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Abstract:
Modeling hospitalization is complicated because the follow-up time can be censored due to death. In this paper,
we propose a shared frailty joint model for survival time and hospitalization. A random effect semi-parametric
proportional hazard model is assumed for the survival time and conditional on the follow-up time, hospital
admissions or total length of stay is modeled by a generalized linear model with a nonparametric offset func-
tion of the follow-up time. We assume that the hospitalization and the survival time are correlated through a
latent subject-specific random frailty. The proposed model can be implemented using existing software such
as SAS Proc NLMIXED. We demonstrate the feasibility through simulations. We apply our methods to study
hospital admissions and total length of stay in a cohort of patients on hemodialysis. We identify age, albu-
min, neutrophil to lymphocyte ratio (NLR) and vintage as significant risk factors for mortality, and age, gender,
race, albumin, NLR, pre-dialysis systolic blood pressure (preSBP), interdialytic weight gain (IDWG) and equili-
brated Kt/V (eKt/V) as significant risk factors for both hospital admissions and total length of stay. In addition,
hospitalization admissions is positively associated with vintage.
Keywords: end stage rental disease, hemodialysis, mixed outcomes, random effect, spline
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1 Introduction

Hospitalization is a main contributor to the total cost of care and identification of the related risk factors is of
interest in many health care studies. The main difficulty in modeling hospitalization data is due to the fact that
the frequency of hospitalization and the total length of hospitalizations are functions of follow-up time that can
be informatively censored due to death. Since both the hospitalization outcome and time-to-death are related to
the underlying health, it is desirable to jointly model them as bivariate outcomes. Mixed types of multivariate
outcomes are common in many fields of science and social science. Various statistical models and methods
have been proposed to deal with different types of mixed outcomes [1]. For example, Fitzmaurice and Laird [2]
proposed regression models for continuous and binary outcomes. They focused on marginal regression models
with a set of covariates and treated the association between continuous and binary response as a nuisance
characteristic of the data. Sammel, Ryan, and Legler [3] proposed latent variable models for mixed discrete and
continuous outcomes. They modeled the associations among the outcomes by an unobserved latent variable
which depends on a set of covariates. Catalano [4] proposed a latent variable model for continuous and ordinal
outcomes, and extended it to allow for clustering of the bivariate outcomes. Dunson and Herring [5] proposed
latent variable models for mixed discrete outcomes including count, binary and discrete event time. A Bayesian
approach was introduced for inference where conditionally-conjugate priors were chosen to facilitate posterior
computation. However, these methods can not handle censored data which is needed for joint modeling of
survival time and hospitalization in health studies.

Our research is motivated by the need for improvement in care for end-stage renal disease (ESRD) patients.
Hemodialysis (HD) is the most frequently used treatment modality for ESRD patients. In general, HD patients
suffer from multiple comorbidities, such as diabetes and cardiovascular diseases, resulting in frequent hospital-
izations and substantial mortality. In spite of improvements over the years, hospitalization and mortality rates
of ESRD patients on HD remain much higher than those of the general population [6]. In this article we are in-
terested in identifying risk factors for hospitalization and mortality. The data come from an observational study
of patients on HD in Fresenius Medical Care. Covariates at baseline and outcomes including survival time, hos-
pital admissions and total length of hospital stay at follow-up were collected. Approximately 20 % of patients
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died during the follow-up period and observational times for hospitalization outcomes of these patients are
censored due to death. Since both survival time and hospitalization are associated with the underlying health
condition, it is likely that these outcomes from the same subject are correlated. Therefore, it is necessary to
develop a joint model for survival time and hospitalization. Details of the data are given in Section 5.

In this article we propose a semi-parametric latent variable model for joint modeling of a survival time and
an outcome from exponential family. The survival time is modeled by a semi-parametric proportional hazard
model with a subject-specific random effect. The hospitalization related endpoint, such as the number of ad-
missions, length of stay or whether a subject has ever been hospitalized, can be modeled by a generalized linear
mixed effects model. Since the hospitalization outcome may only be observed before death, an offset function
will be included in the generalized linear model to take into account the follow-up time. To allow a flexible re-
lationship between the hospitalization endpoint and the follow-up time, we introduce a nonparametric smooth
offset function that includes parametric functions, such as logarithm, as special cases. When the offset function
is parametric, these models reduce to the standard generalized mixed effects models and parameters of interest
may be interpreted in terms of the constant conditional means such as incident rate, mean duration and average
probability. The smooth offset function allows deviation from this rigid assumption. The forms of the baseline
hazard function and the offset function are usually unknown. They will be modeled non-parametrically using
spline functions with non-negative and, when appropriate, monotone constraints. A latent random variable
will be used to model potential correlation between survival time and hospitalization outcome from the same
subject [7].

We note that there is a large body of literature on the joint modeling of survival hazard function and hospi-
talization rate. See for example Lancaster and Intrator [8], Wang, Qin, and Chiang [9], Huang and Wolfe [10],
Liu, Wolfe, and Huang [11], Huang, Qin, and Wang [12], and the references therein. These studies treated hos-
pitalizations as recurrent events and focused on modeling the intensity function of the recurrent process. In
this article, our main interest is on the expected number of hospitalizations and expected total length of stays
which account for a major part of the total cost of care. We also note that there have been various proposals on
the joint modeling of survival time and longitudinal data [13, 14]. We are interested in identifying risk factors
at the baseline for the bivariate cross-sectional outcomes of hospitalization and time-to-death in the follow-up.
Therefore methods for the joint modeling of longitudinal and survival data do not apply to our situation.

The rest of this article is organized as follows. Section 2 introduces the semi-parametric latent variable model.
Section 3 provides details about our estimation procedure. Section 4 and Section 5 present simulation results
and applications to patients on HD. The article ends with a discussion in Section 6.

2 The semi-parametric latent variable model

2.1 The overall model

For subject 𝑖, we denote 𝐷u� as the death time, 𝐶u� as the censoring time, 𝑇u� = min{𝐶u�, 𝐷u�} as the observed time,
Δu� = 𝐼(𝐷u� < 𝐶u�) as the event indicator and ℎu�(𝑡) as the hazard function. Let 𝑌u� be another outcome variable from
exponential family. For example, it could be the number of hospitalizations or the total length of hospital stays
of subject 𝑖. Let 𝑍u�

u� and 𝑍u�
u� be covariates associated with the outcomes 𝐷u� and 𝑌u� respectively. We will consider

the following joint model:

ℎu�(𝑡) = ℎ0(𝑡) exp(𝛽′𝑍u�
u� + 𝜈u�),

𝑔 (E(𝑌u�|𝑇u�, 𝜈u�)) = 𝑤(𝑇u�) + 𝛼′𝑍u�
u� + 𝜂𝜈u�,

(1)

where ℎ0 is the baseline hazard, 𝑔 is the link function, 𝜈u�
u�u�u�∼ N(0, 𝜎2) is a shared frailty for subject 𝑖, 𝛼, β and 𝜂 are

unknown parameters, and 𝑤 is an offset function. The first equation in (1) is a Cox proportional hazard model
for survival time while the second equation in (1) is a generalized linear model for 𝑌u�. The shared frailty is intro-
duced to model heterogeneity among subjects and correlation between 𝐷u� and 𝑌u� within a subject. For simplicity
we consider a normal distribution for the shared frailty. Extensions to other distributions are straightforward.
The offset term 𝑤(𝑇u�) is introduced to account for the fact that 𝑌u� is only observed prior to time 𝑇u�.

2.2 A spline model for the baseline hazard

The form of the baseline hazard function ℎ0(𝑡) is generally unknown in practice. We will assume that ℎ0(𝑡) is a
smooth function and model it using B-spline basis functions:
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ℎ0(𝑡) =
u�+1+u�ℎ

∑
u�=1

𝑑u�𝐵u�(𝑡|𝐾, 𝜏ℎ),

where 𝐵u�(𝑡|𝐾, 𝜏ℎ) denote the evaluation at 𝑡 of the 𝐾-degree B-spline basis functions generated with 𝐿ℎ internal
knots 𝜏ℎ = {𝑡ℎ1, 𝑡ℎ2, ⋯ , 𝑡ℎu�ℎ

}. We will use the constraints 𝑑u� ≥ 0 to enforce the non-negativity constraint of the
function ℎ0(𝑡). The function ℎ0(𝑡) is decided by coefficients 𝑑u� as well as the number and locations of knots. The
estimation of coefficients and the selection of knots will be discussed in Section 3.

2.3 A spline or monotone spline model for the o昀�fset function

When 𝑌u� represents counts such as hospital admissions, one possible assumption is that 𝑌u� is generated from a
homogeneous Poisson process. Under this assumption and canonical link for Poisson data, the offset function
𝑤(𝑡) = log(𝑡). However in practice 𝑌u� may be generated from a non-homogeneous Poisson process [15]. It is
therefore desirable to leave the functional form of 𝑤 unspecified. Again we model 𝑤 nonparametrically using
B-spline basis functions:

𝑤(𝑡) =
u�+1+u�u�

∑
u�=1

𝑐u�𝐵u�(𝑡|𝐾, 𝜏u�),

where 𝐵u�(𝑡|𝐾, 𝜏u�) denote the evaluation at 𝑡 of the 𝐾-degree B-spline basis functions generated with 𝐿u� internal
knots 𝜏u� = {𝑡u�1, 𝑡u�2, ⋯ , 𝑡u�u�u�

}.
For Poisson data, it is natural to assume that the expectation of 𝑌u� increase with the observational time 𝑇u�.

In this case we assume that 𝑤(𝑡) is a smooth non-decreasing function. Ramsay [16] used integrated 𝑀-splines
to fit a monotone spline. We will adopt a similar approach using integrated B-splines. Specifically, denote inte-
grated B-splines as 𝐼u�(𝑡|𝐾, 𝜏) = ∫u�

0 𝐵u�(𝑢|𝐾, 𝜏)𝑑𝑢 for 𝑘 = 1, … , 𝐾. Since 𝐵u�’s are non-negative, 𝐼u�’s provide a set of
non-decreasing basis functions. We model 𝑤 using integrated B-spline basis functions:

𝑤(𝑡) =
u�+1+u�u�

∑
u�=1

𝑐u�𝐼u�(𝑡|𝐾, 𝜏u�) + 𝑐,

where 𝑐 is an unknown constant and 𝑐u�’s are coefficients with constraints 𝑐u� ≥ 0.

3 Estimation

The full likelihood is

𝐿 =
u�

∏
u�=1

∫ 𝑓 (𝑌u�|𝑇u�,Δu�, 𝜈u�)𝑙u�(𝑇u�,Δu�|𝜈u�)𝑓u�(𝜈u�)𝑑𝜈u�, (2)

where 𝑛 is the total number of subject, 𝑓 (𝑌u�|𝑇u�,Δu�, 𝜈u�) is the conditional density of 𝑌u� in the exponential family,
𝑓u�(𝜈u�) is the density function of the latent random variable 𝜈, and

𝑙u�(𝑇u�,Δu�|𝜈u�) = {ℎ0(𝑇u�) exp(𝛽′𝑍u�
u� + 𝜈u�)}Δu� exp{− ∫

u�u�

0
ℎ0(𝑡) exp(𝛽′𝑍u�

u� + 𝜈u�)𝑑𝑡} .

Our goal is then to obtain parameter estimates by maximizing the likelihood. Since there is no closed form
solution, we apply the Newton-Raphson methods to compute parameter estimates numerically. For stability, we
apply the Newton-Raphson ridge optimization where a pure Newton step is used when the Hessian is positive
definite and when the Newton step successfully increases the value of the likelihood, otherwise a multiple
of the identity matrix is added to the Hessian matrix [17]. To calculate the gradient and Hessian matrix, we
need to evaluate integrals derived from the likelihood function. The Gaussian quadrature method is used to
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approximate these integrals. We estimate random effects 𝜈u� by their empirical Bayes estimators ̂𝜈u� that maximize
𝑓 (𝑦u�|𝑇u�,Δu�, 𝜈u�)𝑙u�(𝑇u�,Δu�|𝜈u�)𝑓u�(𝜈u�).

Numerically stable implementations of these methods can be obtained from a variety of publicly available
softwares [18]. In our simulation and example, we employed SAS procedure Proc NLMIXED to perform the
computation. Proc NLMIXED has an appealing feature which allows a user-specified log likelihood functions
with respect to the random effects. See Littell et al. [17] for details on this procedure.

The number and location of knots are fixed in the above discussion. While increasing the number of knots
has the capability to model a more flexible function, having too many knots will increase the complexity of the
model and result in over-fitting. A data-driven procedure for the selection of number and location of knots is
desirable. We allow ℎ0(𝑡) and 𝑤(𝑡) to have different numbers and locations of knots. In practice one may place
knots evenly in a range or at equally spaced quantiles of data. We select the numbers of knots by minimizing
the following AIC Akaike [19]:

AIC(𝐿ℎ, 𝐿u�) = −2 log 𝐿 + 2(𝐿ℎ + 𝐿u� + 8). (3)

4 Simulations

We generate simulation samples from the following model

ℎu�(𝑡|𝜈u�) = ℎ0(𝑡) exp(𝛽𝑍u� + 𝜈u�),
log(E(𝑌u�|𝑇u�, 𝜈u�)) = 𝑤(𝑇u�) + 𝛼𝑍u� + 𝜂𝜈u�,

(4)

where 𝑍u�’s are iid random variables with 𝑃(𝑍u� = 0) = 𝑃(𝑍u� = 1) = 0.5, 𝜈u�
u�u�u�∼ N(0, 0.5), and conditional on 𝑇u�

and 𝜈u�, 𝑌u� follows a Poisson distribution with mean exp(𝑤(𝑇u�) + 𝛼𝑍u� + 𝜂𝜈u�). The censoring time 𝐶u� = min{𝐸u�, 4}
where 𝐸u�

u�u�u�∼ Exp(0.1). The true parameters are set to be (𝛼, 𝛽, 𝜂) = (0.5, 0.5, 1). We consider two baseline hazard
functions, Exponential baseline ℎ0(𝑡) = 1/2 and Weibull baseline ℎ0(𝑡) = 𝑡/2, and two offset functions, linear
function 𝑤(𝑡) = 𝑡/2 and log function 𝑤(𝑡) = log(𝑡). The censoring rates in all 4 cases are about 20 %.

The baseline hazard ℎ0(𝑡) is estimated using cubic B-spline basis functions. The offset function 𝑤(𝑡) is esti-
mated using cubic integrated B-spline basis functions under the monotone constraint. Interior knots are equally
spaced within the time period (0, 4], and the number of knots for ℎ0(𝑡) and 𝑤(𝑡) range from 2 to 4 respectively.
The optimal combination of number of knots is selected by minimizing the AIC (3).

Simulation under each setting is repeated 500 times. For the estimation of parameters, we compute bias,
mean squared error (MSE) and coverage probability of 95 % confidence intervals (CP). The 95 % confidence
interval is constructed as the MLE plus-minus 1.96 times the standard errors obtained from the variance-
covariance matrix. For the estimation of functions ℎ0(𝑡) and 𝑤(𝑡), we compute the integrated mean square
error (IMSE)

IMSE( ̂𝑓 ) = ∫
4

0
( ̂𝑓 (𝑡) − 𝑓 (𝑡))2𝑑𝑡

for each replicate, where 𝑓 is either ℎ0 or 𝑤.

Table 1: Bias, mean squared error (MSE) and coverage probability of 95 % confidence intervals (CP) based on the joint
model when ℎ0(u�) = 1/2 and u�(u�) = u�/2.

ℎ0(u�) = 1/2 u�(u�) = u�/2 u� β u� u�2

u� = 300 Bias 0.007 0.045 −0.064 0.337
MSE 0.017 0.037 0.066 0.65
CP 0.938 0.981 0.809 0.965

u� = 500 Bias 0.002 0.014 −0.008 0.149
MSE 0.010 0.022 0.871 0.936
CP 0.946 0.946 0.871 0.936

n = 1,000 Bias 0.002 0.008 0.003 0.063
MSE 0.005 0.01 0.031 0.062
CP 0.94 0.948 0.916 0.94
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Table 2: Bias, mean squared error (MSE) and coverage probability of 95 % confidence intervals (CP) based on the joint
model when ℎ0(u�) = 1/2 and u�(u�) = log(u�).

ℎ0(u�) = 1/2 u�(u�) = u�u�u�(u�) u� u� u� σ2

u� = 300 Bias 0.033 0.084 0.106 0.779
MSE 0.025 0.064 0.109 2.833
CP 0.966 0.968 0.774 0.957

n = 500 Bias 0.016 0.046 0.03 0.381
MSE 0.016 0.030 0.088 0.912
CP 0.955 0.973 0.842 0.953

n = 1,000 Bias 0.004 0.017 0.005 0.127
MSE 0.007 0.011 0.053 0.156
CP 0.947 0.966 0.890 0.951

Table 3: Bias, mean squared error (MSE) and coverage probability of 95 % confidence intervals (CP) based on the joint
model when ℎ0(u�) = u�/2 and u�(u�) = u�/2.

ℎ0(u�) = u�/2 u�(u�) = u�/2 u� u� u� u� u�2

u� = 300 Bias −0.003 0. 0.016 0.056
MSE 0.011 0.025 0.06 0.075
CP 0.968 0.963 0.925 0.951

n = 500u� = 500 Bias −0.006 0.008 0.007 0.044
MSE 0.007 0.015 0.038 0.052
CP 0.944 0.962 0.912 0.930

u� = 1000 Bias 0.002 0.003 0.011 0.017
MSE 0.003 0.008 0.022 0.025
CP 0.950 0.946 0.942 0.928

Table 4: Bias, mean squared error (MSE) and coverage probability of 95 % confidence intervals (CP) based on the joint
model when ℎ0(u�) = u�/2 and u�(u�) = log(u�).

ℎ0(u�) = u�/2 u�(u�) = u�u�u�(u�) u� u� u� u�2

u� = 300 Bias 0.033 0.064 0.025 0.346
MSE 0.020 0.064 −0.025 0.346
CP 0.958 0.973 0.859 0.936

u� = 500 Bias 0.014 0.036 −0.014 0.227
MSE 0.013 0.027 0.070 0.386
CP 0.945 0.955 0.850 0.951

u� = 1000 Bias 0.009 0.015 −0.009 0.117
MSE 0.006 0.011 0.040 0.100
CP 0.954 0.950 0.892 0.942

Table 5: Integrated Mean Square Error (IMSE) of the baseline hazard ℎ0(u�) and offset function u�(u�) fitted by the joint
model.

ℎ0(u�) u�(u�)

ℎ0(u�) = u�/2 u� = 300 0.078 0.079
w(t) = t/2 u� = 500 0.050 0.052

u� = 1000 0.027 0.027
ℎ0(u�) = u�/2 u� = 300 0.109 0.151
u�(u�) = log(u�) n = 500 0.063 0.097

u� = 1000 0.033 0.052
ℎ0(u�) = u�/2 u� = 300 0.665 0.066
u�(u�) = u�/2 u� = 500 0.456 0.043
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u� = 1000 0.230 0.025
ℎ0(u�) = u�/2 u� = 300 0.856 0.165
u�(u�) = log(u�) u� = 500 0.662 0.114

u� = 1000 0.340 0.057

Table 1–Table 5 summarize performances of parameter and function estimates under four simulation set-
tings. Overall the proposed estimation procedure perform well: bias and MSE are small, and the coverages of
95 % confidence intervals are close to the nominal value except for 𝜂. The coverages of 95 % confidence intervals
for 𝜂 are below the nominal value. This is not surprising because 𝜂 is associated with the variance within subject
and only limited information contributes to its estimations. One way to improve the coverage probability is to
construct a confidence region for both 𝜂 and 𝜎2 since the two estimates are highly correlated. The performances
improve as sample size increases.

As an illustration, Figure 1 shows the 5𝑡ℎ, 25𝑡ℎ, 50𝑡ℎ, 75𝑡ℎ and 95𝑡ℎ best estimates of ℎ̂0(𝑡) and 𝑤̂(𝑡) ordered
by the IMSE under the simulation setting when ℎ0(𝑡) = 𝑡/2, 𝑤(𝑡) = log(𝑡) and 𝑛 = 500. Overall, the estimates
are close to the true functions except for the baseline hazard with large 𝑡. The poor estimation of the baseline
hazard with large 𝑡 is likely caused by censoring.

Figure 1: True function (solid lines) and estimates (dashed lines) of h0(t) = t/2 (left) and w(t) = log(t) (right) correspond to
the 5th, 25th, 50th, 75th and 95th percentiles of the IMSE when h0(t) = t/2, w(t) = log(t) and n = 500.

We have also evaluated performance of our estimation procedure in a more complicated simulation setting.
The data was generated from the following model

ℎu�(𝑡|𝜈u�) = ℎ0(𝑡) exp(𝛽1𝑍1u� + 𝛽2𝑍2u� + 𝜈u�),
log(E(𝑌u�|𝑇u�, 𝜈u�)) = 𝑤(𝑇u�) + 𝛼1𝑍1u� + 𝛼2𝑍2u� + 𝜂𝜈u�,

(5)

where 𝑍1u�’s are iid random variables with 𝑃(𝑍1u� = 0) = 𝑃(𝑍1u� = 1) = 0.5, 𝑍2u� is a continuous random variable
generated from Uniform(0, 1), and 𝜈u�

u�u�u�∼ N(0, 0.2). The sample size 𝑛 = 1000 and the true parameters are set to
be (𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝜂) = (0.5, −1, 0.5, −1, 1). We consider Weibull baseline hazard ℎ0(𝑡) = 𝑡2 and 𝑤(𝑡) = 𝑙𝑜𝑔(𝑡). The
censoring rate is about 15 %.

We summarize bias, MSE and coverage probability of 95 % CP for the estimations of parameters in Table
6. The 5𝑡ℎ, 25𝑡ℎ, 50𝑡ℎ, 75𝑡ℎ and 95𝑡ℎ best estimated baseline hazard and offset function are shown in Figure 2.
Overall the proposed estimation method performs well.

Table 6: Bias, mean squared error (MSE) and coverage probability of 95 % confidence intervals (CP) based on the joint
model when ℎ0(u�) = u�2 and u�(u�) = log(u�).

ℎ0(u�) = u�2 u�(u�) =
u�u�u�(u�)

u�1 u�2 u�1 u�2 u� u�2

u� = 1000 Bias −0.020 −0.027 0.037 −0.068 −0.113 0.146
MSE 0.006 0.018 0.010 0.037 0.083 0.086
CP 0.949 0.965 0.963 0.946 0.839 0.979
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Table 7: Summary statistics of covariates.

(Min, Max) Mean (Std)

Age (year) (1.00, 96.62) 62.39 (14.84)
BMI (kg/m2) (13.75, 49.51) 27.65 (6.46)
Albumin (g/dL) (1.60, 4.74) 3.84 (0.37)
IDWG (%) (0.41, 7.99) 3.48 (1.05)
PreSBP (mmHg) (81.88, 219.29) 149.38 (18.86)
eKt/V (0.68, 3.77) 1.46 (0.26)
NLR (0.51, 31.18) 3.70 (2.32)
Vintage (year) (0.08, 7.90) 2.56 (1.92)

Figure 2: True function (solid lines) and estimates (dashed lines) of ℎ0(u�) = u�2 (left) and u�(u�) = log(u�) (right) correspond
to the 5u�ℎ, 25u�ℎ, 50u�ℎ, 75u�ℎ and 95u�ℎ percentiles of the IMSE when ℎ0(u�) = u�2, u�(u�) = log(u�) and u� = 1000.

5 Application

We now apply the proposed method to model mortality and hospitalization outcomes for patients on HD.
Baseline covariates are collected from 1999 HD patients from 1 January 2007 to 31 December 2007. Survival
time, the number of hospital admissions and total length of stay of these patients during the period of 1 January
2008 and 31 December 2009 are collected. 1078 (53.93 %) patients are male. 984 (49.22 %) patients are black, 834
(41.72 %) patients are white, the rest are from other races. Time-varying covariates are calculated as the averages
in baseline period for each patient. The summary statistics for these covariates are listed in Table 7.

In previous studies, albumin and systolic blood pressure before dialysis (preSBP) have been found as sig-
nificant risk factors for mortality [20–22]. Erdem, Kaya, Karatas, Dilek, and Akpolat [23] observed that HD
patients with high neutrophil to lymphocyte ratio (NLR) levels have increased risk of short term mortality. Our
preliminary analysis indicates that time in years since initiation of dialysis (vintage), inter-dialytic weight gain
(IDWG) and a measure of dialysis capability eKt/V also have significant effect on mortality. In addition, we
will include gender, race and BMI.

In modeling the hospitalization, the number of hospital admissions is usually the primary outcome which
will be studied in Section 5.1 using a Poisson model. We are sometimes also interested in whether a patient
has ever been hospitalized as a binary outcome. Since the probability of ever been hospitalized can be derived
from the Poisson model, we omit the details of modeling the binary outcome in this paper. Given the subject
has been hospitalized, a further goal is to identify the risk factors that lead to longer total length of stay which
will be studied in Section 5.2 using a Gamma model. For simplicity we will consider the same set of covariates
for all models.
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5.1 Joint analysis of mortality and hospital admission

359 (17.96 %) patients died during the follow-up period. The number of hospital admissions in the data ranges
from 0 to 37 with mean 2.53. We consider the following joint model:

ℎu�(𝑡|𝜈u�) = ℎ0(𝑡) exp{𝛽1 ∗ 𝐴𝑔𝑒u� + 𝛽2 ∗ 𝐴𝑙𝑏𝑢𝑚𝑖𝑛u� + 𝛽3 ∗ 𝑃𝑟𝑒𝑆𝐵𝑃u� + 𝛽4 ∗ 𝑁𝐿𝑅u�
+𝛽5 ∗ 𝐵𝑀𝐼u� + 𝛽6 ∗ 𝑀𝑎𝑙𝑒u� + 𝛽7 ∗ 𝐼𝐷𝑊𝐺u� + 𝛽8 ∗ 𝑒𝐾𝑡/𝑉u�

+𝛽9 ∗ 𝑉𝑖𝑛𝑡𝑎𝑔𝑒u� + 𝛽10 ∗ 𝑅𝑎𝑐𝑒𝑊ℎ𝑖𝑡𝑒u� + 𝛽11 ∗ 𝑅𝑎𝑐𝑒𝐵𝑙𝑎𝑐𝑘 + 𝜈u�},
𝑔(𝐸(𝑌u�|𝑇u�, 𝜈u�)) = 𝑤(𝑇u�) + 𝛼1 ∗ 𝐴𝑔𝑒u� + 𝛼2 ∗ 𝐴𝑙𝑏𝑢𝑚𝑖𝑛u� + 𝛼3 ∗ 𝑃𝑟𝑒𝑆𝐵𝑃u� + 𝛼4 ∗ 𝑁𝐿𝑅u�

+𝛼5 ∗ 𝐵𝑀𝐼u� + 𝛼6 ∗ 𝑀𝑎𝑙𝑒u� + 𝛼7 ∗ 𝐼𝐷𝑊𝐺u� + 𝛼8 ∗ 𝑒𝐾𝑡/𝑉u�
+𝛼9 ∗ 𝑉𝑖𝑛𝑡𝑎𝑔𝑒u� + 𝛼10 ∗ 𝑅𝑎𝑐𝑒𝑊ℎ𝑖𝑡𝑒u� + 𝛼11 ∗ 𝑅𝑎𝑐𝑒𝐵𝑙𝑎𝑐𝑘u� + 𝜂𝜈u�,

(6)

where 𝑌u� represents the number of hospital admissions of patient 𝑖 and is assumed to follow a Poisson distri-
bution, and 𝜈u�

u�u�u�∼ N(0, 𝜎2).
As in the previous section we set the interior knots for baseline hazard and offset function equally spaced

within the time period. The number of knots ranges from 2 to 4. Among all the combinations, the AIC selects
2 knots for the baseline hazard and 2 knots for the offset function.

We summarize the estimation results in Table 8. Tests are constructed based on asymptotic properties of the
MLEs after selection of the knots. All covariates except BMI are significantly associated with the expected num-
ber of hospital admissions, while age, albumin, NLR, eKt/V and vintage are significantly associated with the
hazard function. Overall age, NLR and vintage are positively associated with both hazard and the number of
hospital admissions, while albumin and eKt/V are negatively associated with the outcomes. Furthermore, pre-
dialysis SBP and IDWG are positively associated with the number of hospital admissions, and female patients
tend to have more hospital admissions.

The latent random variable is significant (𝜎̂2 = 0.6008, 𝑝 = 0.0057), which supports the model with random
effect. Furthermore ̂𝜂 is significantly larger than 0 (𝑝 < 0.0001). It implies that the survival time and the number
of hospital admissions are positive correlated. The estimated baseline function ℎ0(𝑡) and offset function 𝑤(𝑡) are
shown in Figure 3 with 95 % point-wise confidence intervals. The confidence intervals are constructed based on
asymptotic variances of the MLEs of coefficients associated with the B-spline bases. While our model allows for
inhomogeneous Poison model, the logarithm function is close to the estimated offset function and well within
the 95 % confidence intervals, suggesting that it is reasonable to model the offset function by the logarithm
function in this case.

Table 8: Joint modeling of mortality and hospitalization of ESRD data.

Covariates Estimate SE p-value

Mortality Age 0.0355 0.0048 < 0.0001
Albumin −1.2736 0.1681 < 0.0001
PreSBP −0.0004 0.0031 0.8990
NLR 0.1061 0.0217 < 0.0001
BMI −0.0198 0.0106 0.0619
Male 0.0748 0.1210 0.5365
IDWG 0.0684 0.0625 0.2737
eKt/V −0.5936 0.2474 0.0165
Vintage 0.1244 0.0307 < 0.0001
Race(White) 0.1341 0.2151 0.5329
Race(Black) −0.2446 0.2184 0.2629

Hospitalization Age 0.0089 0.0022 < 0.0001
Albumin −0.8126 0.0856 < 0.0001
PreSBP 0.0072 0.0015 < 0.0001
NLR 0.0776 0.0129 < 0.0001
BMI −0.0026 0.0049 0.5974
Male −0.1612 0.0600 0.0073
IDWG 0.1018 0.0307 0.0009
eKt/V −0.2360 0.1170 0.0437
Vintage 0.0386 0.0157 0.0140
Race(White) 0.2634 0.1094 0.0162
Race(Black) 0.3130 0.1069 0.0035
u�2 0.6008 0.2172 0.0057
u� 1.2225 0.2039 < 0.0001
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Figure 3: The estimated baseline function ℎ0(u�) and offset function u�(u�) for the joint model of mortality and number of
hospitalization.

5.2 Joint analysis of mortality and total length of stay

To further investigate the features of patients with hospitalizations, another interesting application is to model
mortality and total length of hospital stay. We will focus on the patients who had positive length of stays (1396
patients). The total length of stay ranges from 1 to 368 with mean 26.13. We consider the following joint model:

ℎu�(𝑡|𝜈u�) = ℎ0(𝑡) exp{𝛽1 ∗ 𝐴𝑔𝑒u� + 𝛽2 ∗ 𝐴𝑙𝑏𝑢𝑚𝑖𝑛u� + 𝛽3 ∗ 𝑃𝑟𝑒𝑆𝐵𝑃u� + 𝛽4 ∗ 𝑁𝐿𝑅u�
+𝛽5 ∗ 𝐵𝑀𝐼u� + 𝛽6 ∗ 𝑀𝑎𝑙𝑒u� + 𝛽7 ∗ 𝐼𝐷𝑊𝐺u� + 𝛽8 ∗ 𝑒𝐾𝑡/𝑉u�

+𝛽9 ∗ 𝑉𝑖𝑛𝑡𝑎𝑔𝑒u� + 𝛽10 ∗ 𝑅𝑎𝑐𝑒𝑊ℎ𝑖𝑡𝑒u� + 𝛽11 ∗ 𝑅𝑎𝑐𝑒𝐵𝑙𝑎𝑐𝑘 + 𝜈u�},
𝑔(𝜇u�|𝑇u�, 𝜈u�) = 𝑤(𝑇u�) + 𝛼1 ∗ 𝐴𝑔𝑒u� + 𝛼2 ∗ 𝐴𝑙𝑏𝑢𝑚𝑖𝑛u� + 𝛼3 ∗ 𝑃𝑟𝑒𝑆𝐵𝑃u� + 𝛼4 ∗ 𝑁𝐿𝑅u�

+𝛼5 ∗ 𝐵𝑀𝐼u� + 𝛼6 ∗ 𝑀𝑎𝑙𝑒u� + 𝛼7 ∗ 𝐼𝐷𝑊𝐺u� + 𝛼8 ∗ 𝑒𝐾𝑡/𝑉u�
+𝛼9 ∗ 𝑉𝑖𝑛𝑡𝑎𝑔𝑒u� + 𝛼10 ∗ 𝑅𝑎𝑐𝑒𝑊ℎ𝑖𝑡𝑒u� + 𝛼11 ∗ 𝑅𝑎𝑐𝑒𝐵𝑙𝑎𝑐𝑘u� + 𝜂𝜈u�,

(7)

where 𝑌u� represents the total length of stay of patient 𝑖 and is assumed to follow a Gamma distribution, and
𝜈u�

u�u�u�∼ N(0, 𝜎2).
Similar process for knots selection applies, which results in 2 knots for the baseline hazard and 2 knots for

the offset function. The estimation results are summarized in Table 9. All covariates except BMI and vintage
are significantly associated with the expectation of total length of stay, while age, albumin, NLR and vintage
are significantly associated with the hazard function. We note that conclusions about risk factors are consistent
with those in the previous subsection except for race: the total length of hospital stays of white patients is not
significantly different from that of other races while white patients have significantly larger number of hospi-
talizations than other races. The latent random variable is borderline significant (𝜎̂2 = 0.2108, 𝑝 = 0.0542). The
estimated baseline function ℎ0(𝑡) and offset function 𝑤(𝑡) are shown in Figure 4. The estimated offset function
𝑤(𝑡) is quite different from the logarithm function in this case.

Table 9: Joint modeling of mortality and hospitalization of ESRD data.

Covariates Estimate SE p-value

Mortality Age 0.0302 0.0053 < 0.0001
Albumin −1.0237 0.1730 < 0.0001
PreSBP −0.0040 0.0035 0.2472
NLR 0.0751 0.0228 0.0010
BMI −0.0204 0.0118 0.0843
Male 0.0830 0.1340 0.5359
IDWG 0.0939 0.0704 0.1826
eKt/V −0.4920 0.0704 0.0812



Chen et al. DE GRUYTER

Vintage 0.0944 0.0332 0.0045
Race(White) −0.0361 0.2303 0.8754
Race(Black) −0.3373 0.2335 0.1489

Length of Stay Age 0.0070 0.0022 0.0017
Albumin −0.5335 0.0870 < 0.0001
PreSBP 0.0047 0.0016 0.0036
NLR 0.0484 0.0137 0.0004
BMI −0.0045 0.0051 0.3788
Male −0.1269 0.0626 0.0430
IDWG 0.0740 0.0319 0.0205
eKt/V −0.2495 0.1234 0.0433
Vintage 0.0275 0.0165 0.0955
Race(White) 0.1338 0.1123 0.2336
Race(Black) 0.2933 0.1110 0.0084
u�2 0.2108 0.1094 0.0542
u� 1.8883 0.5550 0.0007

Figure 4: The estimated baseline function ℎ0(u�) and offset function u�(u�) for the joint model of mortality and total length
of stay.

6 Discussion

In this article, we propose a semi-parametric joint model for survival time and hospitalization. In particular,
we consider the number of hospital admissions and total length of stay as hospitalization outcomes. A shared
random effect is introduced to account for the within subject correlation between the two outcomes. The base-
line hazard and offset functions are modeled non-parametrically through B-spline or monotone B-spline bases
in order to gain flexibility. With fixed number of knots, the techniques to numerically obtain maximum like-
lihood estimation are presented. We have also discussed the AIC method for selecting the number of knots.
Standard large sample properties of maximum likelihood estimation apply when knots are fixed. Simulation
results indicate that the proposed estimation method performs well.

Throughout this article, we assume Normal distribution for the random effect. Our method can be easily
generalized to other parametric distributions for the random effect. We used B-spline bases with non-negative
coefficients to model the non-negative baseline hazard. An alternative approach is to model the logarithm of
the baseline hazard using B-spline bases without constraints on coefficients. However the approach cannot
be implemented using the SAS NLMIXED procedure since the likelihood involves an intractable integral. We
have analyzed different aspects of the hospitalization separately. One future research is to build a joint model
for survival time, hospital admission and length of stay. Our methodology may also be extended to the case of
the zero-inflated Poisson model.



DE GRUYTER Chen et al.

Acknowledgement

We thank the associated editor and two referees for constructive comments that substantially improved an
earlier draft.

Funding

National Science Foundation, Grant DMS-1507620; National Institutes of Health, Grant R01GM104470.

References

[1] De Leon A, Chough KC. Analysis of mixed data: methods & applications. Boca Raton, FL: Chapman and Hall/CRC, 2013.
[2] Fitzmaurice G, Laird N. Regression models for a bivariate discrete and continuous outcome with clustering. J Am Stat Assoc.

1995;90:845–852.
[3] Sammel M, Ryan L, Legler J. Latent variable models for mixed discrete and continuous outcomes. J R Stat Soc Ser B (Stat Method).

1997;59:667–678.
[4] Catalano P. Bivariate modelling of clustered continuous and ordered categorical outcomes. Stat Med. 1997;16:883–900.
[5] Dunson D, Herring A. Bayesian latent variable models for mixed discrete outcomes. Biostatistics. 2005;6:11–25.
[6] Collins A, Foley R, Chavers B, Gilbertson D, Herzog C, Ishani A. US renal data system 2013 annual data report. American journal of kidney

diseases. 2014;63(1 Suppl):A7.
[7] McCulloch C. Joint modelling of mixed outcome types using latent variables. Stat Methods Med Res. 2008;17:53–73.
[8] Lancaster T, Intrator O. Panel data with survival: hospitalization of HIV-positive patients. J Am Stat Assoc. 1998;93:46–53.
[9] Wang M-C, Qin J, Chiang C-T. Analyzing recurrent event data with informative censoring. J Am Stat Assoc. 2001;96:1057–1065.
[10] Huang X, Wolfe RA. A frailty model for informative censoring. Biometrics. 2002;58:510–520.
[11] Liu L, Wolfe RA, Huang X. Shared frailty models for recurrent events and a terminal event. Biometrics. 2004;60:747–756.
[12] Huang C-Y, Qin J, Wang M-C. Semiparametric analysis for recurrent event data with time-dependent covariates and informative censor-

ing. Biometrics. 2010;66:39–49.
[13] Rizopoulos D. JM: An R package for the joint modelling of longitudinal and time-to-event data. J Stat So昀�tw. 2010;35:1–33.
[14] Tsiatis A, Davidian M. Joint modeling of longitudinal and time-toevent data: an overview. Stat Sin. 2004;14:809–834.
[15] Usvyat L, Kooman J, van der Sande F, Wang Y, Maddux F, Levin N. Dynamics of hospitalizations in hemodialysis patients: results from a

large US provider. Nephrol Dial Transplant. 2014;29:442–448.
[16] Ramsay J. Monotone regression splines in action. Stat Sci. 1988;4:425–441.
[17] Littell R, Milliken G, Stroup W, Wolfinger R, Schabenberger O. SAS for mixed models, 2nd Cary, NC: SAS Institute Inc., 2006.
[18] Press W, Teukolsky S, Vetterling W, Flannery B. Numerical recipes 3rd edition: the art of scientific computing. New York, NY: Cambridge

University Press, 2007.
[19] Akaike H. Information theory and an extension of the maximum likelihood principle. Second Int Symp Inf Theory 1973:267–281.
[20] He J, Whelton P. Elevated systolic blood pressure and risk of cardiovascular and renal disease: overview of evidence from observational

epidemiologic studies and randomized controlled trials. Am Heart J. 1999;138:S211–S219.
[21] Hsu C, McCulloch C, Iribarren C, Darbinian J, Go A. Body mass index and risk for end-stage renal disease. Ann Intern Med.

2006;144:21–28.
[22] Phelan P, O’Kelly P, Walshe J, Conlon P. The importance of serum albumin and phosphorous as predictors of mortality in ESRD patients.

Ren Fail. 2008;30:423–429.
[23] Erdem E, Kaya C, Karatas A, Dilek M, Akpolat T. Neutrophil to lymphocyte ratio in predicting short-term mortality in hemodialysis pa-

tients. J Exp Clin Med. 2013;30:129–132.


