ 𝐾∏︁
𝑣=1

Γ(𝛼𝑣)∏︀𝑛
𝑖=1 Γ(𝛼𝑣𝜋𝑖)

∏︀𝑛
𝑖∈𝑆𝑣

Γ(𝛼𝑣𝜋𝑖 + 1)
∏︀𝑛

𝑖/∈𝑆𝑣
Γ(𝛼𝑣𝜋𝑖)

Γ(𝛼𝑣 + 𝑛𝑣)

}︁ 𝑛∏︁
𝑖=1

𝜋−1
𝑖 𝑑𝜋 𝑔𝛼(𝛼; 𝜈)

This second line follows from apply Bayes’ rule and substituting the forms of the models and the third line
follows because each integral is over the kernel of a Dirichlet distribution, with concentration parameter
vector comprised of the 𝛼𝑣𝜋𝑖 + 𝛿𝑣(𝑉𝑖). When further simplified we have,

𝑝(𝛼 | 𝑊, 𝑉 ) ∝
∫︁
Π

{︁ 𝐾∏︁
𝑣=1

Γ(𝛼𝑣)𝛼𝑛𝑣
𝑣

Γ(𝛼𝑣 + 𝑛𝑣)

}︁
(

𝑛∏︁
𝑖=1

𝜋𝑖)
𝑛∏︁

𝑖=1
𝜋−1

𝑖 𝑑𝜋 𝑔𝛼(𝛼; 𝜈)

∝
{︁ 𝐾∏︁

𝑣=1

Γ(𝛼𝑣)𝛼𝑛𝑣
𝑣

Γ(𝛼𝑣 + 𝑛𝑣)

}︁
𝑔𝛼(𝛼; 𝜈)

This result also appears in Equation 10 of Escobar and West (1995) in the context of the Dirichlet Processes.
One can obtain posterior samples from this distribution using the data augmentation scheme discussed
by Escobar and West if 𝑔𝛼 is a product of independent gamma densities (and 𝜈 being the collection of
shapes and scales) or a Metropolis-Hastings step otherwise. However, note that the marginal posterior only
depends on the data through the sample size 𝑛𝑣 - which we use to set 𝛼𝑣 empirically.
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