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Abstract:

Inverse probability of treatment weighting (IPW) and targeted maximum likelihood estimation (TMLE) are rel-
atively new methods proposed for estimating marginal causal effects. TMLE is doubly robust, yielding consis-
tent estimators even under misspecification of either the treatment or the outcome model. While IPW methods
are known to be sensitive to near violations of the practical positivity assumption (e. g., in the case of data spar-
sity), the consequences of this violation in the TMLE framework for binary outcomes have been less widely
investigated. As near practical positivity violations are particularly likely in high-dimensional covariate set-
tings, a better understanding of the performance of TMLE is of particular interest for pharmcoepidemiological
studies using large databases. Using plasmode and Monte-Carlo simulation studies, we evaluated the perfor-
mance of TMLE compared to that of IPW estimators based on a point-exposure cohort study of the marginal
causal effect of post-myocardial infarction statin use on the 1-year risk of all-cause mortality from the Clinical
Practice Research Datalink. A variety of treatment model specifications were considered, inducing different de-
grees of near practical non-positivity. Our simulation study showed that the performance of the TMLE and IPW
estimators were comparable when the dimension of the fitted treatment model was small to moderate; however,
they differed when a large number of covariates was considered. When a rich outcome model was included
in the TMLE, estimators were unbiased. In some cases, we found irregular bias and large standard errors with
both methods even with a correctly specified high-dimensional treatment model. The IPW estimator showed
a slightly better root MSE with high-dimensional treatment model specifications in our simulation setting. In
conclusion, for estimation of the marginal expectation of the outcome under a fixed treatment, TMLE and IPW
estimators employing the same treatment model specification may perform differently due to differential sen-
sitivity to practical positivity violations; however, TMLE, being doubly robust, shows improved performance
with richer specifications of the outcome model. Although TMLE is appealing for its double robustness prop-
erty, such violations in a high-dimensional covariate setting are problematic for both methods.
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1 Introduction

Population-based treatment effects, i. e. the marginal contrast of outcomes from the same population under
different counterfactual treatments, are of particular interest in epidemiological studies being conducted for
health policy evaluation. Several methods have been developed for estimation of such marginal effects, in par-
ticular marginal structural models (MSM) using inverse probability weighting (IPW) and computationally in-
tensive approaches such as G-computation [1-3]. Recently, a class of doubly robust estimators has been de-
veloped that beneficially employs efficient influence functions for the parameter of interest [4]. An interesting
characteristic of both IPW and the doubly robust methods is their use of the inverse of the propensity score [4].
One such procedure for estimating marginal causal effects, named targeted maximum likelihood estimation
(TMLE), was proposed by van der Laan and Rubin [5-9]. For estimation of the mean outcome under a fixed
treatment regime, TMLE requires specification of both the treatment model and a conditional model for the
outcome. TMLE is doubly robust meaning that only one of these two models has to be correctly specified, in
the sense that it must correctly model the outcome or treatment as a function of a sufficient set of covariates, in
order to obtain unbiased effect estimates [8]. Furthermore, TMLE has been shown to be locally efficient, mean-
ing that the resulting estimator has minimum large-sample standard error when both models are correctly
specified. For these reasons, TMLE is an appealing method to reduce bias due to model misspecification and
to possibly increase precision of the effect estimate.

Simulation studies have been used to evaluate the performance of TMLE in certain study designs. For exam-
ple, simulation has been applied in the context of time-to-event analysis considering different types of censoring
[10, 11]. Simulation-based investigations have also been conducted in longitudinal data settings where the per-
formance of TMLE was compared to that of other methods in the presence of time-varying confounding [12-15].
Porter [16] conducted simulations in the common setting of a point-exposure study with binary outcome; we
were interested in extending these results to administrative data with a large (e. g., >200) number of covariates,
which we will refer to as “high-dimensional”. We were also interested in determining whether the inclusion of
“pure” treatment predictors that are independent of the outcome in the treatment model would be harmful in
this context, and whether the inclusion of “pure” predictors of the outcome would be beneficial [17-19].

Pharmacoepidemiologic studies are often conducted using administrative claims and clinical data that are
routinely collected for non-research purposes by insurers and governments. Since these data are not research
data, control for confounding may require a large number of covariates. In this setting, TMLE has not yet been
widely implemented (although software for TMLE has been developed [20, 21]). This lack of application may be
due to the method’s novelty and theoretical complexity. However, before applying the TMLE method in such
studies, its performance should be fully assessed. One key assumption that may be particularly problematic for
this type of data is the positivity assumption [22, 23]. The theoretical positivity assumption requires that the
probability of receiving any level of treatment conditional on the covariates must be positive for each individual
in the population. Near-, or practical, violations of the positivity assumption can occur when a specific com-
bination of covariates and treatment is rare. Near violations of the positivity assumption and TMLE have also
been investigated, in particular for study settings with a continuous outcome [24, 25] and TMLE has been im-
plemented in several settings with binary outcomes [9, 26, 27]. However, for high-dimensional administrative
data with binary outcomes, the consequences of a near positivity violation and TMLE have been less widely
investigated and discussed. Collaborative TMLE [25, 28, 29] has been proposed to address positivity violations
by variable selection for the treatment model; however, we limit this paper to the more widely used standard
TMLE.

In this article, we review the conceptual idea and implementation of TMLE in a general point-exposure study
with binary exposure and outcome. A comprehensive Monte-Carlo simulation study is conducted to evaluate
the performance of TMLE compared to the IPW estimator and to verify its double robustness property. More-
over, a plasmode simulation study [30] incorporating real administrative data is used to assess the performance
of TMLE in a high dimensional covariate setting emulating a typical pharmacoepidemiologic study.

2 Notation and assumptions

Assume that X is a (perhaps high-dimensional) vector of covariates and A and Y are binary indicator variables
for the treatment status and the observed outcome, respectively. Let Y ,_, indicate a patient’s potential outcome
under treatment A=a. In order to perform valid causal inference using IPW or TMLE, several necessary assump-
tions are needed. First, the so-called time ordering assumption is required: the covariates X precede treatment
A and A precedes Y in time, and Y depends on A and X while A depends only on X. Taking only pre-treatment
variables in X guarantees that one does not condition on collider variables (common effects of treatment and
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other covariates) which would potentially induce selection bias [31]. Second, the consistency assumption re-
quires that an individual’s potential outcome under the treatment he or she actually received is equal to his
or her observed outcome; Y ,_,= Y| A=a. Third, the conditional exchangeability assumption (also known as no
unmeasured confounding) has to be made. Confounding occurs when Y and A share a common cause. The
conditional exchangeability assumption states that the potential outcomes are independent of the observed
treatment given measured covariates; Y,_, L A | X, that is, that X includes sufficient variables to account for
common causes [32]. Last, as noted earlier, the positivity assumption is also necessary for all treatment levels a
and observed covariate realizations x. Violations of this assumption can be either theoretical, when P(A=a | X=x)
=0, or practical, when P(A = alX = x) = 0 for some observed combination of @ and x.

3 Inverse probability weighting

In point-exposure studies, the IPW estimator can be used to estimate marginal treatment effects in the presence
of confounding. Each subject is assigned a weight equal to the inverse of the estimated probability of having
received his or her own treatment, i. e. the inverse of the propensity score for a treated subject and the inverse of
one minus the propensity score for an untreated subject. By weighting, a pseudo-population is created where
the distribution of covariates is comparable across treatment groups [1]. Therefore, contrasts in marginal out-
come between the treatment groups in this pseudo-population produce an unbiased estimate of the marginal
treatment effect. A weighted unadjusted logistic regression for the outcome will produce an estimate of the
marginal treatment effect. Including additional covariates (such as confounders or other risk factors) in the lo-
gistic model will produce an estimate of the conditional treatment effect. Due to the non-collapsibility of the
odds ratio, these marginal and conditional effects are different quantities [33].

4 Targeted maximum likelihood estimation

In brief, in a point-exposure study with binary exposure and outcome, implementing TMLE for the estima-
tion of the marginal odds ratio consists of three steps [9, 20]. To estimate this odds ratio, we simultaneously
target P(Y4_,=1) for a=0,1. Consistent estimation of the odds ratio requires that both of these parameters be
consistently estimated.

Step 1: Initially, two probability models are specified and estimated based on the observed data: i) a model
to predict the outcome given the treatment A and the covariates X (outcome model) and ii) a model to predict
receipt of treatment A=a conditional on covariates X (treatment or propensity score model). Standard logistic
regression is one possible and commonly used approach for fitting these two models; machine learning tools
such as Super Learner may also be used [34]. Step 2: A parametric update model is fit using an intercept free
logistic regression including “clever covariates” and an offset equal to the fitted linear prediction from the ini-

tial outcome model. The clever covariate is derived based on the efficient influence function for the parameter
I(A=a)

P(A=alX=x)

from the treatment model in step 1. The coefficient of the clever covariate is referred to as a fluctuation parame-

ter. Consequently, the probabilities of the counterfactual outcomes are estimated with the predictions from the
update model by setting everyone’s exposure to A=a. This step aims to find a better model parameterizations
to target an optimal bias-variance tradeoff for the parameters of interest P(Y 4_,=1). Step 3: The empirical mean
of the predicted probabilities of the counterfactual outcome (computed in the previous step) is taken. The stan-
dard error of TMLE can be again estimated with the efficient influence function. The Wald-type 95 % confidence
interval and the statistics for hypothesis testing can be calculated correspondingly. Once estimates of P(Y 4_,=1)
are calculated for both treatment levels, one can combine them to obtain an estimate of the marginal odds ratio:

P(Y o_;=1)/P(Y 4_,=0) . T . .
Iz (Yiz(]:l) iz (YQZO:O) . More detailed description of the theory of TMLE can be found in the literature [7, 9, 20].

of interest, and is defined as in the binary case under consideration. This covariate can be estimated

5 Simulationstudy A

5.1 Simulated data generation

In order to evaluate the performance of TMLE compared to that of the IPW estimator as well as to demon-
strate the double robustness of TMLE, different model specifications were employed for both approaches. In all
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cases, we were interested in estimating the marginal odds ratio. We considered generating four types of binary
covariates: a confounding variable (C) related to both the treatment and the outcome, an outcome predictor
not related to the treatment (baseline risk predictor, BR), a treatment predictor not related to the outcome (in-
strumental variable, IV), and a noise variable (NV) neither related to the outcome nor to the treatment. These
covariates were generated from Bernoulli distributions with probabilities equal 0.5. The treatment (A) was gen-

exP(ﬁoA+/3cAc+ﬁlvAIV)
1+exp(By , +Bc ,C+Brv , IV
ﬁoA was chosen to make the prevalence of treatment approximately 0.5. Analogously, we generated the outcome

exp(Boy +Bay A+Be, C+Bpr, BR)
1+exp( By, +Bay A+Boy C+Brry BR)
[30Y was chosen to obtain outcome prevalence of approximately 0.25. To consider two different scenarios, the co-
efficients (B¢, , Bc,, v, Prr,) for the respective covariates and treatment were set to In (2) and subsequently (ina
PV py=1)/P(Y 4y =0)
P(Y4=g=1)/P(Y 42=0)
The true values of the marginal odds ratios were 1.94 and 3.80 respectively in our two simulated scenarios, de-
rived from simulations where both counterfactual outcomes were generated for every subject. A total of 100,000
subjects were considered and corresponding parameter settings were used for the two scenarios. The average
estimates of the marginal odds ratios were then determined by taking the mean contrasts of the counterfactual
outcomes in the logit scale over 1,000 simulations.

Sample size was set at n € {500;1000; 10, 000}. To investigate the impact of omitting different types of vari-
ables in either the treatment or the outcome model, we assessed the performance of TMLE in all 16 x 16 = 256
possible combinations of treatment and outcome model specifications, excluding interactions (Table 1). We
compared the performance of IPW estimation with that of the TMLE with an unadjusted outcome model
for each of the 16 possible treatment model specifications. Stabilized weights for IPW were estimated using
weighted logistic regression. Simulation of each data scenario was repeated 1,000 times and analyzed accord-
ingly: we reported the empirical bias, standard error, mean squared error of the estimates achieved by the TMLE
and IPW approach.

erated based on C and [V, with sampling probability P (A = 1|C,IV) = 7 The intercept

(Y) as a function of A, C and BR with probability P (Y = 1|A,C,BR) = . The intercept

second scenario) to In (5). The target of our analysis was the marginal odds ratio (OR), i. e.,

Table 1: Model specifications in simulation study A.

Treatment model

T1 1 (intercept only model)
T2 C

T3 BR

T4 v

T5 NV

T6 C+BR

T7 C+IV

T8 C+NV

T9 BR+IV

T10 BR+NV

T11 IV+NV

T12 C+BR+IV

T13 C+BR+NV
T14 C+IV+NV

T15 BR+IV+NV
T16 C+BR+IV+NV

Note: *Outcome models (M1-M16) in TMLE included the treatment and the same 16 different covariate combinations.

We will further refer to this simulation as “simulation study A”.

5.2 Simulation results

Table 2 show the bias and the root mean squared error (RMSE) for the estimates (In OR) of the treat-
ment effect for selected TMLE approaches, for the setting with sample size #=10,000 and model coefficients

B, Py Prv, Prr,s Pa,=In (5).

Table 2: Bias and RMSE of treatment effect estimates using various outcome models and treatment models with sample
size n=10,000, B¢, Bc, Brv, Bery- Be, =1 (5).
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Outcome Model 1 Outcome Model 2 Outcome Model 4

IPW TMLE TMLE TMLE
Treat- Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ment
model
1 4.64 4.67 4.64 4.67 0.05 0.57 5.21 5.24
X 0.01 0.56 0.01 0.56 0.01 0.56 0.63 0.86
BR 4.64 4.67 4.64 4.67 0.05 0.55 5.21 5.24
v 5.25 5.28 5.25 5.28 0.06 0.6 5.25 5.28
NV 4.64 4.67 4.64 4.67 0.05 0.57 5.21 5.24
X+BR 0.01 0.54 0.01 0.54 0.01 0.54 0.63 0.85
X+IV 0.01 0.64 0.01 0.64 0.01 0.64 0.01 0.64
X+NV 0.01 0.56 0.01 0.56 0.01 0.56 0.63 0.86
BR+IV 5.25 5.28 5.25 5.28 0.06 0.58 5.25 5.28
BR+NV 4.64 4.67 4.64 4.67 0.05 0.55 5.21 5.24
IV+NV 5.25 5.28 5.25 5.28 0.06 0.6 5.25 5.28
X+BR+IV 0.01 0.62 0.01 0.62 0.01 0.62 0.01 0.62
X+BR+NV 0.01 0.54 0.01 0.54 0.01 0.54 0.63 0.85
X+IV+NV 0.01 0.64 0.01 0.64 0.01 0.64 0.01 0.64
BR+IV+NV 5.25 5.28 5.25 5.28 0.06 0.58 5.25 5.28
X+BR+IV+NV 0.01 0.62 0.01 0.62 0.01 0.62 0.01 0.62

With the confounding variable C included in the outcome models (M2, M6, M7, M8, M12, M13, M14, and
M16), TMLE always yielded unbiased treatment effect estimates regardless of the treatment model. When nei-
ther the confounder (C) nor the instrumental variable (IV) was included in the outcome models (M1, M3, M5,
and M10), TMLE yielded unbiased estimates as long as the confounder (C) was included in the treatment mod-
els (T2, T6, T7, T8, T12, M13, T14, and T16). The estimates were biased with the other treatment models. In
particular, inclusion of the IV in models without C (T4, T9, T11, T15) produced the largest bias. When the out-
come models included IV but not C (M4, M9, M11 and M15), even when controlling for C in the treatment
model (T2, T6, T8, T13), TMLE produces a small amount of finite-sample bias. Only the joint inclusion of C
and IV in the treatment model (T7, T12, T14 and T16), i. e. modeling the treatment generating process correctly,
produces an unbiased estimate of the effect in this finite sample. In other words, TMLE appeared to take longer
to converge when the treatment model was estimated conditional only on confounders rather than the true set
of generating variables when the outcome model was overfit to the instrumental variables. The left panel of
Figure 3 displays the bias for TMLE with outcome model M4.

The results for RMSE are presented for the TMLE with outcome model M2, M1 and M4 in the corresponding
right panel of the figures. The RMSE is minimal for TMLE providing C is included in the outcome model.
Among the TMLEs with the outcome models M1, M3, M5 and M10 (in which both C and IV were excluded),
estimators with treatment models that include both C and IV (T7, T12, T14 and T16) tend to yield slightly larger
RMSE compared to those that include C but not IV. The RMSE is maximal when the treatment models include
IV but not C (treatment model T4, T9, T11, T15). When the outcome models include IV but not C (M4, M9, M11
and M15), the RMSE is minimal with the joint inclusion of C and IV in the treatment model (T7, T12, T14 and
T16) within TMLE.

In this simulation study, the IPW estimator had the same bias and RMSE when compared to TMLE with
the same propensity score model specification and a marginal outcome model with only treatment included as
a covariate (using a marginal, or otherwise limited, outcome model is not recommended, as it eliminates the
opportunity for correct specification of the outcome model; however, we include these results for completeness).
Moreover, adding the baseline risk (BR) variable in either the treatment or the outcome model did not result in
obvious improvement for TMLE.

The results are similar for the other parameter setting (/SCE, ,ch, ﬁIVE, ,BBRy, ﬁEszn (2), n={500; 1,000}), al-
though the contrasts between different models were less distinct for the smaller coefficients (results not shown).

6 Plasmode simulation study

6.1 Datasources

To further evaluate the performance of TMLE and IPW in high dimensional covariate settings with respect to
estimation bias and precision, simulation studies were conducted to mimic a typical pharmacoepidemiologic
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study with known data generating process. Given the challenge of generating realistic high dimensional data,
we used a plasmode simulation study [30]. A plasmode study starts with an existing cohort, so that associa-
tions between covariates reflect real-world patients. We then injected known signals (effects) into it. The true
simulated effect was 0.72, a value based on a real word study of the effect of the statin use post-myocardial
infarction (MI) on one-year risk of all-cause mortality. We will further refer to this simulation as “simulation
study B”.

This is a retrospective population-based cohort study using the data from the Clinical Practice Research
Datalink (CPRD) and Hospital Episode Statistics (HES). 32,792 patients aged 18 and older, and diagnosed as
MI were drawn from the databases between April 1%, 1998 and March 31%!, 2012. This cohort consists of 19,122
patients treated with statin and 13,671 patients not treated with statin within 30 days after the diagnosis of ML
All-cause mortality was evaluated as any death recorded in the databases during the one year follow-up period.
A range of known potential confounders can be predefined from the study, including demographic characteris-
tics (e. g., age, sex), time variables (e. g., year of cohort entry), clinical characteristics (e. g., smoking, alcohol use,
obesity), comorbidities (e. g., diabetes mellitus, atrial fibrillation, coronary artery disease (recorded >30 days
before the index MI), acute coronary syndrome, cerebrovascular disease, congestive heart failure, chronic ob-
structive pulmonary disease, hypertension, hypercholesterolemia, peripheral vascular disease, previous coro-
nary revascularization, previous stroke, previous MI (recorded >30 days before the index MI), and previous
medications prescribed (e. g., aspirin, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor
blockers (ARBs), beta-blockers, calcium-channel blockers, diuretics, fibrates, non-steroidal anti-inflammatory
drugs (NSAIDs)). We also constructed variables for the number of prescriptions issued and the number of hos-
pitalizations in the previous year, which are two proxies for overall health. Age, number of hospitalizations, and
prescription count were categorized into groups and they were considered as dummy variables along with year
of cohort entry. Additionally, 400 empirical covariates were identified as proxies for unmeasured confounding
via the high-dimensional propensity score (hdPS) algorithm [36—41]. This study (protocol number: 14_018) was
approved by the Independent Scientific Advisory Committee of the CPRD and the Research Ethics Board of
the Jewish General Hospital (Montreal, Quebec).

6.2 Exposure and outcome generation

The covariates from the real data example were directly applied in the simulations and the coefficients esti-
mated from the real data were used as our parameter setting. The treatment and outcome were stochastically
generated based on the estimated coefficients as retrieved from the real study data analysis. We let all the mea-
sured confounding covariates and the 400 empirical HDPS-selected variables be the complete set of confound-
ing covariates (denoted as C). The treatment (denoted as A) was generated, similarly to the first simulation
study, conditional on C. The parameter values for the intercept () and the covariates B, were set as the
corresponding estimated coefficients from the real data fitting a binary logistic propensity score model with
response variable A and explanatory variables C. Therefore, the treatment variable (A) was generated from a
exp(B0A+ﬁ’CAC)
1+exp(BoA+B’CAC)
coefficient of A (the conditional log odds ratio), and the coefficient of C ((ﬁCY)) were fixed at the corresponding
estimates of the coefficients from the real study. Finally, we generated the outcome variable based on the previ-
exp(Boy +Bay At+pc,'C)
1+exp(Boy +BayAt+Bcy'C)
marginal effect (OR) was derived from a contrast of the two marginal potential outcome probabilities, which
were computed by using the true values of the parameters B, , B, and B¢, and simulating exposed and unex-
posed counterfactual outcomes for all subjects in the population. A varying number of covariates were defined
by four nested covariate sets (Table 3) inducing different levels of confounding adjustment as well as different
degrees of non-positivity. The null covariate set included no variables. The simple covariate set (C;) included
several predefined important confounders, including age, sex, obesity, smoking and history of diabetes. The
intermediate covariate set (C,) included C; and a variety of additional potential confounders defined in the last
section. Finally, the full covariate set (C3) included all pre-specified potential confounders (C,) as well as 400
empirical variables selected by the HDPS algorithm. Sixteen TMLE and four IPW analyses were performed in
this simulation, considering different model specifications (Table 3) for the treatment model in both approaches
and also for the outcome model in the TMLE. In addition, to assess the methods under a more practical strat-
egy with respect to extreme propensity score, all the analyses were repeated with truncation of the propensity
score at 0.025 and 0.975. We set the sample size to the number of subjects in the real study (1=32,792). Due to
computational intensity, the simulation and the analyses were limited to 500 generated datasets.

Bernoulli distribution with P (A = 1|C) = . Likewise, in the outcome model, the intercept Boy, the

. The true

ously generated A and the covariates C, with the probability P(Y = 114,C) =
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Table 3: Nested covariates for defining model specifications for TMLE and IPW estimator.

Covariate set Number of covariates Covariates included in the model

NULL 0  No covariates

Simple set (C,) 8 Predefined important confounders
(age, sex, obesity, smoking, history of
diabetes)

Intermediate set (C,) 44  All pre-specified confounders

Full set (C;) 444  All potential confounders (C, + the
400 empirical variables selected by
the HDPS)

6.3 Simulation results

The true marginal effect (OR) of the treatment in this simulation study is equal to —0.333. Based on the 443
simulation runs where all the TMLE and IPW estimators converged (out of a total of 500), the bias, the empir-
ical standard error and the root mean squared error (RMSE) for the estimates of the marginal effects without
truncation of the propensity score are presented in Table 4.

Table 4: Results for various IPW and TMLE approaches in the plasmode simulation study.

Approach Outcome Treatment Estimate SE Bias RMSE Finite fitted
model model values
Without truncation in the propensity score
IPW1 A NULL -1.19 0.04 0.86 0.86 100 %
IPW2 A C; —0.84 0.04 0.51 0.51 100 %
IPW3 A C, —0.57 0.08 0.24 0.25 100 %
IPW4 A C; —-0.35 0.10 0.04 0.11 100 %
TMLE1 A NULL -1.19 0.04 0.86 0.86 100 %
TMLE2 A C; —0.84 0.04 0.51 0.51 100 %
TMLE3 A C, -0.57 0.10 0.24 0.26 100 %
TMLE4 A C, —0.31 0.30 0.02 0.31 97.2%
TMLES5 A,C, NULL —0.84 0.04 0.51 0.51 100 %
TMLE6 ACy (o —0.84 0.04 0.51 0.51 100 %
TMLE?7 A C C, —0.57 0.08 0.24 0.25 99.8 %
TMLES8 A C C; —-0.29 0.23 0.04 0.23 89.4 %
TMLE9 A, G, NULL —0.58 0.05 0.25 0.26 100 %
TMLE10 A, C, C; —0.58 0.05 0.25 0.25 100 %
TMLE11 AC, C, —0.56 0.07 0.23 0.24 100 %
TMLE12 A, G, C, -0.31 0.12 0.03 0.12 96.8 %
TMLE13 A, Cy NULL —0.34 0.05 0.005 0.06 100 %
TMLE14 A, Cy C; —0.34 0.05 0.002 0.06 100 %
TMLE15 A, Gy C, —0.34 0.07 0.002 0.07 100 %
TMLE16 A, Cy C, —0.35 0.16 0.01 0.16 99 %
With truncation in the propensity score at 0.025 and 0.975
IPW1 A NULL -1.19 0.04 0.86 0.86 100 %
IPW2 A C; —0.84 0.04 0.51 0.51 100 %
IPW3 A C, —-0.59 0.07 0.26 0.27 100 %
IPW4 A C; —0.45 0.08 0.11 0.13 100 %
TMLE1 A NULL -1.19 0.04 0.86 0.86 100 %
TMLE2 A C; —0.84 0.04 0.51 0.51 100 %
TMLE3 A C, —0.54 0.07 0.21 0.22 100 %
TMLE4 A C; —0.31 0.09 0.03 0.09 100 %
TMLE5 A,C, NULL —0.84 0.04 0.51 0.51 100 %
TMLE6 ACy C, —0.84 0.04 0.51 0.51 100 %
TMLE?7 A C C, —0.55 0.07 0.22 0.23 100 %
TMLES8 A C C; —0.31 0.09 0.03 0.09 100 %
TMLE9 A, G, NULL —0.58 0.05 0.25 0.26 100 %
TMLE10 A C, C; —0.58 0.05 0.25 0.25 100 %
TMLE11 AC, C, —0.56 0.07 0.23 0.24 100 %
TMLE12 A, G, C; -0.33 0.08 0.01 0.08 100 %
TMLE13 A, Cy NULL —0.34 0.05 0.005 0.06 100 %

~
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TMLE14 A, G, C, —0.34 0.05 0.002 0.06 100 %
TMLE15 A, Cy C, —-0.33 0.08 0.000 0.06 100 %
TMLE16 A, Cy C, —0.34 0.08 0.002 0.08 100 %

* Refers to settings in which the first step of the TMLE returned non-infinite predictions.

In the treatment generating process, 445 coefficients were directly applied from the real data example. The
intercept was set to —4.55 and most of the coefficients were very small. The maximum coefficient was 2.1, and
the minimum and maximum of the probability of treatment were 0.0006 and 0.9998 respectively. Therefore, full
positivity violations did not occur. However, in the analyses of the simulated data, extreme estimated propen-
sity scores were present when all the confounders (C;) were included in the treatment model. Over the 500
simulation runs, 5.8 % of propensity scores were smaller than 0.025, while 14.1 % of propensity score were
larger than 0.975. Near violations of positivity often occurred in the IPW estimator and TMLE when treatment
models included the full covariate set. The distribution of the estimated propensity score and weights from all
the simulations is presented in Table 5 and Table 6.

Table 5: Distribution of propensity score estimated from four different treatment models.

Model Maximum Upper quartile Median Lower quartile Minimum
NULL 0.58 0.58 0.58 0.58 0.57
Simple(W;) 0.78 0.69 0.54 0.46 0.32
Intermedi- 0.998 0.91 0.66 0.23 0.001
ate(W,)

Full(W,) 0.999 0.94 0.68 0.18 0.00

W;: Predefined important confounders (age, sex, obesity, smoking, history of diabetes);
W,: All pre-specified confounders;
W, All potential confounders (W, + the 400 empirical selected variables).

Table 6: Distributions of the stabilized weights from four different propensity score models.

Model Mean SD Maximum Median Minimum
NULL 1 0 1 1 1
Simple(W;) 1 0.26 1.94 0.87 0.62
Intermedi- 0.999 1.74 232.30 0.63 0.42
ate(W,)

Full(W,) 1.00 2.78 1698 0.61 0.42

Notes: W,: Predefined important confounders (age, sex, obesity, smoking, history of diabetes);
W,: All pre-specified confounders;
W, All potential confounders (W, + the 400 empirical selected variables).

The distributions of the estimates from the 20 models without truncation are presented by the boxplots
in Figure la. In this simulation, the results revealed the property of double robustness of TMLE. There was
minimal bias if all the confounders (C3) were included in either the treatment model or the outcome model.
With unconditional outcome models (IPW1 to IPW4, TMLE1 to TMLE4), the IPW estimator and TMLE pro-
vided equal estimates and precision for non-adjustment and when adjusting for the simple covariate set (C;).
These estimates were largely biased because many important confounders were omitted. After adjusting for the
intermediate covariate set (C,), the effect estimated by IPW estimator had slightly smaller bias and standard
error compared to the TMLE. These estimates were still biased since only the pre-specified confounders were
included, although they were moved towards to the true effect. Adjusting for all present confounders (covari-
ate set C3), the TMLE yielded more bias and much larger RMSE compared to the IPW estimator. This result
indicated that including a larger number of covariates in the TMLE treatment model, inducing a near violation
of positivity, may lead to biased estimates and poor precision. Moreover, numerical problems (infinite fitted
values) were observed with TMLE for 14 out of 500 simulation runs, perhaps due to overfitting of the treatment
model. The plasmode simulation results show that with an unadjusted outcome model TMLE may perform
worse than IPW when adjusting for a sufficient but high-dimensional set of covariates in the treatment model.
Adjusting for predefined important confounders (the simple covariate set C;) in the outcome model, approach



DEGRUYTER Pangetal. ——

TMLES with an unadjusted treatment model provided a similar estimate compared to TMLE2. Adjusting for
all pre-specified confounders (the intermediate covariate set C,) in the outcome model, the TMLE9 with an
intercept only treatment model and the TMLE10 (treatment model including C;) provided similar point esti-
mates. Compared to TMLE3 (which only adjusted for C, in the treatment model), the standard errors were 50 %
smaller. Adjusting for all confounders (the full covariate set C3) in the outcome model, TMLE13 to TMLE15 pro-
vided considerably reduced bias and standard error compared to TMLE4, where C; was only adjusted for in the
treatment model. This suggested that it might be more efficient to adjust for confounders in the outcome model
rather than the treatment model when there is a near non-positivity issue. We found again that adjusting for
a large number of covariates (C3) in the treatment model was associated with larger standard errors and may
be the result of near non-positivity. Noticeably, extreme propensity scores caused numerical convergence prob-
lems for TMLE. Numerical problems were experienced 2.8 %, 10.6 %, 3.2 % and 1.0 % of the time respectively
for TMLE4, TMLES, TMLE12 and TMLE16 among the 500 simulation runs (Table 4). Among all the TMLEs that
included Cj in the outcome model, TMLE14 (including C; in the treatment model) provided the estimates with
the lowest bias and the highest precision.
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Figure 1: (a)-(b) Distributions of the estimates from IPW estimator and TMLE in the plasmode simulation study. Figure
1a is for models with non-truncated weights; Figure 1b uses weights truncated at the 2.5 and 97.5" percentiles.

Results with truncation of the propensity score are presented in Table 4 and the corresponding boxplots
for the distributions of the estimates are presented in Figure 1b. Compared to the analyses without truncation,
slightly more bias but better precision for IPW estimators that adjust for a large number of covariates IPW3 and
IPW4) was attained by truncation. On the other hand, the standard error as well as the bias were both largely
reduced for TMLE that includes the full covariate set C5 in the treatment model. Moreover, as was expected, all
TMLE models with truncation of the propensity score avoided the numerical problems previously observed in
the non-truncated case. In this simulation with truncation, TMLE with a marginal outcome model again yielded
slightly larger bias and standard error compared to the IPW estimator when high dimensional covariates were
considered.
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7 Discussion

TMLE produces semi-parametric efficient estimators of marginal causal effects in a population. In this paper
we have focused on the application of TMLE and its comparison to the IPW estimator in both low and high
dimensional covariate settings. We used parametric models for the initial estimation of the probabilities of the
outcome and treatment respectively. This was done to simplify the fitting process in a high-dimensional setting,
but alternative (non-parametric) methods are also p. For example, cross-validation based machine learning ap-
proaches, such as the Deletion/Substitution/Addition (DSA) algorithm, can search over a large space of poly-
nomial generalized linear models [42, 43]; Alternatively, the Super Learner can be used to combine predictions
over a set of candidate algorithms [34, 44, 45].

Our comprehensive simulation study investigated several combinations of the treatment and outcome
model specifications conditional on the baseline variables. We demonstrated the double robustness property
of TMLE in basic finite sample settings. Double robustness enables consistent treatment effect estimation when
either the propensity score or the outcome model is correctly specified on the full set of confounders. The IPW
estimator and TMLE using an unadjusted outcome model performed equivalently in the absence of a near vi-
olation of positivity when using the same propensity score model. This result is perhaps not surprising, given
that the two methods use the same information (the treatment model). When TMLE included a rich outcome
model, bias was reduced.

Indeed, the positivity assumption was satisfied in simulation study A. The estimated propensity scores were
always bounded between 0.07 and 0.93 in all the simulations. However, both methods experienced instability
in a high dimensional setting when a large number of covariates were included in the propensity score model.
Near practical violations of the positivity assumption caused problems when the propensity score model was
over-adjusted. However, diagnostics for the propensity score should be performed in high dimensional set-
tings. When near positivity violations are detected, TMLE's performance can be improved by truncation of the
propensity score or by including the high dimensional covariates in the outcome model while keeping only a
few covariates in the treatment model.

In the plasmode simulation studies (simulation study B), we showed that as the result of a near violation of
the positivity assumption, extreme propensity scores, although correctly modeled, can lead to poor precision
and biased estimates for both IPW and TMLE. They can even produce numerical instability for TMLE (specifi-
cally, prediction of infinite values). Positivity is an essential assumption and should be always verified in any
analysis. Examination of the distributions of the propensity score and the weights is therefore recommended
for both IPW and TMLE. The bias induced by such violations can be further assessed by using parametric
bootstrap and simulation [46]. Furtherm TMLE and the IPW estimator perform differently in this setting even
with the same modeling approach due to their different sensitivity to practical positivity violation. Although
inverse weighting by the propensity score is used in both approaches, the involved estimating process is differ-
ent. Within the IPW estimation approach, the propensity score is used to define the weights for creation of
the pseudo-population. Large weights, however, can result if an extreme predicted probability (close to 0 or
1) does not correspond with the actual observed treatment status of an individual. Such inflated weights can
have high impact on the analysis results thus leading to poor precision and/or biased effect estimates. In the
TMLE procedure, the same inverse weights are embedded in the clever covariate, which enables estimation of
parameters in the updating procedure, allowing for the subsequent computation of individual counterfactual
outcome prediction. However, since the estimation equation is evaluated for each subject under both treatment
and no treatment conditions, any extreme propensity score (close to 0 or 1) inflates the value of the clever co-
variates, and consequently causes unstable parameter estimation. Moreover, an extreme propensity score also
has influence in estimating the parameter in the logistic parametric update model, consequently numerical
non-convergence can occur due to a very unstable fluctuation parameter estimate.

Truncation of the propensity score may prevent poor precision with the price of minor bias [47], and data-
adaptive approaches have been proposed to select the level of truncation level minimizes the expected mean
square error [48, 49]. There is an option in the TMLE function in R to specify an amount of truncation to avoid
extreme estimated probabilities of receiving treatment [20, 21]. We provided results from additional analyses
in which the propensity score was truncated at 0.025 and 0.975. The results indicate that the influence of the
extreme propensity score can be controlled by truncation. Therefore, it should be carried out in practice es-
pecially for a high dimensional propensity score model. In our truncation analysis, [IPW and TMLE (with a
marginal outcome model) again performed differently. This again reflect the difference in the use of propensity
score in these two estimating procedures. Collaborative TMLE [28] is an extension of TMLE that allows for the
data-adaptive selection of covariates into the propensity score, potentially avoiding the non-convergence and
variance inflation that we encountered. This is another potential solution for high-dimensional data analysis
with near-positivity violations [8].
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Generalizability of the results and conclusions is a potential limitation in our plasmode simulation study. We
did not assign a broad range of covariate distributions or parameter values. The covariates were instead derived
directly from a real-world setting. The parameter values and the sample size are derived from the real-world
study and then fixed for the simulation. Therefore, our simulation results are not necessarily representative of
other settings and we cannot draw definitive conclusions about the comparison of the performance of TMLE
and IPW estimators. However, this specific data setting is typical in a pharmacoepidemiologic study and has
already provided useful insights and evaluation regarding the performance of TMLE in the high dimensional
scenario.

In conclusion, TMLE and IPW estimators both use inverse propensity score weighting, but can perform
differently. Both TMLE and IPW can be sensitive to violations of the positivity assumption; near-violations of
this assumption are possible in high-dimensional covariate settings, and inference should be interpreted with
caution. In such settings, TLME with a high-dimensional outcome model and a reduced treatment model may
be a better alternative. Collaborative TMLE may be a useful alternative in these settings; further exploration of
these methods is warranted.
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