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Abstract: In randomized clinical trials, we often encounter ordinal categorical responses with repeated
measurements. We propose a model-free approach with using the generalized odds ratio (GOR) to measure
the relative treatment effect. We develop procedures for testing equality of treatment effects and derive
interval estimators for the GOR. We further develop a simple procedure for testing the treatment-by-period
interaction. To illustrate the use of test procedures and interval estimators developed here, we consider two
real-life data sets, one studying the gender effect on pain scores on an ordinal scale after hip joint
resurfacing surgeries, and the other investigating the effect of an active hypnotic drug in insomnia patients
on ordinal categories of time to falling asleep.

Keywords: testing equality, interval estimators, generalized odds ratio, ordinal data, repeated measure-
ments, model-free

1 Introduction

In clinical trials or health-related studies, we often encounter the patient response on an ordinal scale, for
example, worse, same or better. Arbitrarily assigning scores (such as –1, 0, 1) to these ordinal categories for
arithmetic operation can be inappropriate due to the fact that the relative distance between any two
successive ordinal categories is not really equal or even comparable. One may also have difficulty in
interpreting the mean of these arbitrary scores in terms of practical meaning. Grouping multiple categories
into a single category to reduce ordinal outcomes into dichotomous responses can cause the loss of
efficiency.

To reduce the number of patients in clinical trials, taking more than one measurement on each patient
frequently arises in practice. Research on repeated ordinal responses has been intensive [1, 2, 3–5, 6, 7,
8, 9]. Francom et al. [2] applied a family of structural log-linear models and required investigators to assign
the scores to represent the relative distance between ordinal categories. Agresti [1] addressed use of
generalized linear models with different link functions and linear predictors. Ware et al. [9] as well as
Kenward and Jones [4] discussed various approaches to analyze repeated categorical measurements.
Parsons et al. [7] considered the proportional odds logistic regression with a range of working correlation
models. All these publications focused discussions on model-based methods. By contrast, the methods
proposed here is model-free and does not assume any parametric form for the data structure. Furthermore,
there is no need to assume or specify any particular dependence structure between repeated measurements.
Also, rather than concentrating attentions on testing equality between treatments in ordinal data with
repeated measurements, there were publications [10, 11] discussing and deriving procedures for testing
positive (quadrant) dependence under various parameter constraints and marginal modeling in two-way
tables with ordinal categories. Agresti and Coull [12] focused discussion on model-based approach as well
and addressed testing hypothesis against order-restricted alternatives. The purposes of these papers are
different from what we focus here is to derive model-free procedures for testing equality of treatments,
while the dependence between measurements taken within patients is nuisance effect.

Using the generalized odds ratio (GOR) [13], we develop in this paper model-free procedures for testing
equality of treatments and derive interval estimators for the relative treatment effect in ordinal data with
repeated measurements. We further develop a simple procedure for testing the treatment-by-period
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interaction. We discuss the usefulness and limitations of test procedures developed here. To illustrate the
use of these procedures, we consider two real-life data sets, one taken from a trial studying the gender
effect on pain scores on an ordinal scale after hip joint resurfacing surgeries [7] and the other taken from a
double-blind randomized trial comparing an active hypnotic drug with a placebo in insomnia patients with
respect to the ordinal category of time to falling asleep [2].

2 Notation and Methods

Consider comparing two treatments in a randomized clinical trial, in which we randomly assign ng patients
to group g ( = 1, 2). For a randomly selected patient i( = 1, 2,…, ng) from group g, we let Yizg denote the patient
response at period z ( = 1, 2), where Yizg takes one of L ordinal labels Cj (j= 1, 2,…, L) with
C1 <C2 <C3 < � � � <CL. Let nrsg denote the number of patients with ðYi1g =Cr,Yi2g =CsÞ among ng patients in

group g. The random vector ðn11g, n12g, � � � n1Lg, n21g, n22g, ..., n2Lg, � � � , nL1g, nL2g, ..., nLLgÞ′ then follows the
multinomial distribution with parameters ng and ðπ11g,π12g, � � �π1Lg, π21g,π22g, ..., π2Lg, � � � , πL1g,

πL2g, ..., πLLgÞ′, where πrsg denotes the cell probability that a randomly selected patient from group g has
the vector of responses ðYi1g =Cr,Yi2g =CsÞ. We let “+ ” denote the summation over that particular subscript.
For example, πr + gð=

P
s πrsgÞ denotes the probability PðYi1g =CrÞ that a randomly selected patient from

group g ( = 1, 2) has the response Yi1g =Crat period 1. Following Agresti [13], we define �C1 =PL− 1
r = 1

PL
r′ = r + 1 πr + 1πr′ + 2, denoting for period 1 the probability that the response of a randomly selected

patient from group 2 is larger than that from group 1. We further define �D1 =
PL

r = 2

Pr − 1
r′ = 1 πr + 1πr′ + 2 denoting

for period 1 the probability that the response of a randomly selected patient from group 1 is larger than that
from group 2. The GOR of responses between groups 2 and 1 at period 1 is simply defined as G1 =�C1=�D1.
When there is no difference in treatment effects at period 1 between the two groups, G1 = 1. If the treatment
at period 1 in group 2 tends to increase the response as compared with that in group 1, G1 > 1. If the former
tends to decrease the response as compared with the latter, G1 < 1. Similarly, we define the GOR of responses

between groups 2 and 1 at period 2 as G2 =�C2=�D2, where �C2 =
PL− 1

s= 1

PL
s′ = s+ 1 π + s1π + s′2 and �D2 =PL

s= 2

Ps− 1
s′ = 1 π + s1π + s′2. Note that when L= 2, Gz(z= 1, 2) reduces to the regular odds ratio (OR) of responses

in dichotomous data.
Note that we can estimate πrsg by the unbiased consistent sample proportion estimator π̂rsg = nrsg=ng,

and thereby, we can estimate G1 at period z= 1 between groups 2 and 1 by

Ĝ1 = �̂C1=�̂D1, ð1Þ
where �̂C1 =

PL− 1
r = 1

PL
r′ = r + 1 π̂r + 1π̂r′ + 2 and �̂D1 =

PL
r = 2

Pr − 1
r′ = 1 π̂r + 1π̂r′ + 2. Using the delta method [14], we can

show that an estimated asymptotic variance of Ĝ1(1) with the logarithmic transformation is given by [13, 15]

Var̂ logðĜ1Þ
� �

=

PL
r = 1

½ PL
r′= r + 1

π̂r′ + 2 − Ĝ1
Pr − 1
r′ = 1

π̂r′ + 2�2π̂r + 1

n1ð
Q̂

C1Þ
2 +

PL
r′ = 1

½Pr′ − 1
r = 1

π̂r + 1 − Ĝ1
PL

r = r′ + 1
π̂r + 1�2π̂r′ + 2

n2ð
Q̂

C1Þ
2 . ð2Þ

Note that we define
PL

r = L+ 1 π̂r + 1 =
PL

r′ = L+ 1 π̂r′ + 2 = 0. Similarly, we define
P0

r = 1 π̂r + 1 =
P0

r′ = 1 π̂r′ + 2 = 0.

Following the same arguments as for deriving Ĝ1 (1) and Var̂ logðĜ1Þ
� �

(2), we obtain a consistent
estimator for G2 between groups 2 and 1 at period 2 as

Ĝ2 = �̂C2=�̂D2, ð3Þ
where �̂C2 =

PL− 1
s= 1

PL
s′ = s+ 1 π̂ + s1π̂ + s′2 and �̂D1 =

PL
s= 2

Ps− 1
s′ = 1 π̂ + s1π̂ + s′2. Again, using the
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delta method, we can show that an estimated asymptotic variance of Ĝ2(3) with the logarithmic
transformation is given by

Var̂ logðĜ2Þ
� �

=

PL
s= 1

½ PL
s′= s+ 1

π̂ + s′2 − Ĝ2
Ps− 1
s′ = 1

π̂ + s′2�2π̂ + s1

n1ð
Q̂

C2Þ
2 +

PL
s′ = 1

½Ps′ − 1
s = 1

π̂ + s1 − Ĝ2
PL

s= s′ + 1
π̂ + s1�2π̂ + s′2

n2ð
Q̂

C2Þ
2 . ð4Þ

Also, we define
PL

s= L+ 1 π̂ + s1 =
PL

s′ = L+ 1 π̂ + s′2 = 0 and
P0

s= 1 π̂ + s1 =
P0

s′ = 1 π̂ + s′2 = 0 in (4).

Note that Ĝ1(1) and Ĝ2(3) are actually correlated. For clarity, we include the tedious details in derivation

of Cov̂ logðĜ1Þ, logðĜ2Þ
� �

in Appendix I.

2.1 Test non-equality between treatments in the absence of interactions

When treatments received at the two periods in a group g are the same and there is no treatment-by-
period interaction (i. e., G1 =G2), we may apply a weighted average w logðĜ1Þ+ ð1−wÞ logðĜ2Þ to test
H0 :G1 =G2 = 1 versus Ha :G1 ≠ 1 or G2 ≠ 1, where 0 <w < 1 is the weight reflecting the relative importance
of responses at period 1 to those at period 2, and can be assigned by clinicians based on their subjective
knowledge. If we have no prior preference to assign the weight, we may simply set w equal to 0.50. This
leads us to consider the following summary test procedure over the two periods. We will reject
H0 :G1 =G2 = 1 at the α-level if

j logðĜ1Þ+ logðĜ2Þj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var̂ logðĜ1Þ+ logðĜ2Þ

� �r
> Zα=2, ð5Þ

where Var̂ logðĜ1Þ+ logðĜ2Þ
� �

=Var̂ logðĜ1Þ
� �

+Var̂ logðĜ2Þ
� �

+ 2Cov̂ logðĜ1Þ, logðĜ2Þ
� �

, Cov̂ logðĜ1Þ, logðĜ2Þ
� �

is given in (A.3) with replacing parameters by their corresponding parameter estimators (Appendix I), and Zα
is the upper 100(α)th percentile of the standard normal distribution. Note that because the sampling distribu-

tion of Ĝz (z= 1, 2), which is a ratio of two random variables, can be skewed, we use the logarithmic
transformation to improve the normal approximation here.

2.2 Test non-equality between treatments in the presence of interactions

When treatments received at the two periods in a group are not the same or there is a treatment-by-period
interaction (i. e., G1 ≠G2), the test procedure (5) can be meaningless or lose power. When there is a
treatment-by-period interaction, the estimates Ĝ1 and Ĝ2 may fall in opposite relative directions. For
example, consider the situation G1 = 1 and G2 > 1, in which logðĜ1Þ can be negative with a non-negligible
probability, while logðĜ2Þ tends to be positive. In this case, j logðĜ1Þ+ logðĜ2Þj can be small due to
cancelation between values of logðĜ1Þ and logðĜ2Þ. Therefore, the summary test procedure (5) can lack
power in these cases. To alleviate this concern, we may consider the following bivariate test procedure. We
will reject H0 :G1 =G2 = 1 at the α-level if

logðĜ1Þ, logðĜ2Þ
� �

�̂
− 1 logðĜ1Þ

logðĜ2Þ

� �
> χ2αð2Þ, ð6Þ

where �̂ is the estimated covariance matrix with diagonal elements equal to Var̂ logðĜ1Þ
� �

and

Var̂ logðĜ2Þ
� �

, and the off-diagonal element equal to Cov̂ logðĜ1Þ, logðĜ2Þ
� �

, as well as χ2α is the upper

100(α)th percentile of the central chi-squared distribution with 2 degrees of freedom.
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2.3 Procedure for testing the group-by-period interaction

When wishing to study whether there is a group-by-period interaction, we may consider testing H0 :G1 =G2

versus Ha :G1 ≠G2. We will reject H0 :G1 =G2 at the α-level if

j logðĜ1Þ− logðĜ2Þj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var̂ logðĜ1Þ− logðĜ2Þ

� �r
> Zα=2, ð7Þ

where Var̂ logðĜ1Þ− logðĜ2Þ
� �

=Var̂ logðĜ1Þ
� �

+Var̂ logðĜ2Þ
� �

− 2Cov̂ logðĜ1Þ, logðĜ2Þ
� �

. Note that when
treatments received at two periods in a group are the same, the group-by-period interaction may actually
represent the treatment-by-period interaction.

2.4 Interval estimation of the relative treatment effect

When treatments received at the two periods in a group are the same and there is no treatment-by-period

interaction, we let G0 denote the common value of G1 and G2. On the basis of Ĝ1(1), Var̂ logðĜ1Þ
� �

(2), Ĝ2(3),

Var̂ logðĜ2Þ
� �

(4) and Cov̂ logðĜ1Þ, logðĜ2Þ
� �

(A.3), we may obtain 100(1- α)% confidence interval for G0 as

½expðLGlÞ, expðLGuÞ�, ð8Þ

where LGl = logðĜ1Þ + logðĜ2Þ
� �

=2−Zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var̂ logðĜ1Þ+ logðĜ2Þ

� �r
=2, and LGu = logðĜ1Þ + logðĜ2Þ

� �
=2 +

Zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var̂ logðĜ1Þ+ logðĜ2Þ

� �r
=2.

When treatments received at the two periods are not the same or there is a treatment-by-period

interaction, we may wish to obtain an interval estimator for Gz(z = 1, 2) separately. On the basis of Ĝz and

Var̂ logðĜzÞ
� �

for z= 1, 2, we obtain 100(1-α)% confidence interval for Gz (z= 1, 2) as

Ĝz exp − Zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var̂ logðĜzÞ

� �r� �
, Ĝz exp Zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var̂ logðĜzÞ

� �r� �� �
. ð9Þ

3 Examples

To illustrate the use of point estimators Ĝ1 and Ĝ2, test procedures and interval estimators developed here,
we first consider the trial studying hip joint resurfacing surgeries [7]. To alleviate pain and debilitation
caused by osteoarthritis, rheumatoid arthritis, fractures and other hip related problems, hip replacement
surgery is a widely-used procedure. To assess the failure rate and prognosis after hip joint resurfacing, we
may use Harris scores [16], of which one important component is the pain scores coded on an ordinal scale:
none (1), slight (2), mild (3) and moderate or marked (4) pain in hip joint. We summarize in Table 1 the data
regarding the frequency distribution according to pain scores taken at two and five years after hip joint
resurfacing for 58 patients by gender published elsewhere [7]. Because there were very few patients with
moderate or marked pain (4), we grouped these patients and patients with mild pain (3) into one category
without loss of much information. It is of interest to study whether there is a difference in pain scores
between genders over time after surgeries. In terms of our notation, we define “females” and “males” as
group (g = ) 1 and 2, as well as “two years” and “five years” after the surgery as period (z = ) 1 and 2. From
Table 1, the numbers of patients are n1 = 21 and n2 = 37 for the two comparison groups. We can calculate, for
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example, the estimated cell proportion π̂111 = n111=n1 = 7/21. The marginal percentage for each row (or
column) is simply equal to the corresponding marginal total divided by the total number of patients
ng(g= 1, 2). For example, the marginal percentage π̂1 + 1 in the first row for females is 0.476 ( = 10/21).
Using marginal percentages for the rows between the two sub-tables (Table 1), we can then calculate the
GOR estimate Ĝ1 (1) of pain scores at two years post surgeries as

[0.476 × (0.135 + 0.108) + 0.333 × 0.108]/[0.333 × 0.757 + 0.190 × (0.757 + 0.135)] = 0.360. Similarly, using
marginal percentages for columns between the two sub-tables, we obtain Ĝ2 = 0.637 at five years post
surgeries. As an example, we can interpret Ĝ1 = 0.360 as that the odds of a randomly selected male with the
pain score higher than a randomly selected female at two years post surgeries is 0.360, given no ties in pain
scores between genders. Furthermore, when employing interval estimators (9), we obtain 95% confidence
intervals [0.133, 0.974] and [0.250, 1.623] for G1 and G2, respectively. Since the upper limit of the 95%
confidence interval for G1 falls below 1, there is significant evidence at the 5% level that males tend to have
pain scores lower than females at two years after surgeries. However, since Ĝ2( = 0.637) is closer to 1 than
Ĝ1( = 0.360), this difference in pain scores between genders seems to decrease as the time increases from
two years to five years after surgeries. Note that the above resulting 95% confidence interval for G2 covers 1.
Thus, the difference in pain scores between genders is no longer significant at the 5% level after five years
post surgeries, despite that males is still likely to have pain scores lower than females (because Ĝ2 < 1).
When using test procedures (5) and (6) for testing the overall equality of pain scores across two periods
between genders, we obtain p-values as 0.086 and 0.131. On the basis of the above results, we may
conclude that although males tend to fall, as compared with females, in categories with low pain scores
especially at two years post surgeries, the difference in pain scores between genders seems to become
smaller in the long-term results.

When assuming a normal random effects proportional odds model [17], we may employ Proc Glimmix in
SAS [18] to study the difference in pain scores between genders on the basis of the model-based approach.
Using the data in Table 1, we have obtained the parameter estimate (and its estimated standard error (SE))
for the relative gender effect of males versus females to be 0.961 (SE = 0.6148). This leads the p-value for
testing the equality of pain scores across the two periods between genders is 0.124, which is similar to those
obtained by use of test procedures (5) and (6). Also, note that the parameter estimate 0.961 is larger than 0.
Thus, males tend to fall in categories with lower pain scores than females. This inference is identical to that
obtained on the basis of the GOR focused here.

We may sometimes encounter a trial in which the patient response taken at period (z= ) 1 actually
represents the baseline response. In this case, we may apply the test procedure (7), developed for testing

Table 1: Frequency distribution of patients with pain scores coded as: none (1), slight (2), mild, moderate or
marked pain (3) taken at two and five years post-surgery between females and males.

Gender At Two Years At Five Years

None Slight Mild, Moderate
or Marked Pain

Marginal Total Marginal
Percentage

Female None     .
Slight     .
Mild, Moderate or Marked Pain     .
Marginal Total    

Marginal Percentage . . . .

None Slight Mild, Moderate
or Marked Pain

Marginal Total Marginal
Percentage

Male None     .
Slight     .
Mild, Moderate or Marked Pain     .
Marginal Total    

Marginal Percentage . . . .
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group-by-period interaction, to study whether there is a relative treatment effect. To illustrate this point, we
consider the data (Table 2) taken from a double-blind randomized clinical trial comparing an active
hypnotic drug (g= 1) with a placebo (g= 2) in patients with insomnia [1, 14, 2]. The outcome of interest is
to respond the question “How quickly did you fall asleep after going to bed?” and is recorded on a four-
point ordinal scale (< 20, 20–30, 30–60, > 60 in minutes). Each participated subject was asked this question
twice, one after a one-week placebo washout period for both groups and the other at the conclusion of a
two-week treatment period. Using the data in Table 2, we obtain Ĝ1 = 1.031 and Ĝ2 = 1.883. Because subjects
received placebo at the first one-week washout period in both groups, the estimate for the GOR of responses
is expected to be, as shown Ĝ1 = 1.031, around 1 due to randomization. At the end of two-week treatment
period, the estimate for the GOR of responses becomes Ĝ2 = 1.883 with 95% confidence interval using
interval (9) given by [1.270, 2.792]. Because this lower confidence limit falls above 1, one may conclude that
the hypnotic drug changes the GOR over periods and tends to reduce time to falling asleep. When using test
procedures (6) and (7), we obtain p-value as 0.002 and 0.004; these small p-values also suggest that the
hypnotic drug can significantly reduce the time to falling asleep. We note that all these test results are
essentially similar to those based on the proportional odds model with the cumulative logits found else-
where [1]. When using the summary test procedure (5) using data in Table 2, we obtain the p-value 0.055.
Note that since the GOR at the initial period is around 1, there is non-negligible probability that the time to
falling asleep for patients in the placebo group is smaller than those in the other group at the initial
washout period. As noted previously, use of a summary test procedure (5) over two periods in this case may
not only be senseless (due to different treatments received at two periods), but also lack power.

4 Discussion

We can employ, as demonstrated here, the GOR to measure the relative treatment effect without the need to
assume any specific parametric model. Since the GOR has a simple interpretation and is easily understood, the
GOR is of use in ordinal data. In fact, the GOR is closely related to the gamma correlation [19], a commonly-
used measure of the strength of association between two ordinal variables. We refer readers to some publica-
tions on estimation of the GOR and its applications under other situations [20, 21, 22–24]. When repeated
measurements are taken at the same time (or there are no period effects), one may employ the Dirichlet-
multinomial distribution to model the intraclass correlation between repeated measurements [25]. As consid-
ered in the above two examples, however, repeated measurements on patients are often taken at different time
intervals in clinical trials. The period effect is likely to exist and is required to be incorporated to avoid bias in

Table 2: Frequency distribution of patients with time to falling asleep (in minutes) taken at the end of
one-week washout period and at the conclusion of two-week treatment period.

Treatment At One-week Period At Two-week Treatment Period

< - - > Total
Active <      

-     

-     

>      

Total     

< - - > Total
Placebo <      

-     

-     

>      

Total     
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data analysis [26, 27]. The methods based on the Dirichlet-multinomial model for cluster sampling without
accounting for the period effect would not be appropriate for use in situations focused here.

The proportional odds model is probably one of the most commonly-used models to analyze ordinal
data. Just like all model-based approaches, we can easily extend the proportional odds model to account for
confounders (if there were) or accommodate other general situations. However, the implicit assumption of
the proportional odds model can be badly violated by many bivariate distributions [13, 28, 29]. Furthermore,
when applying Proc Glimmix in SAS [18] based on the random effects proportional odds model to ordinal
data with repeated measurements, we need to assume that the random effects (accounting for the intraclass
correlation between repeated measurements) due to patients follow a normal distribution. This normal
assumption for random effects can be difficult to be justified. By contrast, the proposed method is model-
free. It does not require the random effects due to patients to follow the normal distribution, not does
assume any parametric models for the data structure. Thus, our methods are applicable despite of various
parametric models for the underlying data structure and distribution assumptions for the patient random
effects. Furthermore, the point estimators, test procedures and interval estimators developed here can all be
expressed in closed forms. Readers may employ these test procedures and estimators by use of a pocket
calculator even without knowledge of any statistical software. The interpretation of the GOR is, as illustrated
in examples, easily understood. When there are confounders in a trial of a large size, we may extend the
methods proposed here by use of stratified analysis with strata determined by the combined levels of
confounders [23]. But we want to note that the model-based approach can be preferable to the model-free
approach proposed here if there are many covariates to adjust for a trial of a small or moderate size.

Finally, we note that using similar arguments as above, it is straightforward to extend the results to
accommodate the cases with three or more periods. We outlines the extension of results presented here to
accommodate three periods in Appendix II.

In summary, we have developed model-free test procedures for testing equality of treatments in ordinal
data with repeated measurements. We have further derived interval estimators for the relative treatment
effect measured by the GOR. We recommend use of the summary test procedure to improve power when
treatments received at two periods in a group are the same and there is no treatment-by-period interaction.
However, we should cautiously employ this summary test procedure when there is a treatment-by-period
interaction. The bivariate test procedure can be of use in this case. We further outline the extension of
results to accommodate three periods. The results, findings and discussions should have use for biostatis-
ticians and clinicians when they encounter ordinal responses with repeated measurements.
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comments and suggestions to improve the clarity and contents of this article.
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Appendix I

Suppose that random vectors ðX1,X2Þ′and ðY1,Y2Þ′ have the joint probability density functions f ðX1,X2Þ and
f ðY1,Y2Þ, respectively. Suppose further that ðX1,X2Þ′ and ðY1,Y2Þ′ are mutually independent. We can show
that the covariance

CovðX1Y1,X2Y2Þ=CovðX1,X2ÞCovðY1,Y2Þ+CovðX1,X2ÞEðY1ÞEðY2Þ +CovðY1,Y2ÞEðX1ÞEðX2Þ. ðA:1Þ
On the basis of (A.1), we have

Covðπ̂r + 1π̂r′ + 2, π̂ + s1π̂+ s′2Þ= ½ðπrs1 −πr + 1π + s1Þ=n1�½ðπr′s′2 −πr′ + 2π + s′2Þ=n2�
+ ½ðπrs1 − πr + 1π + s1Þ=n1�πr′ + 2π + s′2 + πr + 1π + s1½ðπr′s′2 − πr′ + 2π + s′2Þ=n2�.

ðA:2Þ
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Using the delta method, we may obtain the asymptotic covariance

Cov logðĜ1Þ, logðĜ2Þ
� �

=Cov logð�̂C1Þ, logð�̂C2Þ
	 


−Cov logð�̂C1Þ, logð�̂D2Þ
	 


−Cov logð�̂D1Þ, logð�̂C2Þ
	 


+Cov logð�̂D1Þ, logð�̂D2Þ
	 


,
ðA:3Þ

where Cov logð�̂C1Þ, logð�̂C2Þ
	 


= ½
XL− 1

r = 1

XL− 1

s = 1

XL

r′ = r + 1

XL

s′ = s+ 1
Covðπ̂r + 1π̂r′ + 2, π̂+ s1π̂ + s′2Þ�=ð�C1�C2Þ,

Cov logð�̂C1Þ, logð�̂D2Þ
	 


= ½
XL− 1

r = 1

XL

s = 2

XL

r′ = r + 1

Xs− 1

s′ = 1
Covðπ̂r + 1π̂r′ + 2, π̂+ s1π̂+ s′2Þ�=ð�C1�D2Þ,

Cov logð�̂D1Þ, logð�̂C2Þ
	 


= ½
XL

r = 2

XL− 1

s= 1

Xr − 1

r′ = 1

XL

s′ = s+ 1
Covðπ̂r + 1π̂r′ + 2, π̂ + s1π̂+ s′2Þ�=ð�D1�C2Þ, and

Cov logð�̂D1Þ, logð�̂D2Þ
	 


= ½
XL

r = 2

XL

s= 2

Xr − 1

r′ = 1

Xs− 1

s′ = 1
Covðπ̂r + 1π̂r′ + 2, π̂+ s1π̂+ s′2Þ�=ð�D1�D2Þ.

We can obtain an estimated asymptotic covariance Cov
ð̂

logðĜ1Þ, logðĜ2ÞÞ with replacing the parameters in
(A.3) by their corresponding parameter estimators.

Appendix II

For a randomly selected patient i( = 1, 2,…, ng) from group g, we let Yizg denote the patient response at period
z ( = 1, 2, 3). Let nrstg denote the number of patients with ðYi1g =Cr,Yi2g =Cs,Yi3g =CtÞ among ng patients in
group g. The random vector ðn111g, n112g, � � � , n11Lg, n121g, n122g, ..., n12Lg, � � � , nL11g, nL12g, ..., nL1Lg, � � � , nLL1g, ...,
nLLLgÞ′ then follows the multinomial distribution with parameters ngð=

P
r

P
s

P
t nrstgÞ and ðπ111g,

π112g, � � � , π11Lg,π121g, π122g, ..., π12Lg, � � � ,πL11g,πL12g, ..., πL1Lg, � � � , πLL1g, ..., πLLLgÞ′, where πrstg den randomly
selected patient from group g has the vector of responses ðYi1g =Cr,Yi2g =Cs,Yi3g =CtÞ. Note that we can
estimate πrstg by π̂rstg = nrstg=ng . Thus, we can estimate the GOR of responses between group 2 and 1 at
period z ( = 1, 2, 3) as given by

Ĝz = �̂Cz=�̂Dz, ðA:4Þ
where �̂C1 =

PL− 1
r = 1

PL
r′ = r + 1 π̂r + + 1π̂r′ + + 2 and �̂D1 =

PL
r = 2

Pr − 1
r′ = 1 π̂r + + 1π̂r′ + + 2;

�̂C2 =
PL− 1

s= 1

PL
s′ = s+ 1 π̂ + s+ 1π̂+ s′ + 2 and �̂D2 =

PL
s = 2

Ps− 1
s′ = 1 π + s+ 1π̂ + s′ + 2; �̂C3 =

PL− 1
t = 1

PL
t′ = t + 1 π̂ + + t1π̂+ + t′2 and

�̂D3 =
PL

t = 2

Pt − 1
t′ = 1 π̂ + + t1π̂+ + t′2.

Using the delta method [14], we obtain an estimated asymptotic variance for logðĜ1Þ with the logarithmic
transformation as

Var̂ logðĜ1Þ
� �

=

PL
r = 1

½ PL
r′= r + 1

π̂r′ + + 2 − Ĝ1
Pr − 1
r′ = 1

π̂r′ + + 2�2π̂r + + 1

n1ð
Q̂

C1Þ
2

+

PL
r′ = 1

½Pr′ − 1
r = 1

π̂r + + 1 − Ĝ1
PL

r = r′ + 1
π̂r + + 1�2π̂r′ + + 2

n2ð
Q̂

C1Þ
2 , ðA:5Þ

where
PL

r = L+ 1 π̂r + + 1 =
PL

r′ = L+ 1 π̂r′ + + 2 =
P0

r = 1 π̂r + + 1 =
P0

r′ = 1 π̂r′ + + 2 = 0. Similarly, we obtain the estimated
asymptotic variances for logðĜ2Þ as given by
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Var̂ logðĜ2Þ
� �

=

PL
s= 1

½ PL
s′= s+ 1

π̂ + s′ + 2 − Ĝ2
Ps− 1
s′ = 1

π̂ + s′ + 2�2π̂ + s+ 1

n1ð
Q̂

C2Þ
2 +

PL
s′ = 1

½Ps′ − 1
s= 1

π̂ + s+ 1 − Ĝ2
PL

s= s′ + 1
π̂ + s+ 1�2π̂ + s′ + 2

n2ð
Q̂

C2Þ
2 , ðA:6Þ

where
PL

s = L+ 1 π̂ + s + 1 =
PL

s′ = L+ 1 π̂ + s′ + 2 =
P0

s = 1 π̂ + s+ 1 =
P0

s′ = 1 π̂ + s′ + 2 = 0. Also, we obtain an estimated
asymptotic variances for logðĜ3Þ as

Var̂ logðĜ3Þ
� �

=

PL
t = 1

½ PL
t′= t + 1

π̂ + + t′2 − Ĝ3
Pt − 1
t′= 1

π̂ + + t′2�2π̂ + + t1

n1ð
Q̂

C3Þ
2 +

PL
t′ = 1

½Pt′ − 1
t = 1

π̂ + + t1 − Ĝ3
PL

t = t′ + 1
π̂ + + t1�2π̂ + + t′2

n2ð
Q̂

C3Þ
2 , ðA:7Þ

where
PL

t = L+ 1 π̂ + + t1 =
PL

t′ = L+ 1 π̂ + + t′2 =
P0

t = 1 π̂ + + t1 =
P0

t′= 1 π̂ + + t′2 = 0.
Note that the covariance

Covðπ̂r + + g, π̂ + s+ gÞ=
X

k

X
k′
Covðπ̂r + kg, π̂ + sk′gÞ

=
X

k
Covðπ̂r + kg, π̂ + skgÞ+

X
k

X
k′
Covð

k ≠ k′
π̂r + kg, π̂ + sk′gÞ

=
X

k
ðπrskg − πr + kgπ + skgÞ−

X
k

X
k′
ð

k ≠ k′
π̂r + kgπ̂ + sk′gÞ

= πrs+ g −πr + + gπ + s+ g

. ðA:8Þ

Thus, from (A.1) we have

Covðπ̂r + + 1π̂r′ + + 2, π̂ + s+ 1π̂ + s′ + 2Þ = ½ðπrs+ 1 −πr + + 1π + s + 1Þ=n1�½ðπr′s′ + 2 −πr′ + + 2π + s′ + 2Þ=n2�
+ ½ðπrs+ 1 −πr + + 1π + s+ 1Þ=n1�πr′ + + 2π + s′ + 2 +πr + + 1π + s + 1½ðπr′s′ + 2 −πr′ + + 2π + s′ + 2Þ=n2�.

ðA:9Þ

Using the delta method, we obtain the asymptotic covariance

Cov logðĜ1Þ, logðĜ2Þ
� �

=Cov logð�̂C1Þ, logð�̂C2Þ
	 


−Cov logð�̂C1Þ, logð�̂D2Þ
	 


−Cov logð�̂D1Þ, logð�̂C2Þ
	 


+Cov logð�̂D1Þ, logð�̂D2Þ
	 


,
ðA:10Þ

where Cov logð�̂C1Þ, logð�̂C2Þ
	 


= ½
XL− 1

r = 1

XL− 1

s = 1

XL

r′ = r + 1

XL

s′ = s+ 1
Covðπ̂r + + 1π̂r′ + + 2, π̂ + s+ 1π̂+ s′ + 2Þ�=ð�C1�C2Þ,

Cov logð�̂C1Þ, logð�̂D2Þ
	 


= ½
XL− 1

r = 1

XL

s= 2

XL

r′ = r + 1

Xs− 1

s′ = 1
Covðπ̂r + + 1π̂r′ + + 2, π̂+ s+ 1π̂+ s′ + 2Þ�=ð�C1�D2Þ,

Cov logð�̂D1Þ, logð�̂C2Þ
	 


= ½
XL

r = 2

XL− 1

s= 1

Xr − 1

r′ = 1

XL

s′ = s + 1
Covðπ̂r + + 1π̂r′ + + 2, π̂ + s+ 1π̂+ s′ + 2Þ�=ð�D1�C2Þ, and

Cov logð�̂D1Þ, logð�̂D2Þ
	 


= ½
XL

r = 2

XL

s= 2

Xr − 1

r′ = 1

Xs− 1

s′ = 1
Covðπ̂r + + 1π̂r′ + + 2, π̂+ s+ 1π̂+ s′ + 2Þ�=ð�D1�D2Þ.

We obtain the estimated asymptotic covariance Cov̂ logðĜ1Þ, logðĜ2Þ
� �

by substituting parameter estimators
for their corresponding parameters in (A.10). Using the same arguments, we can also obtain
Cov̂ logðĜ1Þ, logðĜ3Þ

� �
and Cov̂ logðĜ2Þ, logðĜ3Þ

� �
. These lead us to obtain, as for the ordinal data with

two repeated measurements, the summary test procedure, the trivariate test procedure, the test procedure
for treatment-by-period interaction, as well as interval estimators for the GOR in the ordinal data with three
repeated measurements. For example, consider the trivariate test procedure for testing H0 :G1 =G2 =G3 = 1.
We will reject H0 at the α-level if

logðĜ1Þ, logðĜ2Þ, logðĜ3Þ
� �

�̂
− 1

logðĜ1Þ
logðĜ2Þ
logðĜ3Þ

0
@

1
A > χ2αð3Þ, ðA:11Þ
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where �̂ is the estimated covariance matrix with diagonal elements equal to Var̂ logðĜ1Þ
� �

, Var̂ logðĜ2Þ
� �

and Var̂ logðĜ3Þ
� �

, and off-diagonal elements equal to Cov̂ logðĜ1Þ, logðĜ2Þ
� �

, Cov̂ logðĜ1Þ, logðĜ3Þ
� �

and

Cov̂ logðĜ2Þ, logðĜ3Þ
� �

, respectively.
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