Abstract
The timings of visits in observational longitudinal data may depend on the study outcome, and this can result in bias if ignored. Assessing the extent of visit irregularity is important because it can help determine whether visits can be treated as repeated measures or as irregular data. We propose plotting the mean proportions of individuals with 0 visits per bin against the mean proportions of individuals with >1 visit per bin as bin width is varied and using the area under the curve (AUC) to assess the extent of irregularity. The AUC is a single score which can be used to quantify the extent of irregularity and assess how closely visits resemble repeated measures. Simulation results confirm that the AUC increases with increasing irregularity while being invariant to sample size and the number of scheduled measurement occasions. A demonstration of the AUC was performed on the TARGet Kids! study which enrolls healthy children aged 0–5 years with the aim of investigating the relationship between early life exposures and later health problems. The quality of statistical analyses can be improved by using the AUC as a guide to select the appropriate analytic outcome approach and minimize the potential for biased results.
Funding source: Natural Sciences and Engineering Research Council of Canada 10.13039/501100000038
Acknowledgements
We thank all of the participating families for their time and involvement in TARGet Kids! and are grateful to all practitioners who are currently involved in the TARGet Kids! practice-based research network.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research received funding from the Natural Sciences and Engineering Research Council of Canada.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
See Tables 4 –18 and Figures 16–19.
The mean observed AUCs (AUCOBS) for Log-normal gap times across sample size (n) and study duration (τ).
τ | n | Gap time variance | Mean AUCOBS | Standard error |
---|---|---|---|---|
15 | 30 | 1.683 | 0.073 | 0.014 |
3.542 | 0.104 | 0.017 | ||
5.598 | 0.132 | 0.018 | ||
7.869 | 0.154 | 0.020 | ||
10.380 | 0.174 | 0.020 | ||
100 | 1.683 | 0.072 | 0.008 | |
3.542 | 0.102 | 0.009 | ||
5.598 | 0.132 | 0.010 | ||
7.869 | 0.156 | 0.011 | ||
10.380 | 0.175 | 0.010 | ||
30 | 30 | 1.683 | 0.062 | 0.008 |
3.542 | 0.103 | 0.011 | ||
5.598 | 0.139 | 0.013 | ||
7.869 | 0.169 | 0.015 | ||
10.380 | 0.193 | 0.016 | ||
100 | 1.683 | 0.061 | 0.004 | |
3.542 | 0.102 | 0.006 | ||
5.598 | 0.139 | 0.008 | ||
7.869 | 0.168 | 0.008 | ||
10.380 | 0.193 | 0.008 |
The mean observed AUCs (AUCOBS) for Gamma gap times across sample size (n) and study duration (τ).
τ | n | Gap time variance | Mean AUCOBS | Standard error |
---|---|---|---|---|
15 | 30 | 4.000 | 0.131 | 0.019 |
5.000 | 0.144 | 0.019 | ||
6.667 | 0.164 | 0.020 | ||
10.000 | 0.199 | 0.020 | ||
20.000 | 0.259 | 0.020 | ||
100 | 4.000 | 0.132 | 0.010 | |
5.000 | 0.144 | 0.011 | ||
6.667 | 0.165 | 0.011 | ||
10.000 | 0.198 | 0.011 | ||
20.000 | 0.259 | 0.011 | ||
30 | 30 | 4.000 | 0.122 | 0.011 |
5.000 | 0.137 | 0.011 | ||
6.667 | 0.160 | 0.013 | ||
10.000 | 0.200 | 0.014 | ||
20.000 | 0.273 | 0.016 | ||
100 | 4.000 | 0.122 | 0.006 | |
5.000 | 0.137 | 0.007 | ||
6.667 | 0.160 | 0.007 | ||
10.000 | 0.200 | 0.008 | ||
20.000 | 0.272 | 0.009 |
The mean observed AUCs (AUCOBS) and likelihood-based AUCs (AUCMLE and AUC0) across the level of missingness (π), rate of unscheduled visits (λ), and the standard deviation of scheduled visit timings (σ) for three scheduled measurement occasions and sample size (n) 30.
σ | π | λ | Mean AUCOBS | Standard error | Mean AUCMLE | Standard error | Mean AUC0 | Standard error |
---|---|---|---|---|---|---|---|---|
0.1 | 0.1 | 0.10 | 0.023 | 0.008 | 0.023 | 0.006 | 0.011 | 0.003 |
0.15 | 0.033 | 0.011 | 0.032 | 0.008 | 0.015 | 0.003 | ||
0.20 | 0.041 | 0.012 | 0.041 | 0.009 | 0.020 | 0.004 | ||
0.25 | 0.049 | 0.013 | 0.049 | 0.009 | 0.025 | 0.004 | ||
0.30 | 0.055 | 0.014 | 0.055 | 0.010 | 0.029 | 0.005 | ||
0.2 | 0.10 | 0.032 | 0.010 | 0.032 | 0.008 | 0.010 | 0.003 | |
0.15 | 0.046 | 0.012 | 0.046 | 0.010 | 0.015 | 0.003 | ||
0.20 | 0.057 | 0.014 | 0.057 | 0.011 | 0.020 | 0.004 | ||
0.25 | 0.068 | 0.015 | 0.067 | 0.011 | 0.025 | 0.004 | ||
0.30 | 0.076 | 0.016 | 0.076 | 0.012 | 0.029 | 0.005 | ||
0.3 | 0.10 | 0.041 | 0.012 | 0.040 | 0.009 | 0.011 | 0.003 | |
0.15 | 0.057 | 0.014 | 0.056 | 0.011 | 0.015 | 0.003 | ||
0.20 | 0.070 | 0.015 | 0.070 | 0.012 | 0.020 | 0.004 | ||
0.25 | 0.083 | 0.017 | 0.082 | 0.013 | 0.025 | 0.005 | ||
0.30 | 0.094 | 0.017 | 0.093 | 0.013 | 0.030 | 0.005 | ||
0.3 | 0.1 | 0.10 | 0.039 | 0.013 | 0.039 | 0.010 | 0.031 | 0.007 |
0.15 | 0.056 | 0.014 | 0.056 | 0.011 | 0.044 | 0.008 | ||
0.20 | 0.070 | 0.015 | 0.070 | 0.012 | 0.056 | 0.009 | ||
0.25 | 0.083 | 0.017 | 0.083 | 0.012 | 0.067 | 0.010 | ||
0.30 | 0.095 | 0.018 | 0.095 | 0.013 | 0.078 | 0.010 | ||
0.2 | 0.10 | 0.046 | 0.013 | 0.046 | 0.011 | 0.031 | 0.007 | |
0.15 | 0.064 | 0.016 | 0.065 | 0.013 | 0.044 | 0.009 | ||
0.20 | 0.079 | 0.017 | 0.080 | 0.014 | 0.056 | 0.010 | ||
0.25 | 0.094 | 0.018 | 0.095 | 0.014 | 0.067 | 0.010 | ||
0.30 | 0.108 | 0.019 | 0.108 | 0.014 | 0.078 | 0.011 | ||
0.3 | 0.10 | 0.050 | 0.015 | 0.050 | 0.013 | 0.030 | 0.008 | |
0.15 | 0.071 | 0.017 | 0.071 | 0.014 | 0.044 | 0.009 | ||
0.20 | 0.088 | 0.017 | 0.088 | 0.015 | 0.056 | 0.010 | ||
0.25 | 0.103 | 0.019 | 0.104 | 0.015 | 0.067 | 0.011 | ||
0.30 | 0.117 | 0.019 | 0.117 | 0.015 | 0.077 | 0.011 |
The mean observed AUCs (AUCOBS) and likelihood-based AUCs (AUCMLE and AUC0) across the level of missingness (π), rate of unscheduled visits (λ), and the standard deviation of scheduled visit timings (σ) for five scheduled measurement occasions and sample size (n) 30.
σ | π | λ | Mean AUCOBS | Standard error | Mean AUCMLE | Standard error | Mean AUC0 | Standard error |
---|---|---|---|---|---|---|---|---|
0.1 | 0.1 | 0.10 | 0.023 | 0.007 | 0.023 | 0.004 | 0.010 | 0.002 |
0.15 | 0.033 | 0.008 | 0.033 | 0.005 | 0.016 | 0.002 | ||
0.20 | 0.041 | 0.009 | 0.041 | 0.006 | 0.020 | 0.003 | ||
0.25 | 0.048 | 0.010 | 0.049 | 0.007 | 0.025 | 0.003 | ||
0.30 | 0.056 | 0.011 | 0.056 | 0.007 | 0.030 | 0.003 | ||
0.2 | 0.10 | 0.033 | 0.008 | 0.033 | 0.006 | 0.011 | 0.002 | |
0.15 | 0.046 | 0.010 | 0.046 | 0.007 | 0.015 | 0.002 | ||
0.20 | 0.058 | 0.010 | 0.058 | 0.008 | 0.021 | 0.003 | ||
0.25 | 0.068 | 0.012 | 0.069 | 0.008 | 0.025 | 0.003 | ||
0.30 | 0.077 | 0.013 | 0.078 | 0.009 | 0.030 | 0.003 | ||
0.3 | 0.10 | 0.040 | 0.009 | 0.040 | 0.007 | 0.011 | 0.002 | |
0.15 | 0.056 | 0.011 | 0.057 | 0.008 | 0.015 | 0.002 | ||
0.20 | 0.071 | 0.012 | 0.071 | 0.008 | 0.021 | 0.003 | ||
0.25 | 0.083 | 0.013 | 0.084 | 0.009 | 0.025 | 0.003 | ||
0.30 | 0.094 | 0.014 | 0.094 | 0.009 | 0.030 | 0.004 | ||
0.3 | 0.1 | 0.10 | 0.040 | 0.010 | 0.040 | 0.007 | 0.031 | 0.005 |
0.15 | 0.056 | 0.012 | 0.057 | 0.008 | 0.045 | 0.007 | ||
0.20 | 0.071 | 0.013 | 0.071 | 0.009 | 0.057 | 0.007 | ||
0.25 | 0.084 | 0.013 | 0.084 | 0.009 | 0.068 | 0.007 | ||
0.30 | 0.095 | 0.014 | 0.096 | 0.009 | 0.079 | 0.008 | ||
0.2 | 0.10 | 0.047 | 0.011 | 0.047 | 0.008 | 0.031 | 0.006 | |
0.15 | 0.064 | 0.012 | 0.065 | 0.009 | 0.044 | 0.006 | ||
0.20 | 0.082 | 0.013 | 0.082 | 0.010 | 0.057 | 0.007 | ||
0.25 | 0.095 | 0.014 | 0.096 | 0.010 | 0.068 | 0.008 | ||
0.30 | 0.109 | 0.015 | 0.109 | 0.011 | 0.079 | 0.008 | ||
0.3 | 0.10 | 0.049 | 0.011 | 0.050 | 0.010 | 0.030 | 0.006 | |
0.15 | 0.071 | 0.013 | 0.072 | 0.011 | 0.044 | 0.007 | ||
0.20 | 0.089 | 0.014 | 0.090 | 0.011 | 0.057 | 0.007 | ||
0.25 | 0.105 | 0.015 | 0.105 | 0.012 | 0.068 | 0.008 | ||
0.30 | 0.118 | 0.014 | 0.119 | 0.011 | 0.078 | 0.008 |
The mean observed AUCs (AUCOBS) and likelihood-based AUCs (AUCMLE and AUC0) across the level of missingness (π), rate of unscheduled visits (λ), and the standard deviation of scheduled visit timings (σ) for three scheduled measurement occasions and sample size (n) 100.
σ | π | λ | Mean AUCOBS | Standard error | Mean AUCMLE | Standard error | Mean AUC0 | Standard error |
---|---|---|---|---|---|---|---|---|
0.1 | 0.1 | 0.10 | 0.023 | 0.005 | 0.023 | 0.003 | 0.010 | 0.001 |
0.15 | 0.033 | 0.006 | 0.033 | 0.004 | 0.015 | 0.002 | ||
0.20 | 0.041 | 0.007 | 0.041 | 0.005 | 0.020 | 0.002 | ||
0.25 | 0.049 | 0.007 | 0.049 | 0.005 | 0.025 | 0.002 | ||
0.30 | 0.056 | 0.008 | 0.056 | 0.006 | 0.030 | 0.002 | ||
0.2 | 0.10 | 0.033 | 0.006 | 0.033 | 0.004 | 0.010 | 0.001 | |
0.15 | 0.046 | 0.007 | 0.046 | 0.005 | 0.015 | 0.002 | ||
0.20 | 0.058 | 0.008 | 0.058 | 0.006 | 0.020 | 0.002 | ||
0.25 | 0.068 | 0.008 | 0.068 | 0.006 | 0.025 | 0.002 | ||
0.30 | 0.077 | 0.009 | 0.077 | 0.007 | 0.030 | 0.003 | ||
0.3 | 0.10 | 0.040 | 0.007 | 0.040 | 0.005 | 0.010 | 0.001 | |
0.15 | 0.056 | 0.008 | 0.056 | 0.006 | 0.015 | 0.002 | ||
0.20 | 0.071 | 0.009 | 0.070 | 0.006 | 0.020 | 0.002 | ||
0.25 | 0.082 | 0.009 | 0.083 | 0.007 | 0.025 | 0.002 | ||
0.30 | 0.094 | 0.009 | 0.093 | 0.007 | 0.029 | 0.003 | ||
0.3 | 0.1 | 0.10 | 0.040 | 0.007 | 0.040 | 0.005 | 0.031 | 0.004 |
0.15 | 0.056 | 0.008 | 0.056 | 0.006 | 0.044 | 0.005 | ||
0.20 | 0.071 | 0.009 | 0.071 | 0.007 | 0.056 | 0.005 | ||
0.25 | 0.083 | 0.010 | 0.084 | 0.007 | 0.068 | 0.005 | ||
0.30 | 0.095 | 0.010 | 0.095 | 0.007 | 0.078 | 0.006 | ||
0.2 | 0.10 | 0.046 | 0.008 | 0.046 | 0.006 | 0.031 | 0.004 | |
0.15 | 0.065 | 0.008 | 0.065 | 0.007 | 0.044 | 0.005 | ||
0.20 | 0.082 | 0.010 | 0.082 | 0.007 | 0.057 | 0.005 | ||
0.25 | 0.096 | 0.010 | 0.096 | 0.008 | 0.068 | 0.006 | ||
0.30 | 0.109 | 0.011 | 0.109 | 0.008 | 0.079 | 0.006 | ||
0.3 | 0.10 | 0.050 | 0.008 | 0.050 | 0.007 | 0.031 | 0.004 | |
0.15 | 0.071 | 0.009 | 0.071 | 0.008 | 0.044 | 0.005 | ||
0.20 | 0.089 | 0.010 | 0.089 | 0.008 | 0.057 | 0.005 | ||
0.25 | 0.104 | 0.010 | 0.105 | 0.008 | 0.068 | 0.006 | ||
0.30 | 0.118 | 0.011 | 0.119 | 0.008 | 0.078 | 0.006 |
The mean observed AUCs (AUCOBS) and likelihood-based AUCs (AUCMLE) for dependent regular and irregular visit process across the increase in the probability of missingness due to unscheduled visits (θ), rate of unscheduled visits (λ), and the standard deviation of scheduled visit timings (σ) for three scheduled measurement occasions and sample size (n) 100.
σ | θ | λ | Mean AUCOBS | Standard error | Correct mean | Standard error | Mis-specified | Standard error |
---|---|---|---|---|---|---|---|---|
AUCMLE | mean AUCMLE | |||||||
0.05 | 0.1 | 0.10 | 0.018 | 0.004 | 0.018 | 0.003 | 0.018 | 0.003 |
0.30 | 0.042 | 0.007 | 0.043 | 0.006 | 0.045 | 0.006 | ||
0.5 | 0.10 | 0.016 | 0.003 | 0.017 | 0.003 | 0.019 | 0.003 | |
0.30 | 0.040 | 0.006 | 0.042 | 0.007 | 0.053 | 0.006 | ||
0.2 | 0.1 | 0.10 | 0.030 | 0.006 | 0.034 | 0.005 | 0.031 | 0.004 |
0.30 | 0.075 | 0.009 | 0.076 | 0.008 | 0.076 | 0.006 | ||
0.5 | 0.10 | 0.025 | 0.005 | 0.031 | 0.004 | 0.028 | 0.004 | |
0.30 | 0.064 | 0.008 | 0.070 | 0.008 | 0.071 | 0.006 |
The mean AUCs assuming no missingness (AUC0) for dependent regular and irregular visit process across the increase in the probability of missingness due to unscheduled visits (θ), rate of unscheduled visits (λ), and the standard deviation of scheduled visit timings (σ) for three scheduled measurement occasions and sample size (n) 100.
σ | θ | λ | Correct mean AUC0 | Standard error | Mis-specified mean AUC0 | Standard error |
---|---|---|---|---|---|---|
0.05 | 0.1 | 0.10 | 0.005 | 0.001 | 0.005 | 0.001 |
0.30 | 0.014 | 0.001 | 0.014 | 0.001 | ||
0.5 | 0.10 | 0.005 | 0.001 | 0.005 | 0.001 | |
0.30 | 0.014 | 0.001 | 0.014 | 0.001 | ||
0.2 | 0.1 | 0.10 | 0.029 | 0.004 | 0.021 | 0.003 |
0.30 | 0.059 | 0.004 | 0.056 | 0.004 | ||
0.5 | 0.10 | 0.028 | 0.003 | 0.019 | 0.003 | |
0.30 | 0.057 | 0.004 | 0.053 | 0.004 |
The mean observed AUCs (AUCOBS) and likelihood-based AUCs (AUCMLE and AUC0) for the unobserved process across the probability of the increased rate of unscheduled visits activating and deactivating (P act and P deact), the initial rate of unscheduled visits (λ), the increased rate of unscheduled visits (λ act) for sample size (n) 100.
P deact | P act | λ | λ act | Mean AUCOBS | Standard error | Mean AUCMLE | Standard error | Mean AUC0 | Standard error |
---|---|---|---|---|---|---|---|---|---|
0.1 | 0.3 | 0.10 | 0.40 | 0.049 | 0.007 | 0.050 | 0.006 | 0.026 | 0.003 |
0.60 | 0.063 | 0.009 | 0.065 | 0.006 | 0.036 | 0.003 | |||
0.20 | 0.40 | 0.059 | 0.008 | 0.059 | 0.006 | 0.032 | 0.003 | ||
0.60 | 0.070 | 0.009 | 0.071 | 0.007 | 0.041 | 0.003 | |||
0.6 | 0.10 | 0.40 | 0.060 | 0.008 | 0.061 | 0.006 | 0.033 | 0.003 | |
0.60 | 0.077 | 0.010 | 0.077 | 0.007 | 0.046 | 0.003 | |||
0.20 | 0.40 | 0.067 | 0.009 | 0.066 | 0.006 | 0.037 | 0.003 | ||
0.60 | 0.080 | 0.010 | 0.080 | 0.007 | 0.049 | 0.003 | |||
0.3 | 0.3 | 0.10 | 0.40 | 0.042 | 0.007 | 0.042 | 0.005 | 0.021 | 0.002 |
0.60 | 0.052 | 0.008 | 0.053 | 0.006 | 0.028 | 0.002 | |||
0.20 | 0.40 | 0.054 | 0.008 | 0.053 | 0.005 | 0.028 | 0.002 | ||
0.60 | 0.061 | 0.009 | 0.062 | 0.006 | 0.034 | 0.003 | |||
0.6 | 0.10 | 0.40 | 0.052 | 0.008 | 0.052 | 0.005 | 0.027 | 0.002 | |
0.60 | 0.066 | 0.009 | 0.066 | 0.006 | 0.037 | 0.003 | |||
0.20 | 0.40 | 0.060 | 0.009 | 0.060 | 0.006 | 0.033 | 0.003 | ||
0.60 | 0.071 | 0.009 | 0.071 | 0.007 | 0.041 | 0.003 |
The mean observed AUCs (AUCOBS) and mean bias across the number of scheduled measurement occasions (k), baseline rate of unscheduled visits (λ 0), and the level of informativeness of the unscheduled visit process (γ) for sample size (n) 100.
Number of scheduled | γ | λ 0 | Mean AUCOBS | Standard error | Mean bias | Standard error |
---|---|---|---|---|---|---|
measurement occasions (k) | ||||||
2 | 0 | 0.10 | 0.007 | 0.004 | 0.001 | 0.080 |
0.20 | 0.017 | 0.006 | 0.000 | 0.081 | ||
0.30 | 0.027 | 0.008 | 0.003 | 0.078 | ||
0.40 | 0.037 | 0.008 | −0.004 | 0.077 | ||
0.5 | 0.10 | 0.008 | 0.004 | 0.073 | 0.084 | |
0.20 | 0.018 | 0.006 | 0.118 | 0.083 | ||
0.30 | 0.029 | 0.008 | 0.145 | 0.083 | ||
0.40 | 0.040 | 0.009 | 0.166 | 0.084 | ||
1 | 0.10 | 0.011 | 0.005 | 0.162 | 0.095 | |
0.20 | 0.023 | 0.007 | 0.236 | 0.095 | ||
0.30 | 0.035 | 0.008 | 0.279 | 0.101 | ||
0.40 | 0.045 | 0.010 | 0.312 | 0.104 | ||
4 | 0 | 0.10 | 0.004 | 0.002 | 0.003 | 0.075 |
0.20 | 0.012 | 0.004 | −0.001 | 0.079 | ||
0.30 | 0.020 | 0.005 | 0.003 | 0.074 | ||
0.40 | 0.030 | 0.005 | −0.001 | 0.078 | ||
0.5 | 0.10 | 0.005 | 0.002 | 0.040 | 0.079 | |
0.20 | 0.013 | 0.004 | 0.077 | 0.082 | ||
0.30 | 0.023 | 0.005 | 0.113 | 0.080 | ||
0.40 | 0.032 | 0.006 | 0.131 | 0.082 | ||
1 | 0.10 | 0.007 | 0.003 | 0.093 | 0.085 | |
0.20 | 0.017 | 0.005 | 0.169 | 0.093 | ||
0.30 | 0.027 | 0.006 | 0.226 | 0.098 | ||
0.40 | 0.038 | 0.007 | 0.265 | 0.103 |

The mean observed AUCs (AUCOBS) and mean bias across the level of informativeness of the unscheduled visit process (γ) for two scheduled measurement occasions, mean baseline rate of unscheduled visits (λ0) of 0.1, 0.4, 2.0, and a standard deviation of scheduled visit timings (σ) of 0.1, 0.6.

The mean observed AUCs (AUCOBS) and mean bias across the level of informativeness of the unscheduled visit process (γ) for four scheduled measurement occasions, mean baseline rate of unscheduled visits (λ0) of 0.1, 0.4, 2.0, and a standard deviation of scheduled visit timings (σ) of 0.1, 0.6.

The visit timings for random subsets of 30 individuals across the level of informativeness of the unscheduled visit process (γ) for two scheduled measurement occasions, mean baseline rate of unscheduled visits (λ0) of 0.1, 0.4, 2.0, and a standard deviation of scheduled visit timings (σ) of 0.1, 0.6.

The visit timings for random subsets of 30 individuals across the level of informativeness of the unscheduled visit process (γ) for four scheduled measurement occasions, mean baseline rate of unscheduled visits (λ0) of 0.1, 0.4, 2.0, and a standard deviation of scheduled visit timings (σ) of 0.1, 0.6.
The mean observed AUCs (AUCOBS) and mean bias across the mean baseline rate of unscheduled visits (λ 0), and the level of informativeness of the unscheduled visit process (γ) for sample size (n) 100, two scheduled measurement occasions, and the standard deviation of scheduled visit timings (σ) of 0.1.
γ | λ 0 | Mean AUCOBS | Standard error | Mean bias | Standard error |
---|---|---|---|---|---|
0 | 0.05 | 0.003 | 0.003 | 0.001 | 0.079 |
0.10 | 0.008 | 0.004 | 0.002 | 0.086 | |
0.25 | 0.023 | 0.007 | −0.004 | 0.088 | |
0.40 | 0.036 | 0.009 | −0.006 | 0.091 | |
0.60 | 0.052 | 0.011 | −0.001 | 0.093 | |
1.10 | 0.085 | 0.013 | 0.004 | 0.096 | |
1.30 | 0.096 | 0.014 | 0.002 | 0.095 | |
2.00 | 0.126 | 0.015 | 0.003 | 0.098 | |
0.5 | 0.05 | 0.004 | 0.003 | 0.040 | 0.084 |
0.10 | 0.009 | 0.005 | 0.074 | 0.092 | |
0.25 | 0.024 | 0.008 | 0.136 | 0.097 | |
0.40 | 0.038 | 0.009 | 0.159 | 0.104 | |
0.60 | 0.054 | 0.011 | 0.186 | 0.104 | |
1.10 | 0.087 | 0.013 | 0.202 | 0.105 | |
1.30 | 0.098 | 0.014 | 0.208 | 0.105 | |
2.00 | 0.128 | 0.015 | 0.216 | 0.101 | |
1 | 0.05 | 0.005 | 0.003 | 0.095 | 0.096 |
0.10 | 0.011 | 0.005 | 0.159 | 0.102 | |
0.25 | 0.028 | 0.008 | 0.264 | 0.121 | |
0.40 | 0.042 | 0.010 | 0.313 | 0.127 | |
0.60 | 0.059 | 0.012 | 0.350 | 0.131 | |
1.10 | 0.092 | 0.013 | 0.394 | 0.135 | |
1.30 | 0.102 | 0.015 | 0.405 | 0.137 | |
2.00 | 0.131 | 0.016 | 0.432 | 0.139 |
The mean observed AUCs (AUCOBS) and mean bias across the mean baseline rate of unscheduled visits (λ 0), and the level of informativeness of the unscheduled visit process (γ) for sample size (n) 100, two scheduled measurement occasions, and the standard deviation of scheduled visit timings (σ) of 0.3.
γ | λ 0 | Mean AUCOBS | Standard error | Mean bias | Standard error |
---|---|---|---|---|---|
0 | 0.05 | 0.009 | 0.005 | 0.001 | 0.085 |
0.10 | 0.022 | 0.007 | 0.003 | 0.084 | |
0.25 | 0.058 | 0.011 | 0.002 | 0.089 | |
0.40 | 0.087 | 0.013 | 0.001 | 0.089 | |
0.60 | 0.116 | 0.014 | −0.001 | 0.093 | |
1.10 | 0.164 | 0.016 | 0.003 | 0.096 | |
1.30 | 0.177 | 0.016 | 0.008 | 0.090 | |
2.00 | 0.209 | 0.016 | 0.006 | 0.097 | |
0.5 | 0.05 | 0.011 | 0.005 | 0.038 | 0.087 |
0.10 | 0.024 | 0.007 | 0.074 | 0.088 | |
0.25 | 0.060 | 0.012 | 0.136 | 0.099 | |
0.40 | 0.089 | 0.014 | 0.153 | 0.102 | |
0.60 | 0.117 | 0.014 | 0.178 | 0.100 | |
1.10 | 0.165 | 0.016 | 0.205 | 0.102 | |
1.30 | 0.180 | 0.016 | 0.205 | 0.105 | |
2.00 | 0.211 | 0.016 | 0.218 | 0.105 | |
1 | 0.05 | 0.014 | 0.006 | 0.095 | 0.096 |
0.10 | 0.029 | 0.008 | 0.162 | 0.105 | |
0.25 | 0.066 | 0.013 | 0.266 | 0.125 | |
0.40 | 0.093 | 0.015 | 0.311 | 0.129 | |
0.60 | 0.122 | 0.016 | 0.357 | 0.137 | |
1.10 | 0.168 | 0.017 | 0.394 | 0.137 | |
1.30 | 0.181 | 0.017 | 0.412 | 0.132 | |
2.00 | 0.214 | 0.016 | 0.425 | 0.141 |
The mean observed AUCs (AUCOBS) and mean bias across the mean baseline rate of unscheduled visits (λ 0), and the level of informativeness of the unscheduled visit process (γ) for sample size (n) 100, two scheduled measurement occasions, and the standard deviation of scheduled visit timings (σ) of 0.6.
γ | λ 0 | Mean AUCOBS | Standard error | Mean bias | Standard error |
---|---|---|---|---|---|
0 | 0.05 | 0.018 | 0.006 | 0.001 | 0.081 |
0.10 | 0.041 | 0.010 | −0.001 | 0.085 | |
0.25 | 0.097 | 0.014 | −0.001 | 0.086 | |
0.40 | 0.134 | 0.015 | 0.001 | 0.094 | |
0.60 | 0.168 | 0.016 | −0.003 | 0.088 | |
1.10 | 0.216 | 0.017 | 0.001 | 0.094 | |
1.30 | 0.229 | 0.015 | 0.002 | 0.098 | |
2.00 | 0.254 | 0.014 | 0.001 | 0.097 | |
0.5 | 0.05 | 0.020 | 0.007 | 0.043 | 0.084 |
0.10 | 0.043 | 0.010 | 0.074 | 0.090 | |
0.25 | 0.099 | 0.015 | 0.136 | 0.097 | |
0.40 | 0.136 | 0.016 | 0.161 | 0.096 | |
0.60 | 0.170 | 0.017 | 0.179 | 0.098 | |
1.10 | 0.218 | 0.016 | 0.204 | 0.106 | |
1.30 | 0.230 | 0.016 | 0.202 | 0.107 | |
2.00 | 0.258 | 0.015 | 0.221 | 0.110 | |
1 | 0.05 | 0.026 | 0.008 | 0.092 | 0.091 |
0.10 | 0.050 | 0.011 | 0.160 | 0.105 | |
0.25 | 0.104 | 0.015 | 0.265 | 0.120 | |
0.40 | 0.139 | 0.016 | 0.311 | 0.120 | |
0.60 | 0.171 | 0.017 | 0.344 | 0.124 | |
1.10 | 0.220 | 0.017 | 0.395 | 0.128 | |
1.30 | 0.232 | 0.016 | 0.409 | 0.141 | |
2.00 | 0.263 | 0.016 | 0.421 | 0.130 |
The mean observed AUCs (AUCOBS) and mean bias across the mean baseline rate of unscheduled visits (λ 0), and the level of informativeness of the unscheduled visit process (γ) for sample size (n) 100, four scheduled measurement occasions, and the standard deviation of scheduled visit timings (σ) of 0.1.
γ | λ 0 | Mean AUCOBS | Standard error | Mean bias | Standard error |
---|---|---|---|---|---|
0 | 0.05 | 0.002 | 0.002 | −0.003 | 0.079 |
0.10 | 0.006 | 0.003 | 0.004 | 0.078 | |
0.25 | 0.019 | 0.005 | −0.001 | 0.081 | |
0.40 | 0.032 | 0.007 | 0.003 | 0.085 | |
0.60 | 0.049 | 0.008 | −0.003 | 0.086 | |
1.10 | 0.082 | 0.010 | 0.001 | 0.091 | |
1.30 | 0.093 | 0.011 | 0.003 | 0.092 | |
2.00 | 0.125 | 0.012 | −0.003 | 0.098 | |
0.5 | 0.05 | 0.002 | 0.002 | 0.019 | 0.079 |
0.10 | 0.006 | 0.003 | 0.040 | 0.082 | |
0.25 | 0.020 | 0.005 | 0.094 | 0.088 | |
0.40 | 0.033 | 0.007 | 0.131 | 0.093 | |
0.60 | 0.049 | 0.008 | 0.155 | 0.093 | |
1.10 | 0.084 | 0.010 | 0.188 | 0.097 | |
1.30 | 0.095 | 0.012 | 0.189 | 0.101 | |
2.00 | 0.126 | 0.012 | 0.206 | 0.105 | |
1 | 0.05 | 0.004 | 0.002 | 0.046 | 0.084 |
0.10 | 0.008 | 0.003 | 0.103 | 0.094 | |
0.25 | 0.023 | 0.006 | 0.200 | 0.102 | |
0.40 | 0.037 | 0.008 | 0.257 | 0.117 | |
0.60 | 0.054 | 0.009 | 0.304 | 0.120 | |
1.10 | 0.087 | 0.012 | 0.362 | 0.126 | |
1.30 | 0.097 | 0.012 | 0.371 | 0.132 | |
2.00 | 0.129 | 0.014 | 0.406 | 0.132 |
The mean observed AUCs (AUCOBS) and mean bias across the mean baseline rate of unscheduled visits (λ 0), and the level of informativeness of the unscheduled visit process (γ) for sample size (n) 100, four scheduled measurement occasions, and the standard deviation of scheduled visit timings (σ) of 0.3.
γ | λ 0 | Mean AUCOBS | Standard error | Mean bias | Standard error |
---|---|---|---|---|---|
0 | 0.05 | 0.006 | 0.003 | −0.005 | 0.075 |
0.10 | 0.016 | 0.005 | 0.002 | 0.080 | |
0.25 | 0.048 | 0.008 | 0.001 | 0.082 | |
0.40 | 0.077 | 0.011 | 0.004 | 0.083 | |
0.60 | 0.108 | 0.012 | 0.003 | 0.085 | |
1.10 | 0.159 | 0.013 | 0.001 | 0.092 | |
1.30 | 0.173 | 0.013 | −0.003 | 0.093 | |
2.00 | 0.209 | 0.013 | −0.003 | 0.093 | |
0.5 | 0.05 | 0.007 | 0.003 | 0.020 | 0.078 |
0.10 | 0.018 | 0.005 | 0.037 | 0.082 | |
0.25 | 0.050 | 0.009 | 0.095 | 0.087 | |
0.40 | 0.078 | 0.011 | 0.127 | 0.093 | |
0.60 | 0.109 | 0.013 | 0.156 | 0.098 | |
1.10 | 0.160 | 0.014 | 0.181 | 0.101 | |
1.30 | 0.174 | 0.014 | 0.189 | 0.102 | |
2.00 | 0.209 | 0.013 | 0.209 | 0.104 | |
1 | 0.05 | 0.010 | 0.004 | 0.044 | 0.081 |
0.10 | 0.022 | 0.006 | 0.093 | 0.092 | |
0.25 | 0.055 | 0.010 | 0.199 | 0.108 | |
0.40 | 0.082 | 0.012 | 0.250 | 0.118 | |
0.60 | 0.111 | 0.013 | 0.303 | 0.122 | |
1.10 | 0.160 | 0.015 | 0.368 | 0.130 | |
1.30 | 0.173 | 0.014 | 0.375 | 0.137 | |
2.00 | 0.210 | 0.014 | 0.406 | 0.135 |
The mean observed AUCs (AUCOBS) and mean bias across the mean baseline rate of unscheduled visits (λ 0), and the level of informativeness of the unscheduled visit process (γ) for sample size (n) 100, four scheduled measurement occasions, and the standard deviation of scheduled visit timings (σ) of 0.6.
λ | λ 0 | Mean AUCOBS | Standard error | Mean bias | Standard error |
---|---|---|---|---|---|
0 | 0.05 | 0.014 | 0.004 | 0.002 | 0.078 |
0.10 | 0.031 | 0.007 | 0.001 | 0.076 | |
0.25 | 0.082 | 0.011 | 0.004 | 0.081 | |
0.40 | 0.121 | 0.012 | 0.001 | 0.086 | |
0.60 | 0.158 | 0.013 | −0.003 | 0.087 | |
1.10 | 0.211 | 0.013 | −0.001 | 0.089 | |
1.30 | 0.225 | 0.012 | −0.004 | 0.090 | |
2.00 | 0.254 | 0.011 | −0.007 | 0.094 | |
0.5 | 0.05 | 0.016 | 0.004 | 0.019 | 0.076 |
0.10 | 0.034 | 0.007 | 0.043 | 0.081 | |
0.25 | 0.084 | 0.011 | 0.098 | 0.089 | |
0.40 | 0.121 | 0.013 | 0.122 | 0.090 | |
0.60 | 0.158 | 0.014 | 0.153 | 0.094 | |
1.10 | 0.212 | 0.013 | 0.189 | 0.100 | |
1.30 | 0.225 | 0.013 | 0.196 | 0.105 | |
2.00 | 0.257 | 0.012 | 0.209 | 0.109 | |
1 | 0.05 | 0.020 | 0.006 | 0.052 | 0.088 |
0.10 | 0.040 | 0.009 | 0.098 | 0.091 | |
0.25 | 0.089 | 0.013 | 0.196 | 0.112 | |
0.40 | 0.124 | 0.014 | 0.259 | 0.119 | |
0.60 | 0.158 | 0.015 | 0.295 | 0.122 | |
1.10 | 0.210 | 0.015 | 0.366 | 0.135 | |
1.30 | 0.224 | 0.015 | 0.378 | 0.132 | |
2.00 | 0.257 | 0.013 | 0.399 | 0.131 |
References
1. Lin, H, Scharfstein, DO, Rosenheck, RA. Analysis of longitudinal data with irregular, outcome-dependent follow-up. J Roy Stat Soc B 2004;66:791–813. https://doi.org/10.1111/j.1467-9868.2004.b5543.x.Search in Google Scholar
2. Sun, L, Song, X, Zhou, J, Liu, LJ. Analysis of longitudinal data with informative observation times and a dependent terminal event. J Am Stat Assoc 2012;107:688–700. https://doi.org/10.1080/01621459.2012.682528.Search in Google Scholar
3. Pullenayegum, EM, Lim, LS. Longitudinal data subject to irregular observation: a review of methods with a focus on visit processes, assumptions, and study design. Stat Methods Med Res 2016;25:2992–3014. https://doi.org/10.1177/0962280214536537.Search in Google Scholar PubMed
4. Lokku, A, Lim, LS, Birken, CS, Pullenayegum, EM. Summarizing the extent of visit irregularity in longitudinal data. BMC Med Res Methodol 2020. (In Press).10.1186/s12874-020-01023-wSearch in Google Scholar PubMed PubMed Central
5. Vandenbroucke, JP, Elm, E, Altman, DG, Gøtzsche, PC, Mulrow, CD, Pocock, SJ, et al.. Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. Ann Intern Med 2007;147:163–94.10.1097/EDE.0b013e3181577511Search in Google Scholar PubMed
6. Schulz, K, Altman, D, Moher, D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. J Pharmacol Pharmacother 2010;1:100–7. https://doi.org/10.4103/0976-500x.72352.Search in Google Scholar PubMed PubMed Central
7. Farzanfar, D, Abumuamar, A, Kim, J, Sirotich, E, Wang, Y, Pullenayegum, EM. Longitudinal studies that use data collected as part of usual care risk reporting biased results: a systematic review. BMC Med Res Methodol 2017;17:133. https://doi.org/10.1186/s12874-017-0418-1.Search in Google Scholar PubMed PubMed Central
8. Liang, K, Zeger, SL. Longitudinal data analysis using generalized linear models. Biometrika 1986;73:13–22. https://doi.org/10.1093/biomet/73.1.13.Search in Google Scholar
9. Breslow, NE, Clayton, DG. Approximate inference in generalized linear mixed models. J Am Stat Assoc 1993;88:9–25. https://doi.org/10.1080/01621459.1993.10594284.Search in Google Scholar
10. Carsley, S, Borkhoff, CM, Maguire, JL, Birken, CS, Khovratovich, M, McCrindle, B, et al.. Cohort profile: the applied research group for Kids (TARGet Kids!). Int J Epidemiol 2014;44:776–88. https://doi.org/10.1093/ije/dyu123.Search in Google Scholar PubMed PubMed Central
11. Lim, LS, Pullenayegum, EM, Lim, L, Gladman, D, Feldman, B, Silverman, E. From childhood to adulthood: the trajectory of damage in patients with juvenile-onset systemic Lupus Erythematosus. Arthritis Care Res 2017;69:1627–35. https://doi.org/10.1002/acr.23199.Search in Google Scholar PubMed
12. Rubin, DB. Multiple imputation for nonresponse in surveys. New York City, USA: Wiley; 1987.10.1002/9780470316696Search in Google Scholar
13. Robins, JM, Rotnitzky, A, Zhao, LP. Estimation of regression coefficients when some regressors are not always observed. J Am Stat Assoc 1994;89:846–66. https://doi.org/10.1080/01621459.1994.10476818.Search in Google Scholar
14. Gasparini, A, Abrams, KR, Barrett, JK, Major, RW, Sweeting, MJ, Brunskill, NJ, et al.. Mixed-effects models for health care longitudinal data with an informative visiting process: a Monte Carlo simulation study. Stat Neerl 2020;74:5–23. https://doi.org/10.1111/stan.12188.Search in Google Scholar PubMed PubMed Central
15. Su, W, Jiang, H. Semiparametric analysis of longitudinal data with informative observation times and censoring times. J Appl Stat 2018;45:1978–93. https://doi.org/10.1080/02664763.2017.1403574.Search in Google Scholar
16. Song, X, Mu, X, Sun, L. Regression analysis of longitudinal data with time-dependent covariates and informative observation times. Scand J Stat 2012;39:248–58. https://doi.org/10.1111/j.1467-9469.2011.00776.x.Search in Google Scholar
17. Sun, L, Mu, X, Sun, Z, Tong, X. Semiparametric analysis of longitudinal data with informative observation times. Acta Math Appl Sin (Engl Ser) 2011;27:29–42. https://doi.org/10.1007/s10255-011-0037-2.Search in Google Scholar
18. Liang, Y, Lu, W, Ying, Z. Joint modeling and analysis of longitudinal data with informative observation times. Biometrics 2009;65:377–84. https://doi.org/10.1111/j.1541-0420.2008.01104.x.Search in Google Scholar PubMed
19. Cook, RJ, Lawless, JF. Analysis of repeated events. Stat Methods Med Res 2002;11:141–66. https://doi.org/10.1191/0962280202sm278ra.Search in Google Scholar PubMed
20. Pullenayegum, EM, Lokku, A. Summary measures for quantifying the extent of visit irregularity in longitudinal data. Toronto, Canada: University of Toronto, ProQuest Dissertations Publishing; 2020:28090748 p.Search in Google Scholar
21. Little, R, Rubin, D. Statistical analysis with missing data, 2nd ed. New York City, USA: Wiley; 2014.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles
- Doubly robust adaptive LASSO for effect modifier discovery
- Increasing the efficiency of randomized trial estimates via linear adjustment for a prognostic score
- Review
- Review and comparison of treatment effect estimators using propensity and prognostic scores
- Research Articles
- Error rate control for classification rules in multiclass mixture models
- Regression trees and ensembles for cumulative incidence functions
- Causal inference under over-simplified longitudinal causal models
- Causal inference under interference with prognostic scores for dynamic group therapy studies
- Bayesian multi-response nonlinear mixed-effect model: application of two recent HIV infection biomarkers
- A Bayesian semiparametric accelerate failure time mixture cure model
- Quantifying the extent of visit irregularity in longitudinal data
- An improved method for analysis of interrupted time series (ITS) data: accounting for patient heterogeneity using weighted analysis
- A robust hazard ratio for general modeling of survival-times
- Penalized likelihood estimation of the proportional hazards model for survival data with interval censoring
- A parametric approach to relaxing the independence assumption in relative survival analysis
- The number of response categories in ordered response models
- A comparison of joint dichotomization and single dichotomization of interacting variables to discriminate a disease outcome
- Spike detection for calcium activity
Articles in the same Issue
- Frontmatter
- Research Articles
- Doubly robust adaptive LASSO for effect modifier discovery
- Increasing the efficiency of randomized trial estimates via linear adjustment for a prognostic score
- Review
- Review and comparison of treatment effect estimators using propensity and prognostic scores
- Research Articles
- Error rate control for classification rules in multiclass mixture models
- Regression trees and ensembles for cumulative incidence functions
- Causal inference under over-simplified longitudinal causal models
- Causal inference under interference with prognostic scores for dynamic group therapy studies
- Bayesian multi-response nonlinear mixed-effect model: application of two recent HIV infection biomarkers
- A Bayesian semiparametric accelerate failure time mixture cure model
- Quantifying the extent of visit irregularity in longitudinal data
- An improved method for analysis of interrupted time series (ITS) data: accounting for patient heterogeneity using weighted analysis
- A robust hazard ratio for general modeling of survival-times
- Penalized likelihood estimation of the proportional hazards model for survival data with interval censoring
- A parametric approach to relaxing the independence assumption in relative survival analysis
- The number of response categories in ordered response models
- A comparison of joint dichotomization and single dichotomization of interacting variables to discriminate a disease outcome
- Spike detection for calcium activity