
A Appendix

A.1 Example of transformation

Let D be the following dataset consisting of n = 5 individuals:

i xi zi δi
1 1.3 13 1
2 0.5 22 0
3 0.3 24 1
4 −1.1 45 1
5 −0.9 81 0

Table 5: An example dataset D for which we will demonstrate the transformation.

We initialize D̃← [ ] to be an empty multiset and set L← [1.3,0.5,0.3,−1.1,−0.9]
and AR← [1.3,0.5,0.3,−1.1,−0.9]. We loop over the events i = 1, . . . ,4.

At the first time z1 = 13 it holds that δ1 = 1. We compute the joint distribu-
tion PUU ′ that solves the optimal transport problem between U ∼Uniform(AR) and
U ′ = Uniform(L). Since it holds that AR = L, it follows that PUU ′ is the matrix:

P←

x1 x2 x3 x4 x5


0.2 0. 0. 0. 0. x1
0. 0.2 0. 0. 0. x2
0. 0. 0.2 0. 0. x3
0. 0. 0. 0.2 0. x4
0. 0. 0. 0. 0.2 x5

Conditioning P on U = x1 yields v← [1,0,0,0,0], corresponding to the first
row of P. Sampling from L with distribution v yields x̃← 1.3 = x1 with probability
1. We update D̃← [(1.3,13)]. We also replace L← [0.5,0.3,−1.1,−0.9] and AR←
[0.5,0.3,−1.1,−0.9]. We move to the next event time.

At z2 = 22 we note that δ2 = 0, so we only remove x2 = 0.5 from AR and
update AR← [0.3,−1.1,−0.9], while leaving L and D̃ unchanged.

At the third event z3 = 24 it holds that δ3 = 1 and AR = [0.3,−1.1,−0.9]
and L = [0.5,0.3,−1.1,−0.9]. We couple a random variable U ∼ Uniform(AR)
and U ′ = Uniform(L) using optimal transport. The resulting distribution equals:



P←

x2 x3 x4 x5( )0.25 0.083 0. 0. x3
0. 0. 0.25 0.083 x4
0. 0.167 0. 0.167 x5

We condition this distribution on U = x3 = 0.3. This corresponds to the first
row of P, and the resulting distribution over L equals: v← [0.75,0.25,0,0]. We now
sample a point from this distribution and, suppose, it turns out to be x̃← 0.5 = x2,
which has 75% chance. We update D̃ ← [(1.3,13),(0.5,24)]. We also replace
L← [0.3,−1.1,−0.9] and AR← [−1.1,−0.9] before moving to the next event.

At i = 4 it holds that z4 = 45 and δ4 = 1. We note AR = [−1.1,−0.9]
and L = [0.3,−1.1,−0.9]. We couple a random variable U ∼ Uniform(AR) and
U ′ = Uniform(L) using optimal transport. The resulting distribution equals:

P←
x3 x4 x5( )
0. 0.333 0.167 x4

0.333 0. 0.167 x5

We condition P on U = x4 = −1.1, resulting in v← [0,0.67,0.33]. In this
case our sample turns out to be x̃← −1.1 = x4, which happens with probability
0.67. Hence D̃← [(1.3,13),(0.5,24),(−1.1,45)]. We also replace L← [0.3,−0.9]
and AR← [−0.9].

We have now finished the loop i= 1, . . . ,4. Since z5 = 81 and L← [0.3,−0.9]
we add the two datapoints (0.3,81) and (−0.9,81) to D̃. The finalized transformed
dataset equals

D̃← [(1.3,13),(0.5,24),(1.1,45),(0.3,81),(−0.9,81)].

A.2 Proof of Lemma 4.1

Let D = ((xi,zi,δi))
n
i=1 where zi is increasing, and assume for convenience there are

no ties in z. Denote by k := |{i : δi = 1}| the number of observed events. We do not
view D as random in this section. Applying the optimal transport algorithm results
in a random, transformed dataset, which we denote by T (D). Note that the times
and covariates in T (D) are not random, since they are determined by D, but the way
in which they are paired up in the transformation T may be random. The same set
of times and covariates is obtained in π(T (D)) and T (π(D)) for any π ∈ Sn. Denote
the times in T (D) by t1≤ ·· · ≤ tn and define a standard pairing D̃= ((xi, ti))

n
i=1,. We

will often use that T (D),π(T (D)),T (π(D)) are all permutations (possibly random)



of D̃. Finally, define h : {1, . . . ,k}→ {1, . . . ,n}, so that ti = zh(i), which says that the
i-th observed event is the h(i)-th overall event. As a last piece of notation, we will
use Π to denote a uniform random permutation, and π to be a specific instance of
a permutation. In particular we denote Πi = Π(i) and Π1:h(i)−1 = [Π1, . . . ,Πh(i)−1].
This corresponds to the covariates in the permuted dataset Π(D) until just before
the time of the i-th observed event.

We prove the theorem by showing that the left- and right-hand sides of
Lemma 4.1 are both equal in distribution to[

T (D),Π1(D̃), . . . ,ΠB(D̃)
]
.

This is done in separate lemmas.

Lemma A.1.[
T (D),Π1(T (D)), . . . ,ΠB(T (D))

] d
=
[
T (D),Π1(D̃), . . . ,ΠB(D̃)

]
Proof. By the above remarks we see that T (D) = ΠD(D̃) for some random permu-
tation ΠD. (Note: The randomness in ΠD comes from the transformation T , not
from the dataset D, which is fixed.) It suffices to show that[

Π
D,Π1 ◦Π

D, . . . ,ΠB ◦Π
D] d

=
[
Π

D,Π1, . . . ,ΠB] .
This is easy to see by conditioning on ΠD. Let π0, . . .πB be arbitrary permutations.
Then

P
(
Π

D = π
0,Π1 ◦Π

D = π
1, . . . ,ΠB ◦Π

D = π
B)

=P
(
Π

1 ◦π
0 = π

1, . . . ,ΠB ◦π
0 = π

B ∣∣ Π
D = π

0)P(ΠD = π
0)

=P
(
Π

1 = π
1 ◦ (π0)−1, . . . ,ΠB = π

B ◦ (π0)−1)P(ΠD = π
0).

Since (Π1, . . . ,ΠB) are independent uniform permutations, this is the same as

P
(
Π

D = π
0,Π1 = π

1, . . . ,ΠB = π
B).

We now consider the effect of first permuting and then transforming the
data.

Lemma A.2. Let Π be a uniformly chosen permutation of Sn and let T be defined
through optHSIC. It holds that

T (Π(D))
d
= Π(D̃).



Proof. By the comments above, we can define a random permutation Σ by Σ(D̃) :=
T (Π(D)). We wish to show that P(Σ = σ) = 1/n! for all σ ∈ Sn. To do so, we will
condition on events of the form

{Π1:h(i)−1 = π1:h(i)−1},

which determines the covariates in the permuted dataset up to (just before) the time
of the i-th observed event. We also condition on Σ1:i−1, fixing the covariates in the
transformed dataset, up to the i-th observed event. Note that this conditioning fixes
the coupling defined in the optimal transport algorithm. Namely, we let Ỹ and X̃
be the coupled random variables resulting from optimal transport between choos-
ing uniformly from the covariates indexed by [n]\{σ1:i−1} and choosing uniformly
from the covariates indexed by [n]\{π1:h(i)−1} respectively. Then, the transforma-
tion samples U ′ conditional on U = xΠh(i) . Because Π is a uniformly chosen permu-
tation, given the events we conditioned on so far, U is uniformly chosen from the
covariates indexed by [n]\{π1:h(i)−1}. By the definition of the coupling, U ′ is thus
uniform on the covariates indexed by [n]\{σ1:i−1}. That is, Σi is chosen uniformly
from [n]\{σ1:i−1}. Mathematically, for any σ ,π ∈ Sn so that the conditioning event
has nonzero probability, it holds that

P(Σi = σi
∣∣ Π1:h(i)−1 = π1:h(i)−1,Σ1:i−1 = σ1:i−1)

=
1

n− i+1
.

Having shown that, conditioned on what happened in both the permuted dataset,
and the synthetic dataset, the new synthetic covariate is chosen uniformly from
those not chosen before, we aim to derive a recurrence relation so as to apply this
result at each successive time. To this end note that

P(Σi:k = σi:k
∣∣ Π1:h(i)−1 = π1:h(i)−1,Σ1:i−1 = σ1:i−1)

=P(Σi+1:k = σi+1:k
∣∣ Π1:h(i)−1 = πh(i)−1,Σ1:i = σ1:i)

×P(Σi = σi
∣∣ Π1:h(i)−1 = π1:h(i)−1,Σ1:i−1 = σ1:i−1)

=
1

n− i+1
P(Σi+1:k = σi+1:k

∣∣ Π1:h(i)−1 = πh(i)−1,Σ1:i = σ1:i)

=
1

n− i+1 ∑
πh(i):h(i+1)−1

P(Σi+1:k = σi+1:k
∣∣ Π1:h(i+1)−1 = π1:h(i+1)−1,Σ1:i = σ1:i)

×P(Πh(i):h(i+1)−1 = πh(i):h(i+1)−1
∣∣ Π1:h(i)−1 = π1:h(i)−1,Σ1:i = σ1:i)



where we use the previously established equality in the first equality. This allows
us to compute

P(Σ1:k = σ1:k)

= ∑
π1:h(1)−1

P(Σ1:k = σ1:k
∣∣ Π1:h(1)−1 = π1:h(1)−1)

×P(Π1:h(1)−1 = π1:h(1)−1)

=
1
n ∑

π1:h(1)−1

∑
πh(1):h(2)−1

P(Σ2:k = σ2:k
∣∣ Π1:h(2)−1 = π1:h(2)−1,Σ1 = σ1)

×P(Πh(1):h(2)−1 = πh(1):h(2)−1
∣∣ Π1:h(1)−1 = π1:h(1)−1,Σ1 = σ1)

×P(Π1:h(1)−1 = π1:h(1)−1)

=
1

n(n−1) · · ·(n− k+2)
× ∑

π1:h(1)−1

· · · ∑
πh(k−1):h(k)−1

P(Σk = σk
∣∣ Π1:h(k)−1 = π1:h(k)−1,Σ1:k−1 = σ1:k−1)

×P(Πh(k−1):h(k)−1 = πh(k−1):h(k)−1
∣∣ Π1:h(k−1)−1 = π1:h(k−1)−1,Σ1:k−1 = σ1:k−1)

×·· ·
×P(Π1:h(1)−1 = π1:h(1)−1)

=
1

n(n−1) · · ·(n− k+1)

Since the indices Σ(k+1):n are added in uniform random order by definition of the
transformation algorithm, this concludes the lemma.

Lemma A.3.[
T (D),T1(Π

1(D)), . . . ,TB(Π
B(D))

] d
=
[
T (D),Π1(D̃), . . . ,ΠB(D̃)

]
Proof. The left hand side can be written as [ΠD(D̃),Σ1(D̃), . . . ,ΣB(D̃)]. The lemma
above shows that the Σi for i ≥ 1 have the correct distributions. We only need to
show they and ΠD are a sequence of mutually independent permutations. But Σi is
determined completely by Πi and Ti, and ΠD is determined by T . The proof follows
since all these variables are mutually independent.

Lemma A.1 and A.3 together prove the theorem.



A.3 Proof of Theorem 4.1

The proof of Theorem 5.2 shows that, if C ⊥⊥ X , then

(D,Π1(D), . . . ,ΠB(D))

is an exchangeable vector. In particular, if T,T1 . . . ,TB are independent identically
distributed transformations of the data, then also

(T (D),T1(Π1(D)), . . . ,TB(ΠB(D)))

is exchangeable. We let T be the transformation of the data using the transformation
of the data. By Lemma 4.1 the above vector is equal in distribution to

(T (D),Π1(T (D)), . . . ,ΠB(T (D))),

implying that the latter is also exchangeable. For an arbitrary statistic H,

[H(T (D)),H(Π1(T (D))), . . . ,H(ΠB(T (D)))]

is thus exchangeable too. In particular, the rank of the first entry is uniformly dis-
tributed on 1, . . . ,B+1, which proves the theorem.

A.4 Proof of Theorem 5.1

Proof. This proof is based on the proof of Lemma 3 of Berrett and Samworth
(2019). Since H0 : X ⊥⊥Y implies that (Xi,Yj)

d
= (Xi,Yi) it is easy to see that πD d

=D,
for any permutation π . Writing Π0 = id, and Π1, . . . ,ΠB for i.i.d. uniform permu-
tations, we aim to show that, for any permutation σ of {0,1, . . . ,B}(

Π
0(D),Π1(D), . . . ,ΠB(D)

) d
= (Πσ0(D),Πσ1(D), . . . ,ΠσB(D)) ;

that is, that the random vector on the left is exchangeable. We observed above that
the first entries are equal in distribution. It remains to show that the other entries of
the right-hand side are uniform and independently chosen permutations of the first
entry. Indeed, writing Πσ0(D) = D̃, we can rewrite the right-hand side as:(

D̃,Πσ1(Πσ0)−1(D̃), . . . ,ΠσB(Πσ0)−1(D̃)
)
.

So it remains to show that
(
Πσ j(Πσ0)−1,1 ≤ j ≤ B

)
are independent uniformly

chosen permutations of Sn. If σ0 = 0, then Πσ0 = id and D̃ = D and the result is
obvious. Now assume that σi = 0 for i≥ 1.



P
(
Π

σ1(Πσ0)−1 = π
1, . . . ,(Πσ0)−1 = π

i, . . . ,ΠσB(Πσ0)−1 = π
B)

=P
(
Π

σ1π
i = π

1, . . . ,ΠσBπ
i = π

B ∣∣ (Πσ0)−1 = π
i)P
(
(Πσ0)−1 = π

i)
=P
(

Π
σ(1) = π

1(π i)−1
)
. . .P

(
Π

σ(B) = π
B(π i)−1

)
P
(
Π

σ0)−1 = π
i)

=(n!)−B

It follows that the vector (
D,Π1(D), . . . ,ΠB(D)

)
is indeed exchangeable. Letting H denote any arbitrary function on data, it follows
that: (

H(D),H(Π1(D)), . . . ,H(ΠB(D))
)

is also exchangeable. If we break ties at random, this implies that every ordering of
the B+1 elements is equally likely. In particular, the rank of an individual element
is uniformly distributed on {1, . . . ,B+1}, and the result follows.

A.5 Proof of Theorem 5.2

Proof. When we assume that C ⊥⊥ X then, under the null hypothesis H0 : T ⊥⊥ X , it
follows that the pair (T,C)⊥⊥ X . As (Z,D) is (T,C)–measurable, also (Z,D)⊥⊥ X .
If we write Y = (Z,D), then Theorem 5.1 applies.

A.6 Proof of Lemma 5.1

The following computation shows that EW f (X ,Z) = E f (X ,T ) for all functions
f . We denote the distribution of (X ,T,C) on X ×R≥0×R≥0 by µXTC. As we are
assuming independence of T and C given X we can decompose µXTC = µXT ×µC|X .



EW f (X ,Z) = E1{W 6= 0} f (X ,Z)

=
∫
X ×R≥0×R≥0

1{c≥ t} 1
g(t,x)

f (x, t)µXTC(dx,dt,dc)

=
∫
X ×R≥0

∫
∞

t

1
g(t,x)

f (x, t)µC|x(dc)µXT (dx,dt)

=
∫
X ×R≥0

1
g(t,x)

f (x, t)
∫

∞

t
µC|x(dc)µXT (dx,dt)

=
∫
X ×R≥0

f (x, t)µXT (dx,dt)

= E f (X ,T ).

where the penultimate equality follows because
∫

∞

t µC|x(dc) = P(C > t|X = x) =
g(t,x).

A.7 Proof of Lemma 5.2

Estimating the survival of the censoring distribution amounts to replacing δ by
1−δ in the Kaplan Meier Survival curve. This yields:

P̂(C > zk) =
k

∏
i=1

(
n− i

n− i+1

)1−δi

Thus the probability of being uncensored by time zk equals:

P̂(C ≥ zk) =
k−1

∏
i=1

(
n− i

n− i+1

) k−1

∏
i=1

(
n− i

n− i+1

)−δi

=
n− k+1

n

k−1

∏
i=1

(
n− i

n− i+1

)−δi

Note now that

1
P̂(C ≥ zk)

= n×
k−1

∏
i=1

(
n− i

n− i+1

)δi
(

1
n− k+1

)
= n×wk

for points that are uncensored. That is, Kaplan–Meier weights equal a re-scaled
inverse of the probability of being uncensored by that time.



A.8 Proof of Theorem 5.3

Proof. The squared norm, written as the inner product with itself, can be expanded
into three terms a1 + a2− 2a3 that we compute in turn. We denote by A ◦B the
entrywise product of the matrices A and B. Using the Hadamard product property
α> (A◦B)β = tr

(
DαADβ B>

)
where Dα = diag(α), Dβ = diag(β ), we have the

following identities:

a1 =
n

∑
i=1

n

∑
j=1

wiw jk(xi,x j)l(zi,z j)

= w> (K ◦L)w
= tr(DwKDwL) ;

a2 =
n

∑
i=1

n

∑
j=1

n

∑
r=1

n

∑
s=1

wiw jwrwsk(xi,x j)l(zr,zs)

= w>Kww>Lw

= tr
(

ww>Kww>L
)

;

a3 =

〈
n

∑
i=1

wiK((xi,zi), ·),
n

∑
r=1

n

∑
s=1

wrwsK((zr,zs), ·)

〉

=
n

∑
i=1

wi

(
n

∑
j=1

w jk
(
xi,x j

))( n

∑
r=1

wrl (zi,zr)

)
= w> (Kw◦Lw)

= tr
(

DwKww>L
)
.

As the entrywise product is symmetric in its arguments, we see that also

a3 = tr
(

DwLww>K
)
= tr

(
ww>KDwL

)
.

Thus the weighted HSIC is

a1 +a2−2a3 = tr(DwKDwL)− tr(DwKww>L)− tr(ww>KDwL)

+ tr(ww>Kww>L)

= tr
((

Dw−ww>
)

K
(

Dw−ww>
)

L
)

= tr(HwKHwL) ,

with Hw =
(
Dw−ww>

)
. In the standard HSIC case w = 1

n(1,1, . . . ,1) := 1n and,
D = 1

n I, so that Hw = 1
n I−1n1>n is the standard (scaled) centering matrix.



A.9 Using multiple transformations

We list 4 ways of combining p-values.

Method 1: Use a Bonferroni correction and reject H0 if for the smallest p-value, denoted
by p(1), it holds that p(1) ≤ α/m.

Method 2: Make the following (random) rejection decision: reject H0 with probability
∑

m
i=1 1{pi ≤ α}/m, and accept H0 otherwise.

Method 3: Fix β ≤ α and reject if ∑
m
i=1 1{pi ≤ β}/m ≥ β/α . For example, reject if

∑
m
i=1 1{pi ≤ 3α/4}/m≥ 3/4.

Method 4: Reject if 2∑
m
i=1 pi/m≤ α . This has the advantage that it results in a quantity

that can be used as a p-value: 2∑
m
i=1 pi/m.

Throughout this section, assume that the null hypothesis holds. Let p be the
p-value resulting from sampling a dataset D once, followed by running optHSIC
once (so exactly one transformation and one permutation test on the transformed
data). We aim to show that the methods 1 and 2 above have correct type 1 error
under the assumption that PH0(p≤α)≤α for α ∈ [0,1] which we proved for C⊥⊥X
and expect to be (approximately) true for C 6⊥⊥ X . We aim to show that methods 3
and 4 have asymptotically (as the number of p-values goes to infinity) correct type
1 error rate under the assumption that p ∼ Unif[ 1

B+1 , . . . ,
B+1
B+1 ], which we proved

for C ⊥⊥ X and expect to be (approximately) true also for C 6⊥⊥ X . See Table 1.
While method 2 is less conservative, it is a random rejection decision which is less
desirable. We can imagine Method 3 being not too conservative when β = 3α/4.

A.9.1 Method 1

Assume it holds that PH0(p ≤ α) ≤ α (see comments at the start of the section).
Let p(1), . . . , p(m) be the p-values obtained from applying optHSIC m times to D,
in ascending order. The Bonferroni correction procedure rejects H0 if p(1) ≤ α/m.
This has the correct type 1 error probability because by the union bound under the
null hypothesis

PH0(reject) = PH0(p(1) ≤ α/m)

≤ mPH0(p1 ≤ α/m)

≤ α.



A.9.2 Method 2

Assume it holds that PH0(p ≤ α) ≤ α (see comments at the start of the section).
Given the p-values p1, . . . , pm, the second method makes a random rejection de-
cision in the following way: Reject H0 with probability ∑

m
i=1 1{pi ≤ α}/m, and

accept H0 otherwise. This has correct type 1 error because

PH0(reject) = EH0 [P(reject|p1, . . . , pm)]

= EH0 [
m

∑
i=1

1{pi ≤ α}/m]

= PH0(p1 ≤ α)

≤ α.

A.9.3 Method 3

Fix β ≤ α and reject if ∑
m
i=1 1{pi ≤ β}/m≥ β/α . An example would be to set β =

α/2 in which case we reject if ∑
m
i=1 1{pi ≤ α/2} ≥ 1

2 . Assume PH0(p≤ α)≤ α .
This is an approximate method. The ‘ideal’ and practically impossible

method is to reject if P(p ≤ β |D) ≥ β/α . We show that this ‘ideal’ method has
the correct type 1 error:

PH0(reject) = PH0(A)

where A is the event that

A = {D : P(p≤ β |D)≥ β/α}.

Assume by contradiction that PH0(A)> α . Then it must hold that

PH0(p≤ β ) = EH0[P(p≤ β |D)]

≥ EH0[1AP(p≤ β |D)]

> αβ/α

= β .

which contradicts that PH0(p ≤ β ) ≤ β . Hence it must hold that PH0(A) ≤ α . Be-
cause in practice P(p ≤ β |D) is unkown, we can estimate it by ∑

m
i=1 1{pi ≤ β}/m

and reject if ∑
m
i=1 1{pi ≤ β}/m ≥ β/α . Since ∑

m
i=1 1{pi ≤ β}/m→ P(p ≤ β |D)

as m→ ∞ it is easy to see the approximate method is asymptotically correct.



A.9.4 Method 4

Method 4 is to reject if 2∑
m
i=1 pi/m ≤ α . This is an approximation of the ‘ideal’

and practically impossible method of rejecting H0 if D is such that E(p|D)≤ α/2.
We assume it holds that p∼Uniform[0,1]: if we prove it under the assumption p∼
Uniform[0,1] the result also follows under the assumption p∼Uniform[ 1

B+1 , . . . ,
1

B+1 ]
since the latter distribution corresponds to a more conservative test. We now show
that this ‘ideal’ method has the correct type 1 error rate. Note

PH0(reject) = PH0(A)

where A is the event that

A = {D : E(p|D)≤ α/2}.

Define the following family of distributions:

MA = (µD)D∈A

where

µD([a,b]) := P(p ∈ [a,b]|D).

We verify that the family MA and the set A satisfy three conditions:
Condition 1: For all µD ∈MA it holds that

µD([0,1]) = 1.

Condition 2: For all µD ∈MA it holds that∫
[0,1]

xµD(dx)≤ α/2

by definition of A.
Condition 3: For all 0≤ a≤ b≤ 1

EH0[1{D ∈ A}µD([a,b])] = EH0[1{D ∈ A}P(p ∈ [a,b]|D)]

≤ EH0[P(p ∈ [a,b]|D)]

= (b−a)

We now define the νA to be an ‘average’ of the distributions in MA:

νA([a,b]) = EH0[1{D ∈ A}µD([a,b])]/PH0(A)



It is easy to see νA satisfies condition 1:

νA[0,1] = EH0[1{D ∈ A}µD([0,1])]/PH0(A)
= 1.

To see νA satisfies condition 2 note that∫
[0,1]

xνA(dx) =
∫
[0,1]

xEH0[1{D ∈ A}µD(dx)]/PH0(A)

= EH0[1{D ∈ A}
∫
[0,1]

xµD(dx)]/PH0(A)

≤ EH0[1{D ∈ A}α/2]/PH0(A)
= α/2.

To see νA satisfies condition 3 note that

E ′H0
(1{D′ ∈ A}νA[a,b]) = PH0(A)νA[a,b]

= E ′H0
(1{D′ ∈ A}EH0[1{D ∈ A}µD([a,b])])/PH0(A)

≤ EH0(1{D
′ ∈ A}(b−a))/PH0(A)

= b−a.

Here E ′H0
denotes expectation with respect to D′ and EH0 with respect to D. Note

condition 1 says that νA is a probability measure, condition 2 says its expectation is
less than α/2 and condition 3 that vA is dominated by the measure defined by the
uniform density 1/PH0(A).

Thus, if PH0(A) = β , then νA satisfies the three conditions above, with β

in the third condition. We now show that there is a maximum value β ? so that if
PH0(A) = β > β ?, then it is impossible for any distribution ν to satisfy the three
conditions above.

We first show β ? ≥ α. Assume that PH0(A) = α . If we let να be the uniform
probability measure on [0,α], then it is clear that the first two conditions are met:
it is a valid probability distribution (condition 1), the expectation is exactly α/2
(condition 2). The third condition is met since for 0≤ a≤ b≤ α it holds that

EH0 [1{D ∈ A}να([a,b])] = PH0(A)(b−a)/α = b−a

because by assumption PH0(A) = α .
We now need to show that if β > α there does not exist a distribution ν

that satisfies the three conditions. To that end, note first that if ν satisfies the three
conditions for β , then it also satisfies the conditions for any β ′ such that β ′ < β



(note PH0(A) only appears in the third condition). So in particular such ν would
have to satisfy the conditions also with β = α . However, to change the distribution
να defined above, one cannot place more mass in the region [0,α] by condition
3, which says ν needs to be dominated by the measure defined by the uniform
density 1/PH0(A). On the other hand, if one removes mass from [0,α] then one
automatically increases the mean of the distribution, which violates condition 2,
since the mean of να = α/2. We conclude that β ? = α . The type 1 error of the
‘ideal’ method is thus at most α .

Since ∑
m
i=1 pi/m → E(p|D) as m → ∞ it is easy to see the approximate

method has asymptotically correct type 1 error rate. This method has the advan-
tage that it results in a combined p-value: 2∑

m
i=1 pi/m, whereas the other methods

only lead to rejection decisions. The p-value will be conservative if there is little
randomness in the dataset. In the case there is no censoring, the p-value is a factor 2
bigger than necessary. However, the Bonferroni correction would result in a p-value
that is a factor m bigger than necessary (where m, the number of transformations
used, which may be much larger than 2).

A.10 Tables

A.10.1 Type 1 error rates
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Figure 11: A histogram and a qq-plot of the p-values obtained from optHSIC for
distribution D.6 of Table 2, in which C 6⊥⊥ X , with a sample size of n = 200. Data
was sampled 1.2 million times and on each sample the optHSIC test was performed,
resulting in 1.2 million p-values. These plots indicate that despite the fact that there
was a strong dependence between C and X , the p-values returned by optHSIC are
approximately Uniform[0,1].



n = 40 80 120 160 200 240 280 320 360 400

D.1 0.048 0.050 0.051 0.052 0.052 0.049 0.047 0.054 0.051 0.049
D.2 0.048 0.051 0.047 0.047 0.049 0.051 0.048 0.054 0.050 0.047
D.3 0.243 0.461 0.630 0.774 0.860 0.909 0.953 0.970 0.985 0.991
D.4 0.142 0.232 0.343 0.487 0.610 0.734 0.812 0.880 0.932 0.959
D.5 0.075 0.116 0.142 0.168 0.210 0.243 0.278 0.316 0.357 0.397
D.6 0.932 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
D.7 0.308 0.594 0.761 0.856 0.906 0.937 0.960 0.971 0.980 0.984
D.8 0.078 0.122 0.152 0.211 0.264 0.307 0.355 0.388 0.439 0.467

Table 6: The rejection rate of zHSIC in against the distributions D.1-8 of Table 2.

n = 40 80 120 160 200 240 280 320 360 400

D.1 0.045 0.047 0.049 0.050 0.049 0.051 0.049 0.054 0.048 0.049
D.2 0.050 0.047 0.048 0.047 0.050 0.048 0.047 0.045 0.048 0.049
D.3 0.079 0.166 0.235 0.326 0.410 0.466 0.540 0.597 0.658 0.700
D.4 0.161 0.204 0.232 0.270 0.309 0.350 0.394 0.456 0.506 0.549
D.5 0.057 0.084 0.110 0.131 0.163 0.191 0.216 0.258 0.274 0.299
D.6 0.267 0.672 0.900 0.971 0.990 0.998 0.999 0.999 1.000 1.000
D.7 0.071 0.107 0.143 0.192 0.260 0.305 0.369 0.412 0.480 0.527
D.8 0.057 0.078 0.081 0.095 0.120 0.142 0.153 0.162 0.177 0.190

Table 7: The rejection rate of wHSIC in against the distributions D.1-8 of Table 2.

n = 40 80 120 160 200 240 280 320 360 400

D.1 0.056 0.054 0.050 0.047 0.055 0.048 0.048 0.055 0.050 0.051
D.2 0.055 0.056 0.055 0.050 0.055 0.051 0.049 0.050 0.052 0.050
D.3 0.057 0.056 0.051 0.053 0.054 0.051 0.046 0.057 0.048 0.050
D.4 0.057 0.061 0.050 0.051 0.054 0.058 0.049 0.053 0.051 0.051
D.5 0.058 0.058 0.055 0.052 0.053 0.053 0.048 0.054 0.048 0.049
D.6 0.053 0.051 0.051 0.050 0.046 0.048 0.057 0.053 0.054 0.055
D.7 0.148 0.094 0.084 0.062 0.063 0.061 0.058 0.055 0.060 0.058
D.8 0.143 0.086 0.074 0.064 0.067 0.058 0.059 0.058 0.061 0.060

Table 8: The rejection rate of the Cox proportional hazards likelihood ratio test in
against the distributions D.1-8 of Table 2.



A.10.2 Rejection rate under varying censoring regimes

D. Z|X C|X X
1 Exp(mean = exp(X/5)) Exp(mean = θ) N(0,1)
2 Exp(mean = exp(X2)/5) Exp(mean = θ exp(X)) N(0,1)
3 Weib(shape = 1.75X +3.25) Exp(mean = θX2) Unif[−1,1]
4 N(mean = 100−X ,var = 2X +5.5) 82+Exp(mean = θ) Unif[−1,1]
5 Exp(mean = exp(1T X/30)) Exp(mean = θ) N10(0,cov = Σ10)
6 Exp(mean = exp(X4/7)) Exp(mean = θ exp(1T X/30)) N10(0,cov = Σ10)
7 Exp(mean = exp(X2

4 /20)) Exp(mean = θ exp(X2
2 )/20) N10(0,cov = Σ10)

8 Exp(mean = exp(X2
10 +2X8)/20) Exp(mean = θ exp(X2/7)) N10(0,cov = Σ10)

Table 9: The parametrized distributions to test the power under different censoring
rates. Here Σ10 = MMT where M is a 10× 10 matrix of i.i.d. standard normal
entries. M is sampled once and then kept fixed. The parameter θ varies such that
20,40,60,80,100% of the individuals are observed (i.e. ∆ = 1). The sample size is
n = 200 in each case.



%∆ = 1 20% 40% 60% 80% 100%

D.1 Cph 0.243 0.422 0.565 0.705 0.753
optHSIC 0.229 0.382 0.501 0.634 0.699
wHSIC 0.038 0.062 0.182 0.395 0.703
zHSIC 0.066 0.168 0.329 0.525 0.701

D.2 Cph 0.180 0.267 0.268 0.225 0.108
optHSIC 0.087 0.171 0.258 0.378 0.686

D.3 Cph 0.073 0.056 0.107 0.223 0.288
optHSIC 0.242 0.177 0.399 0.886 0.968

D.4 Cph 0.187 0.091 0.064 0.046 0.039
optHSIC 0.346 0.224 0.275 0.509 0.779
wHSIC 0.138 0.285 0.452 0.654 0.770
zHSIC 0.105 0.172 0.274 0.410 0.759

D.5 Cph 0.315 0.487 0.610 0.705 0.836
optHSIC 0.268 0.439 0.546 0.629 0.775
wHSIC 0.055 0.072 0.169 0.409 0.786
zHSIC 0.083 0.229 0.362 0.605 0.760

D.6 Cph 0.461 0.732 0.834 0.916 0.939
optHSIC 0.396 0.681 0.801 0.876 0.952

D.7 Cph 0.055 0.068 0.077 0.078 0.107
optHSIC 0.043 0.100 0.134 0.289 0.669

D.8 Cph 0.162 0.313 0.431 0.517 0.572
optHSIC 0.164 0.335 0.498 0.619 0.916

Table 10: The rejection rates of the various methods against distributions D.1-D.8
given in Table 9. When C 6⊥⊥ X , we only show rejection rates of the CPH test and
optHSIC, because wHSIC and zHSIC have high inflated rejection rates due to the
dependency of C and X . The top row shows the percentage of observed events
(∆ = 1).

A.11 Binary covariates

As a special case of independence testing we consider the case of a single binary
covariate, i.e., X ∈ {0,1}. If one groups the data by covariate, then testing indepen-
dence of T and X is equivalent to testing equality of lifetime distribution between
the two groups. This is known as two-sample testing on right censored data. Pop-



ular approaches to this challenge are the logrank test and various weighted logrank
tests. optHSIC can be applied to this problem without any adjustments, while wH-
SIC can be improved in this case in two ways: first, the weights can be estimated
even when the censoring distribution differs between the two groups; and second,
there exists an alternative permutation strategy that, experiments show, seems to
control the type 1 error effectively even under dependent censoring. These adjust-
ments are described in Section A.11.1 and Section A.11.2 respectively. We omit
consideration of zHSIC, as it is fundamentally more limited, given the larger num-
ber of available methods.

A.11.1 wHSIC for two-sample testing

Let P0 and P1 denote the distribution of T |X = 0 and T |X = 1 respectively. Let the
total sample be D=((xi,zi,δi))

n
i=1 as before, and write

(
(z0

i ,δ
0
i )
)n0

i=1 and
(
(z1

i ,δ
1
i )
)n1

i=1
for the event times and indicators of individuals with covariate X = 0 and X = 1 re-
spectively. We want to asses if P0 = P1. We again use the covariance kernel of
Brownian motion. If all of the n times were observed (δ = 1), we could measure
the difference in empirical distributions between both groups by the MMD between
the two distributions: ∣∣∣∣∣∣∣∣ 1

n0

n0

∑
i=1

k(z0
i , ·)−

1
n1

n1

∑
j=1

k(z1
j , ·)
∣∣∣∣∣∣∣∣

H
.

Similar to Section 5.1, when some observations are censored, we might reweight the
empirical distributions, and instead compare the weighted empirical distributions

n0

∑
i=1

w0
i k(z0

i , ·) and
n0

∑
i=1

w1
i k(z1

i , ·).

We propose that the weights wi are computed by the Kaplan–Meier weights within
each group. The test statistic thus becomes:

wHSIC(D) :=
∣∣∣∣∣∣∣∣ n0

∑
i=1

w0
i k(z0

i , ·)−
n0

∑
i=1

w1
i k(z1

i , ·)
∣∣∣∣∣∣∣∣2

H
.

This statistic was also, independently, proposed by Matabuena (2019), and can be
seen as a special case of wHSIC in the case of binary covariates. Under the hy-
pothesis that C ⊥⊥ X , one can obtain p-values using a permutation test, resulting in
the following algorithm. Section A.11.2 provides an alternative permuation strat-
egy under dependent censoring, that was proposed by Wang, Lagakos, and Gray
(2010). It was proposed in the context of the logrank test, but can equally be used



for other statistics.

Algorithm 1: wHSIC for two-sample data
Input : D = ((xi,zi,δi))

n
i=1, significance level α , number of

permutations B.
1 Sample permutations π1, . . . ,πB i.i.d. uniformly from Sn. ;
2 Breaking ties at random, compute the rank R of wHSIC(D) in the

vector

(wHSIC(D),wHSIC(π1(D)),wHSIC(π2(D)), . . . ,wHSIC(πB(D)))

where wHSIC is as defined above. ;
Output: Reject if p := R/(B+1)≤ α.

A.11.2 ipxHSIC

This subsection overviews a test we name ipxHSIC, which uses the same statistic
wHSIC(D) defined in Section A.11.1 above, but a different permutation strategy
that is robust against differences in the censoring distributions of both groups. The
permutation strategy was proposed in Wang et al. (2010) to provide reliable p-
values for the logrank statistic in the case of small or unequal sample sizes. In fact
Wang et al. (2010) propose two permutation strategies: the first one, which they
call ‘ipz’ (section 2.1.1), permutes group membership and the second, which they
call ‘ipt’(section 2.1.2), permutes survival times. These permutation strategies were
proposed in the context of logrank tests - but can equally be applied to other statis-
tics, such as wHSIC. The first strategy, which permutes the covariates, is referred
to in their work as ‘ipz’ since the procedure first imputes several unobserved times,
and then permutes the covariate, which in their work is denoted by z. We refer to
it as ‘ipx’, as our covariate is denoted by x. The algorithm uses the Kaplan–Meier
estimator to estimate three distributions: 1) G0, the censoring distribution in group
0, based on the data observed in group 0; 2) G1, the censoring distribution in group
1, based on the data observed in group 1; 3) the distribution of the lifetimes F based
on the pooled dataset containing both groups. With these estimates, a new dataset
is constructed, consisting of n observations, each consisting of a covariate, an event
time, and two censoring times, one for each censoring distribution. This larger
dataset is then permuted, and transformed back to a censored dataset. Wang et al.
(2010) describe the algorithm in full detail. This method thus combines the wHSIC
statistic with an alternative permutation strategy. Because this method relies on ex-
plicitly estimating censoring distributions in each group, it is difficult to extend this



to the continuous case, where for each covariate we only have one individual in the
study with that exact covariate.

A.11.3 Numerical comparison of methods in the two-sample case

We generate data from four different distributions for each of X , T , and C to com-
pare the power and type 1 error of the proposed methods optHSIC, wHSIC, ipxH-
SIC to the power and type 1 error of the classic logrank test and a weighted logrank
test proposed by Ditzhaus and Friedrich (2020). The classical logrank test is known
to have low power against certain alternatives, such as crossing survival curves. A
weighted logrank test assigns weights to data, giving the logrank test power against
different alternatives. In Ditzhaus and Friedrich (2020) a combination of weights
is proposed, so as to achieve power against a wider class of alternatives. In partic-
ular Ditzhaus and Friedrich (2020) propose a combination of two sets of weights,
corresponding to proportional and crossing hazards. As this section mostly serves
to provide an example of our methods, we simulate fewer scenarios than in Section
6. In each scenario we let the n values range from n = 20 to n = 400 in intervals
of 20. To obtain p-values in the three HSIC based methods as well as the weighted
logrank test we use a permutation test with 1999 permutations. We reject the null
hypothesis if our obtained p-value is less than 0.05.

D. T0 T1 C0 C1 % Observed
1 Exp(1) Exp(1/1.6) Exp(1/2) Exp(1/2) 60 %
2 Weib(1,5) Weib(1,1.5) Exp(1/2) Exp(1/2) 60 %
3 Exp(1) (0.43, 1.39+Exp(1)) 1+Exp(1/2) 1+Exp(1/2) 90 %
4 Exp(1) Exp(1) Exp(2) None 65 %

Table 11: The 4 scenarios in which in which we perform two-sample tests. T1 is
0.43 w.p. 0.75 and 1.39+Exp(1) w.p. 0.25. Note that in D.4 the null hypothesis
holds.
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(c) Scenario 3
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(d) Scenario 4

Figure 12: Rejection rates of the various two-sample tests. Note that in Scenarios
1-3 the alternative hypothesis holds, implying high rejection rate is desirable. In
Scenario 4, the null hypothesis holds, so a rejection rate of 0.05 is desirable. wHSIC
in that case thus wrongly rejects the null: this reflects the crucial assumption of
wHSIC that the groups have identical censoring distributions.

A.12 Example of data with binary covariates in which optHSIC
does not perform well

Consider the following case. Group X = 0 contains 1050 individuals. Group X = 1
contains 50 individuals. Up to time t = 50, no events occur. At time t = 50,
1000 individuals of group X = 0 are censored. There are now 50 individuals re-
maining in each of the groups. The 50 individuals of group X = 0 have event
time 100+Exp(mean = 2) and the 50 individuals of group X = 1 have event time



100+Exp(mean = 1). In this example we find the logrank test to have power of
89% and optHSIC to have power of only 12%.

What happens is the following: At time t = 100 there are 100 individuals at
risk. The individuals of group X = 1 are likely to have their event first, due to the
higher rate in the corresponding exponential distribution. Because in group X = 0
1000 individuals have been censored, the optimal transport map has a high chance
of choosing x̃ = 0 when xi = 1. So while in the resulting dataset a slight bias will
remain towards individuals in group X = 1 having their event first, this bias is much
less clear than before the transformation. (We thank a reviewer for proposing this
scenario.)

There are several characteristics that make the difference in this example so
large. Firstly, as mentioned before, optimal transport relies on the ability to choose
a ‘similar covariate’. When covariates are binary it may happen that x̃ = 0 while
xi = 1. Secondly, in this case all the censoring happens in group X = 0, causing
optimal transport to send mass from group X = 1 to group X = 0. Furthermore, the
censoring rate is high (91% of all individuals). Lastly, before the censoring occurs
there is no evidence of a difference in distribution.

A.12.1 Comments on two-sample simulations

The results show that the logrank test and the weighted logrank test have little power
in scenario 2 and 3 and scenario 3 respectively, even though large differences be-
tween the samples are present. The logrank is designed to detect differences as in
scenario 1, and the weighted logrank is designed to detect differences as in scenario
1 and 2, sacrificing power slightly compared to the logrank test in the first. Scenario
3 is designed to defeat the weighted logrank test, since we constructed an extreme
version of an early crossing survival curve, and the test does not contain weights for
early crossing. The kernel methods are fully nonparametric, but do lose power in
certain scenarios, most notably in Scenario 2 and the example provided. We believe
optHSIC is not ideally suited to the case of binary covariates, since optimal trans-
port relies on choosing a ‘similar’ covariate. Furthermore, while there are no fully
nonparametric alternatives for independence testing for continuous covariates, there
are more alternative two-sample tests. We thus believe the main value of optHSIC
lies in the case of continuous covariates.
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