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Abstract: Prostate cancer is a significant health concern
with rising incidence rates in Germany. While recent
research highlights the potential of artificial intelligence
(AI) to support radiologists by increasing diagnostic accu-
racy and efficiency, the successful integration of such tech-
nology depends on carefully designed, practice-oriented
approaches. This paper presents a design case study (DCS)
on a human-centered artificial intelligence (HCAI) solu-
tion to assist radiologists in diagnosing prostate cancer. In
our contribution, we emphasize that by combining human-
centered design (HCD) and practice-centered computing,
we can contribute towards a seamless and usable integra-
tion of Al into healthcare. Through interdisciplinary col-
laboration among radiologists, user experience (UX) design-
ers, Al developers, and human-computer interaction (HCI)
researchers, we employed Design Thinking (DT) to itera-
tively develop low-, mid-, and high-fidelity prototypes of
an Al solution for improving diagnostic workflow, which
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were evaluated by radiologists. Our findings advance the
state-of-the-art in computing support for prostate cancer
diagnosis by introducing an artifact designed with both HCD
and practice-centered computing in mind.
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1 Introduction

Prostate cancer is a prevalent and significant health concern
in Germany, accounting for a considerable number of new
cases and associated mortality. In 2022 alone, 74,895 new
cases of prostate cancer were registered, leading to 15,196
deaths in 2023.' This malignancy predominantly affects
elderly men, with a median diagnosis age of 71, and rarely
occurs before 50. * Early detection and risk stratification
are key elements in effectively managing prostate cancer, as
identifying the disease at an early stage allows for timely
and appropriate interventions that can improve patient out-
comes. In contrast, delayed or missed diagnosis can worsen
prognosis and require aggressive treatments.® Conversely,
some prostate tumors remain indolent, and overdiagnosis
may cause unnecessary side effects.*

In the diagnosis process for prostate cancer, various
clinicians are involved. Among these, the radiologist plays
a crucial role in the process by utilizing imaging techniques
such as Magnetic Resonance Imaging (MRI) to diagnose,
stage, and monitor the disease, which guides further treat-
ment planning. However, the increasing number of cases
exposes the limitation of available radiologists in Germany,
as only 10,139 doctors are radiologists (2.32 % of the total),
making this scarcity a crucial obstacle in prostate cancer
diagnosis.

Given the ongoing advancements in artificial intelli-
gence (AI) research, incorporating Al-driven solutions into
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medical workflows is becoming increasingly relevant. Al
has made significant advancements in various medical
fields, including radiology, where its application in medi-
cal imaging has shown promising potential.’ Its ability to
assist radiologists in managing the exponential surge in
medical data volume and complexity while enhancing diag-
nostic accuracy makes this technology highly appealing.
This assistance to healthcare professionals becomes critical
in countries with proven shortages of radiologists. In Ger-
many, for instance, where 46 % of hospitals face radiology
staffing problems,” the gap between the number of prac-
ticing radiologists and the growing demand for radiology
services emphasizes the need for additional tools to bridge
this divide.

Radiology is expected to evolve in parallel with the
capabilities and potential of AL®° At the same time, most
radiologists anticipate the widespread adoption of Al in
their field over the next decade, which is expected to signif-
icantly change it in the process.!!" Radiologists recognize
AT as a valuable tool for improving diagnostic accuracy
and efficiency, addressing staffing shortages, and ultimately
enhancing patient care.®%12-14

AT applications for prostate cancer are rapidly grow-
ing to the point where AI may serve as decision support,
decreasing inter-observer variability.>'® Though AI models
have shown promising results, only a few Al-driven sys-
tems have transitioned from controlled laboratory environ-
ments to real-world clinical workflows.!” Acknowledging
the importance of the human experience within its contex-
tual environment, a broader spectrum of factors relevant to
the success of any technical solution has been emphasized
over the years.!®-?° Nevertheless, the sociotechnical dimen-
sions have been considerably underappreciated,?! particu-
larly at the intersection of Al and healthcare,?>** where the
focus lies on technical performance and clinical outcomes.
Not accounting for these aspects has been demonstrated to
factor into the non-adoption of technology in healthcare.?**

While AI excels in rapidly processing vast datasets
and identifying nuances evading the human eye, the
radiologist’s strength lies in domain expertise and the ability
to identify nearly optimal solutions.’ Hence, the expected
role of AI in radiology is not to replace the radiologist
from the workflow but rather to serve as a second reader
and optimize the workflow'? by assisting the radiologists.
Thus, involving radiologists in AI development to define
clinical requirements and evaluate Al tools can help main-
tain expertise while avoiding over-reliance on technology.?
Furthermore, engaging radiologists in the design phase
and presenting them with transparent and comprehensible
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visual representations of the system’s decisions aims to pro-
vide a “fair and responsible perception of the system-human
decisions”.?>?’

Previous research has demonstrated how ethnograph-
ically informed approaches can be useful in understanding
radiologist practices and uncovering user requirements for
tools to support them with their duties.’® However, little
can be found in the literature about how this can be done
during the design phase. Given the prominence of Design
Thinking (DT) within Human-Centered Design (HCD),?~3!
especially for health interventions to improve outcomes,
product quality, service adoption, and user satisfaction,®-34
we have drawn on the approach for the design of an Al-
based aid to support radiologists in prostate cancer diagno-
sis. In addition, we have used a practice-centered computing
lens, 3% which acknowledges that only by understanding
practices can we effectively design computer technologies
to support people in their endeavors.

The aim of our research is, therefore, to introduce
a Human-Centered AI (HCAI) solution for radiologists by
embracing a human-centered design approach combined
with practice-centered computing through involving radi-
ologists and other stakeholders such as Al developers, UX
designers, and HCI researchers to benefit from their vari-
ous perspectives throughout the design process to ensure
the AT solution was thoughtfully designed to fully harness
its potential in the healthcare system to provide better
improvements and user satisfaction.'*”3 In this paper, we
present our Design Case Study (DCS) to contribute a human-
centered Al solution to support radiologists in their current
practice within the diagnosis of prostate cancer using MRI
data.

From our previous ethnographically informed context
study,?® we gained insights into radiologists’ practices and
how these practices can inform the design of Al support,
proposing a solution with the potential to improve their
workflow by seamlessly integrating Al into radiology prac-
tices. Building on these insights, this paper contributes:
1) the design of low-, mid-, and high-fidelity prototypes
through an interdisciplinary and iterative process spanning
both a HCD and a practice-centered computing perspective;
2) the initial evaluation of the referred HCAI solution with
radiologists, with reflections on the extent to which it helped
us to achieve a solution that would respond to the sociotech-
nical aspects concerning the diagnosis of prostate cancer
by radiologist; and finally, 3) deep insights and practical
guidance on how the interdisciplinary capabilities of differ-
ent stakeholders can be effectively utilized in collaborative
settings to generate design ideas and how to address user
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Figure 1: Our design case study framework, including context study, design study, and appropriation study.

needs, design preferences, and interactions with the Al sys-
tem within the radiologists’ diagnostic workflow.

2 Research background

The work presented in this paper was conducted within
an interdisciplinary project aimed at supporting research
on interactive technologies for health and quality of life.
Between August 2021 and May 2024, we collaborated closely
with a software development company in telemedicine
and multiple associated partners in the field of radiology.
Despite challenges arising from the COVID-19 pandemic, the
involvement of the German Radiological Society! enabled us
to generate considerable interest among radiologists, ulti-
mately facilitating close collaboration with 13 professionals
in the field.

We defined our work within the DCS framework intro-
duced by Wulf and colleagues,®®* which conceptualizes
practice-centered computing initiatives through three inter-
related activities: context study, design study, and appropri-
ation study.®® According to Stevens et al., “good design case
studies are characterized by an in-depth understanding and

1 German: Die Deutsche Rontgengesellschaft, Website: https://www
.drg.de.

descriptions of social practices in the field of application,
with a specific focus on how these empirical findings may
contribute to the design of IT artifacts”.®

To provide such an in-depth understanding of cur-
rent practices, we also divided our work into three phases,
depicted in Figure 1, which outlines the individual phases
of our DCS, the associated activities, and their interrela-
tions. The context study provides an in-depth understand-
ing of the practice, which forms the foundation; build-
ing on that, the design study translates these insights into
design concepts and prototypes, and the appropriation
study examines how these artifacts are integrated into real-
world practices. The three phases — context, design, and
appropriation — were embedded in an iterative process,
ensuring the ongoing emergence of insights and iterative
refinements.

The design study, which is presented in this paper (high-
lighted in pink in Figure 1), is based on our context study,
which we will briefly summarize in this section. The con-
textual empirical fieldwork and the analysis of the data fall
out of the scope of this paper, as we are focusing here on the
design study, and the main parts of the context study can
already be read in our previous paper.?® The appropriation
study will be conducted as future work and therefore lies
beyond the scope of this paper; too.


https://www.drg.de
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2.1 Context study

We conducted qualitative research by working with dif-
ferent radiology centers across Germany for 2.5 years.
We had 11 contextual inquiry sessions,*’ involving seven
radiologists and other medical staff members, each last-
ing between three and five hours. Furthermore, we con-
ducted 11 semi-structured interviews with radiologists, with
a duration ranging from 40 to 80 minutes. Additionally, two
workshops were organized: first, an ethics workshop with
seven participants (excluding the first two authors) from
the fields of ethics, radiology, HCI, and AI development,
and second, an international workshop on Human-Centered
Al in Healthcare held at the ECSCW conference in 2022,
which involved 10 participants (excluding the first three
authors) with backgrounds in HCI/CSCW, healthcare, and Al
development.*!

Through the context study, we gathered in-depth
insights into the daily practices of radiologists.*> We learned
about individual steps within their workflows, contex-
tual factors influencing the practice, usage of various arti-
facts and systems, internal and external communications,
practitioners’ needs, practitioners’ challenges, and their
perspectives towards Al as a potential assistant. This in-
depth analysis aimed to establish a solid foundation of
understanding and to define requirements, serving as the
basis of the development of our HCAI solution. Part of our
insights has been published in the proceedings of the CHI
conference in 2024,28 where we discussed a section of our
iterative empirical study on radiologist practices in diag-
nosing prostate cancer and how AI can enhance decision-
making in that context. While additional empirical insights
emerged through our iterative work, which are not yet
published, we will not discuss them in detail in this paper,
as it focuses on the design study. But to comprehend our
design decisions, we will briefly present key insights from
the whole context study, including an overview of current
prostate cancer diagnosis procedures using MR, the user
needs, and requirements for an Al tool to support radiolo-
gists in the diagnostic process.

2.1.1 Current practices in diagnosing prostate cancer

We categorized the complex diagnosis process into five
stages: Patient inquiry, Image acquisition, Image interpre-
tation, Reporting, and Verification, as shown in Figure 12 (in
appendix).

Before the examination, radiologists gather relevant
medical history, including Prostate Specific Antigen (PSA)
value from the patients. Next, through an MRI exam, they
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acquire the Multiparametric MRI (mpMRI), which combines
multiple imaging sequences including T2-Weighted (T2W),
Diffusion-Weighted Imaging (DWI), and Dynamic Contrast-
Enhanced (DCE) imaging to evaluate the prostate gland,
with each sequence highlighting different areas of anatomy
and prostate structure segmentation. An example of the
most common sequences we have observed can be seen in
Figure 11 (in the appendix).

Afterwards, the radiologist analyzes MRI imaging data
to detect and assess lesions, considering that not every
lesion is characterizable in every image, necessitating a
comprehensive review of images from various perspectives.
Prostate MRI interpretation is complex, with radiologists
using the standardized scoring system Prostate Imaging
Reporting and Data System (PI-RADS), which assigns scores
from one to five based on the lesion’s assessment from
key mpMRI sequences to indicate the likelihood of clini-
cal significance.*> However, the sequence contributing to
the score varies depending on the prostate zone in which
the lesion is located. These zones encompass the Periph-
eral Zone (PZ), Transitional Zone (TZ), Central Zone (CZ),
and Anterior Fibromuscular Stroma (AFS). After assigning
scores to each lesion identified in the mpMRI images, the
overall PI-RADS score is determined, equivalent to the score
of the highest-rated lesion.

The findings from the diagnosis are documented in a
report together with the patient’s metadata and the previ-
ously collected data about the medical history in the fourth
phase. The final diagnosis also entails the PI-RADS score
with required diagnostic metrics, a standardized prostate
sector map with identified lesions marked, and recommen-
dations for subsequent actions.

The optional fifth phase involves occasional commu-
nication with other doctors, primarily for verification pur-
poses in complex cases, but routine feedback is seldom
received in daily radiological practice.**

2.1.2 Identified user needs

During our observations, we identified several manual tasks
performed by radiologists that might be addressed through
Al For example, they manually measure the prostate’s
length, width, and height from MRI and calculate prostate
volume using a private calculator, subsequently manually
calculate PSA density by dividing the PSA level by the vol-
ume. Additionally, report writing involves copy-paste and a
dictation system that requires frequent manual corrections
due to limited accuracy. Radiologists also use pre-printed
prostate sector maps to manually mark lesion locations,
further adding to their workload.
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Determining individual prostate zones is important for
assessing lesion severity, but both zone segmentation and
lesion identification can be challenging. Although PI-RADS is
a standardized scoring system, radiologists criticized it as it
gives the impression of being straightforward. The accuracy
of prostate volume calculation can vary among radiologists
due to manual measurement, which can potentially lead to
issues, as PI-RADS imposes stringent limits for critical val-
ues. PI-RADS also suggests having a double analysis policy
for prostate exams, improving anomaly detection and diag-
nostic accuracy by having two radiologists assess each case.
However, we observed that most of the clinics don’t have the
resources, e.g., staff and time to follow that approach, and
each case is diagnosed by one radiologist (except in complex
cases).

2.2 Requirements of the Al-tool

The insights and challenges we have identified through our
context study are transformed into user needs and require-
ments. According to the often-mentioned user needs, we
have prioritized the most relevant requirements:

1. Identification of the prostate location

2. Segmentation of distinct prostate regions

3. Detection and localization of potential lesions

4. Classification of identified lesions following the PI-
RADS scheme

Calculation of prostate volume and PSA density
Standardization of the reporting system

7.  Giving feedback about Al results

ISR

Later, in explaining the prototyping process in Section 5, we
will refer to the requirements numeration, which doesn’t
imply a priority.

3 Related work

In this section, we explore the existing literature that
informs our research, engaging ourselves in the field of
Al in healthcare, specifically in radiology. We look at how
Al developments have improved diagnosis accuracy and
efficiency. We also explore the significance of maintaining
humans at the heart of Al development lifespans through
HCD.45’46
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3.1 Al and decision-support systems
in radiology and prostate cancer
diagnosis

Al is being used more and more for a variety of activities,
but decision support is the primary application it serves.?’
Al-driven decision aids are increasingly adopted in hospi-
tals and clinics to support medical practitioners in analyzing
medical data and interpreting results more accurately.*®
Clinical Decision Support (CDS)/Clinical Decision Support
Systems (CDSS) are developed to offer timely, evidence-
based recommendations for diagnosis and treatment.*?->!
With advanced AI Al-based Medical Diagnosis Support Sys-
tems (AIMDSS) are growing into a significant component in
pathology and radiology,’? while Computer-Aided Detection
(CAD)/Computer-Aided Intelligent Diagnosis (CAID) shifted
from just detecting suspicious regions to also interpreting
and diagnosing those regions.*>>3%*

AT has the potential to revolutionize radiology prac-
tice by offering valuable support to radiologists in vari-
ous aspects and steps of their workflow.”>"5°¢ There exists
a variety of studies on the use of AI for prostate cancer
diagnosis. As the prostate exhibits high variability in shape
and appearance, Convolutional Neural Network (CNN) can
better cope with these issues, gaining popularity for seg-
mentation.”” Many examples®*~% demonstrate CNN applica-
tions in medical imaging for prostate cancer detection and
segmentation, with a primary focus on utilizing MRI images
for image classification, analysis, and segmentation.

Litjens et al., developed an automated CAD for prostate
cancer using MRI, comprising steps such as prostate seg-
mentation, feature extraction, and candidate classification.
Their evaluation showed superior performance, suggest-
ing potential usefulness for radiologists in both first- and
second-reader settings.®® To understand physicians’ views
on Al, Buck et al.%” interviewed German physicians and
medical professionals closely tied to radiology. They dis-
covered that while specialists acknowledged Al risks, they
tended to double-check its recommendations, leading to
extra effort. One participant expressed frustration when
AT missed details, requiring thorough reviews and negat-
ing potential time-saving benefits. Penzkofer et al., aimed
to identify prerequisites for the successful implementation
of clinically relevant Al in prostate MRI diagnosis.5® They
noted limited adoption of Al in clinical practice despite
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numerous studies exploring its diagnostic potential. Regard-
ing usability, they suggested tailoring user interfaces to
radiologists’ workflows for comprehensive MRI evaluation
alongside Al results.

Studies on the use of Al for prostate cancer diagnostics
primarily focus on the technical perspective, describing the
development of AI algorithms. The HCI perspective, which
involves understanding user needs and desired interactions
with the Al is often overlooked. Our work addresses this gap
by emphasizing strong collaboration with radiologists.

3.2 Human-centered design in healthcare

The integration of Al algorithms has encountered challenges
in real-world applications when not considering insights
and recommendations arising from the field of HCL.*° Users
who lack an understanding of the system’s functionality
and capabilities become overwhelmed by the system’s out-
put, have limited situational awareness, and may experi-
ence a loss of control over the system.%® Procter et al.,
also highlighted that AI systems in healthcare often lack
an understanding of the organizational context, limiting
practitioner trust in their recommendations.”’ However,
integrating an HCAI assistant into the radiology workflow
enhances result precision, visually simplifies analysis, and
significantly reduces assessment time, thus boosting work-
flow efficiency for radiologists.”

Following an HCD process, the current context of use
can be fully analyzed to define requirements for the new
Al tool, ensuring effective, efficient, and satisfactory user
utilization. Particularly in the field of healthcare, where
sensitive data is processed, considering human factors and
putting humans at the center of an Al design process is the
key to good usability and users’ acceptance of the system,”
especially when it comes to designing an eXplainable AI
(XAI),*7 emphasizing the need for interfaces to offer algo-
rithmic decision descriptions, multi-layer rationalization,
and data origin information.’*”> This supports increased
transparency and trust between users and the AI system,
which are found to be decisive in the adoption of such sys-
tems.’® The successful deployment of Al technologies hinges
on their seamless integration into existing clinical work-
flows and infrastructure, preserving tasks and processes
unaltered.”’~7 Understanding the current context of use is
crucial for ensuring positive adoption.”8

Socio-technical, participatory methods have been rec-
ommended by an increasing amount of research to effec-
tively involve domain experts throughout the AI devel-
opment lifecycle.®-# Ooge et al.®* emphasize the vital
role of domain experts and end-users in developing visual
analytics tools, aligning with recommendations from HCI
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scholars. Health professionals’ feedback underscores the
efficacy of participatory and user-centered interaction
design methods, particularly in UI drawings, facilitating
requirement description and common understanding with
system developers.® Increased user involvement in design
is crucial, with user input identified as pivotal in the
success or failure of complex technology.®® Furthermore,
researchers from the community have argued that engaging
users in the design process and especially in design deci-
sions, according to the participatory design premises,®’%
can contribute toward more ethical, adaptable, and useful
Al systems.®

Usability is crucial for integrating medical software
into workflow and adoption.’® HCD methodologies facilitate
achieving usability in medical technology.’! DT, known for
its empathy, creativity, and collaboration, is effective across
healthcare domains, offering user-centered solutions.*! Its
success in healthcare stems from considering contextual
factors, including user needs and clinical evidence.’? DT out-
comes in healthcare outperform traditional interventions
in terms of usability and effectiveness.”® Given the impor-
tance of usefulness and ease of use in medical technology
adoption,** DT presents a promising approach. Additionally,
Chen et al., emphasize a human-centered approach in DT for
explainable medical imaging systems.*

4 Methodological approach of the
design process

Following the design case study framework,* we employed
an iterative HCD process and adopted a practice-centered
computing approach® to develop an Al prototype aimed at
supporting prostate cancer diagnosis. Our research project
underwent ethical review by the institutional review board
committee of our university and received clearance.

For this design study, we paid strong attention to the
participation of different stakeholders, including radiolo-
gists, Al developers, HCI researchers, and UX design pro-
fessionals, throughout the entire process. Across two DT
workshops with a total of 31 participants, we collabora-
tively explored and refined design ideas that resulted in the
development of nine prototypes of varying fidelity (low-,
mid-, and high-fidelity). We had 10 evaluation sessions with
radiologists to assess the usability of the Medium-Fidelity
(Mid-Fi)- and High-Fidelity (Hi-Fi) prototypes. The detailed
methodological approach is explained below.

Table 1 presents an overview of the participants in this
design study. The irregular numbering reflects that certain
pseudonyms (P01, P03, P10, P11) had been assigned in the
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Table 1: List of participants in our design study.

Participant Role Involvement
P07 Radiologist DT Workshop
P08 Radiologist DT Workshop
P12 Radiologist DT Workshop
P13 Al Developer DT Workshop
P14 Al Developer DT Workshop
P15 Al Developer DT Workshop
P16 UX Professional DT Workshop
P17 UX Professional DT Workshop
P18 HCI Researcher DT Workshop
P19 HCI Researcher DT Workshop
P20 HCI Researcher DT Workshop
P21 HCI Master Student DT Workshop
(...)2 HCI Master Student DT Workshop
P40 HCI Master Student DT Workshop
P02 Radiologist Evaluation
P04 Radiologist Evaluation
P05 Radiologist Evaluation
P06 Radiologist Evaluation
P07 Radiologist Evaluation
P08 Radiologjist Evaluation
P09 Radiologist Evaluation
P41 Radiologjist Evaluation

2P22 to P39 not shown individually for conciseness.

context study, but those participants did not take part in
the design study due to their time constraints. Notably,
seven of the radiologists (P02, P04, P05, P06, P07, P08, P09)
participated in both our context and design studies, while
two of them (P06, P07) evaluated both the Mid-Fi and Hi-Fi
prototypes.

4.1 Design thinking workshops
and low-fidelity prototypes

We organized two dynamic and collaborative DT workshops
to leverage interdisciplinary collaboration, fostering cre-
ative problem-solving and stimulating out-of-the-box think-
ing, particularly beneficial due to the time constraints faced
by the radiologists and their widespread distribution. Since
there are multiple models available illustrating the process
of DT,*>¢ we have adapted the DT process according to our
available resources, such as time, place, and participants
(see Subsection 7.1). Our goal was to generate innovative
ideas for an Al-based diagnostic tool tailored for prostate
cancer diagnosis and explore visual concepts for different
features.

The first workshop was conducted online to integrate
participants from different locations. The session lasted for

S. M. Plinz-SaBRmannshausen et al.: Designing a human-centered Al solution with radiologists == 511

150 min, bringing together a diverse group of 11 partic-
ipants considering innovations in healthcare come from
diverse user types.’' The participants included three radi-
ologists experienced in prostate cancer diagnosis, three
developers with Al experience, two UX professionals, and
three HCI researchers (including one HCI research assis-
tant). For recruiting, we used social media platforms such
as LinkedIn? and Meetup® to advertise the workshop as
an event and to explicitly motivate AI developers, radi-
ologists, UX designers, and HCI enthusiasts to participate.
While social media effectively reached most roles, radiolo-
gists were specifically invited through direct contact. Some
radiologists expressed interest in our research project after
learning about it through the German Radiological Soci-
ety, allowing us to extend explicit invitations to the work-
shop. Most of the participants did not know each other
before the workshop. We used Webex* to meet online and
Miro® to gather our insights. We divided the participants
according to their roles into two multidisciplinary break-out
rooms to work on the tasks together and facilitate diverse
discussions.

We structured our workshop into five phases, namely
Empathize, Define, Ideation, Prototyping, and Evaluation,”
to collaboratively engage with our participants. First, we
explained the context of use and described the key findings
from our context study, which set the focus for the work-
shop. Then we requested insights from the radiologists in
each group to discuss challenges and limitations in their
current practices regarding our focus and share their expec-
tations about an Al-driven tool with the group members, so
that the participants can gain an empathetic understanding
of the user needs. Our previously identified user needs and
requirements were confirmed by the radiologists through
these steps in the workshop.

We delved into understanding the users’ perspectives
using an empathy map. Building on that, we crafted action-
able problem statements as Point-of-View (POV) statements
to help us define specific needs and core challenges of our
users. Afterward, we defined How-Might-We (HMW) state-
ments as open-ended questions to generate multiple ideas
focusing on desired outcomes. Then we created sketches
for rapid ideation by identifying innovative solutions to
the problem statements. After finalizing the best parts of
the sketches using Dot Voting, we focused on prototyping

www.linkedin.com.
www.meetup.com.
www.webex.com.

Ul W N

www.miro.com.
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by producing low-fidelity versions of the tool. Participants
were instructed to visually map out the interface or key
functionalities of the prototype based on the MRIs we pro-
vided using the Wireframe tool on Miro. We evaluated
the prototypes made by each group with a feedback ses-
sion with the whole group. Though we discussed together
after each of the phases, the final discussion ensured a
comprehensive exploration of ideas and the refinement of
solutions.

The second workshop was done in person and spanned
90 min, bringing together 20 master’s students of HCI from
our university. This approach aimed to leverage HCI and
design perspectives during the creative phase, potentially
fostering even more innovative ideas. The students were
all part of an HCI course, so they knew each other. The
insights gained from the context study and the feedback
received during the first workshop served as the foundation
for developing further design ideas. We didn’t show them
concrete design ideas from the first workshop to avoid bias.
We divided the participants into four groups consisting of
five students, where at least one of them in each group has
professional experience in UX design. Owing to scheduling
restrictions, we scaled down the scope of our in-person
workshop and concentrated mostly on the ideation and
prototyping stages with the participants. An information
document detailing the scope of our study was sent to them
in advance, and to build empathy with stakeholders, we
reaffirmed the context of use and the main findings at the
beginning of the workshop. We provided four POVs, which
were generated in the previous workshop, to streamline the
ideation process, ensuring a focused exploration of specific
problem areas within the limited time frame. Each group
was given one unique POV, which was used by the partici-
pants to create multiple HMWs.

Following that, each participant brainstormed solu-
tions for the HMWs they had chosen, utilizing the Crazy 8
method. Based on the dot voting on the best design parts,
participants advanced to the prototyping step by using the
provided materials to build four paper prototypes, one for
each group.

4.2 Hi-Fi prototypes and evaluation

The six prototypes created by the participants at the end
of the two DT workshops, two from the first and four
from the second, were not intended as finished solutions;
instead, they served as a foundation that our research
team, involving HCI researchers and Al developers, further
merged and refined through brainstorming sessions while
considering participant feedback, translating the design
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ideas into a clickable Low-Fidelity (Lo-Fi) prototype on
Figma.

Derived from that, we developed a Hi-Fi prototype,
which was evaluated with five radiologists. Afterwards, we
returned to a Mid-Fi Figma prototype to focus on iterative
refinement of core features of the solution based on the ini-
tial feedback without being constrained by implementation
details. This allowed us to rapidly integrate insights from the
first evaluation and test design alternatives more flexibly.
The Mid-Fi prototype was also evaluated with another five
radiologists.

We have conducted initial evaluations through usabil-
ity tests as a pre-stage to the appropriation study. The
evaluation aimed to assess the usability of the Al-based
solution by examining user needs and identifying poten-
tial flaws. Eight of the usability tests were conducted indi-
vidually via Zoom,’ allowing them to participate remotely
from their work environment. Three participants (P05, P06,
P07) remotely completed approximately 90-min sessions
each, accessing the Hi-Fi prototype hosted on a univer-
sity server through a standard internet browser, along
with anonymized MRI images for importing into their Dig-
ital Imaging and Communications in Medicine (DICOM)
viewer. One 30-min session with two participants (P02, P41)
was conducted on-site at a radiology center, where the
radiologists accessed the same prototype directly on the
researcher’s laptop. Additionally, five sessions of approx-
imately 45 min were conducted remotely, where partici-
pants (P04, P06, P07, P08, P09) accessed the Mid-Fi prototype
through a shared Figma project.

While the remote participants shared their screens
and live video during their exploration, participants on-site
were directly observed. All participants interacted directly
with the prototype and had to simulate a prostate MRI
diagnosis using the prototype and provided MRI images,
following a specific scenario. They were encouraged to
vocalize their thoughts throughout the process using the
think-aloud method.”” To capture these thoughts, all ses-
sions were recorded, transcribed, and analyzed using a the-
matic analysis approach® to identify key topics, issues, and
design implications raised by participants. The participants’
feedback was helpful to refine the prototypes iteratively.
Some design ideas that emerged through the evaluation
were already addressed within iterative design cycles; other
potential features not implemented in the prototype were
discussed. Participants shared insights on the benefits and
drawbacks of the features. Familiarity with the prototype

6 https://www.figma.com.
7 https://zoom.us.
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likely facilitated participants’ ability to envision the planned
features as potential additions to the software solution.

5 The HCAI prototypes for the
diagnostic tool

In this section, we present the creative ideation and design
phase, where solution concepts are generated and visual-
ized in an iterative approach to address user needs and
requirements.

5.1 Low-fidelity prototypes

The Lo-Fi prototypes were generated from our workshops
and through internal sketching efforts within the research
team.” The interdisciplinary collaboration in our study fos-
tered a rich exchange of ideas, ranging from user-centric
interface designs to interactive features for the prototypes
aimed at tackling the identified problems, while our focus
remained on exploring how a potential solution could best
meet user needs and on uncovering crucial factors that must
be considered'”’ when designing for actual work practices.

5.1.1 Online design thinking workshop

During the workshop, we expanded upon the user needs
and requirements that we gathered and created POV state-
ments to aid in specifying the particular requirements,
and employed HMW statements to discover several con-
cepts centered around the intended results. For example,
while working on the requirement “segmentation of distinct
prostate regions” (reference to requirement #2), we crafted
the POV statement “The radiologist needs the segmentation
of the individual zones of the prostate for the biopsies because
it is time-consuming to annotate them by hand.” which led to
the HMW statement of “How might we provide the segmen-
tation of the individual zones of the prostate (central gland,
peripheral zone, transitional zone, seminal vesicle) for the
biopsies to save time?” which was addressed through the
prototype that was designed during the workshop.
Through collaborative efforts within two interdisci-
plinary groups, we successfully crafted two Lo-Fi pro-
totypes. Subsequently, we fine-tuned certain elements of
these prototypes, guided by the feedback received dur-
ing the workshop. To enhance the comprehensiveness of
our designs, we incorporated sticky notes containing some
HMW statements, insights, and ideas, addressing aspects
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that couldn’t be accommodated within the prototypes due
to time constraints. This process ensures that the final pro-
totypes not only reflect the diverse perspectives within
the groups but also integrate valuable insights for a more
refined outcome.

Figure 2 presents the prototype created by group one
during the workshop. Their primary focus was on consoli-
dating crucial information into a single frame, minimizing
the need for extensive interaction with various screens and
elements to reduce distractions and time. According to the
requirements list (see Subsection 2.2 to check the require-
ments list), the participants demonstrated the visualization
of Al-detected zones, lesions, and segmentation through
contours (reference to requirements #1, #2, #3). Emphasizing
the importance of displaying key information about lesions
and the prostate, they showcased overlays. A table was
designed to provide an overview of all Al-identified lesions,
including the PI-RADS score (requirement #4), with options
for result verification and explanations of the score. Also, a
detailed view featured extensive information about lesions
and patients, offering an option for editing. Participants also
streamlined the reporting process, incorporating relevant
images directly into the report through checkboxes acti-
vated by the “Generate Report” button (requirement #6).
However, time constraints hindered the completion of a
graphical representation of lesion progress.

In the second prototype presented in Figure 3 made
by group two, the radiologist in the group identified com-
paring Al-based pre-diagnoses with original MRI images
as an important user need, which was then focused on.
The radiologists’ design idea emphasizes a parallel order
of the Al results (“annotated images”) and the original MRI
images (“original images”). These images should be linked
to each other and change synchronously while scrolling
through the mouse without additional interaction elements.
Also, the detection of the prostate borders as well as the
segmentation of different zones and lesions were visual-
ized through contours or a heatmap (requirements #1, #2,
#3). Participants incorporated an option for corrections of
the markings. The right side of the interface shows space
for reporting (requirement #6). In a table format, the Al
should provide automatic calculations of the prostate and
lesions volume (requirement #5). It is intended to ensure
the classification of identified lesions following the PI-RADS
scheme and to automatically calculate the PI-RADS score
(requirement #4). Other HMW statements, which couldn’t
be addressed in the prototype, refer to a Prostate Sector
Map according to PI-RADS, which should be provided and
generated automatically, and show the individual lesions,
their weighting zone, and the PI-RADS score.
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Figure 2: Low-fidelity prototype by Group 1 from online design thinking workshop.

5.1.2 On-site design thinking workshop

A second DT workshop was conducted on-site with 20 par-
ticipants divided into four groups. Consequently, four paper
prototypes were crafted as seen in Figure 4, reflecting the
collaborative efforts of the groups and demonstrating the
convergence of diverse perspectives into cohesive design
solutions for a specific problem.

Group 1 concentrated on showcasing the automatic
identification and segmentation of distinct prostate regions
using contours, offering a 3D view, and providing an option
for radiologist verification (requirements #1 and #2). Group
2 focused on visualizing the automatic detection and local-
ization of potential lesions with classification, emphasiz-
ing its potential role in identifying cancer severity among
patients and prioritizing cases beforehand (requirements
#3 and #4). Group 3 envisioned the automatic calculation of
prostate volume and PSA density, emphasizing the impor-
tance of allowing radiologists to adjust Al-detected borders
for accuracy (requirement #5). Group 4 demonstrated a
standardized reporting system that not only provided feed-
back on Al results but also included a Likert scale option for

radiologists to indicate the severity of a misdiagnosis by Al
(requirements #6 and #7).

5.1.3 Low-fidelity prototype using figma

Following the prior prototypes and feedback, our research
team used quick visual sketching in Figma to support the
creative ideation process,”® which allowed for rapid idea
externalization, including the use of images like MRI scans
(Figure 5), and proved pivotal in creating a well-informed,
user-centered design.

Since our main target users are German radiologists,
the UI text for this Lo-Fi and subsequent prototypes was in
German to ensure a realistic and familiar user experience.
All of the seven Lo-Fi prototypes were discussed and refined
within the research team and used for the next iteration of
prototyping to create a Hi-Fi prototype.

5.2 High-fidelity prototype

The primary goal in translating the Lo-Fi prototypes into a
Hi-Fi prototype was to create a user experience that closely
resembled interacting with a finished product. To enhance
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Figure 3: Low-fidelity prototype by Group 2 from online design thinking workshop.

the realism of the prototype interaction, real MRI exami-
nation data and actual Al-generated output were utilized
and integrated into the Hi-Fi prototype, which was imple-
mented as a front-end web application using Angular]S.
The AI developers of our team were concurrently imple-
menting and training the AI algorithm. They used the Semi-
Supervised Learning (SSL) technique to train our AI model,
since it produces more accurate outcomes by learning from
both labeled and unlabeled data,'®>'% and has the potential
for medical image segmentation.'® The technical details of
the implementation and training process of the Al algorithm
are beyond the scope of this paper. Although the algorithm
was not directly linked to the back-end of the Hi-Fi proto-
type, the AI results were visibly presented within the UI
using Adobe Photoshop.?

8 https://www.adobe.com/products/photoshop.html.

Once the Al algorithms have processed the MRI images,
the results are made available via a web-based front-
end application, allowing users to examine each image in
greater detail. The AI primarily focuses on detecting clini-
cally significant lesions and accurately delineating both the
whole prostate and the lesions, which are presented to the
user in a simplified DICOM viewer. Additionally, the solu-
tion generates a structured and informative graphic to be
included in the radiological report.

Here, we will provide a detailed description of our
UI and highlight key features. At first, radiologists start
to select an MRI exam from an overview page listing all
exams (scans) processed with patient details, exam date
(newest first), and the AI's processing status. The details
page, as shown in Figure 6, is split into a left side for textual
data and a right-side viewer for graphical data, such as the
MRI images and lesion graphics. This simultaneous display
allows users to easily make connections and comparisons,
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Figure 4: Low-fidelity paper prototypes from Group 1to Group 4 from on-site design thinking workshop. (a) Paper prototype of Group 1. (b) Paper
prototype of Group 2. (c) Paper prototype of Group 3. (d) Paper prototype of Group 4.

which in turn reduces cognitive load by eliminating manual
view switching.

The viewer includes the MRI series relevant to PI-RADS
scoring. Users can navigate between series via top but-
tons, the scroll bar, or direct mouse-wheel scrolling, a com-
mon interaction element in the DICOM viewer and explic-
itly identified as a user need during the workshop. The
viewer also displays Al-generated delineations. Through
mask options, the prostate segmentation, PZ, and any lesion
detected are presented and classified as significant by the
Al algorithm (Figure 7). Activated masks remain visible
throughout the image stack during scrolling. For orienta-
tion, the scroll bar thumbnails were color-coded accord-
ing to active masks, with distinct colors differentiating
organ/zone from lesion delineations.

Data transfer features are included (copy to clipboard,
download, or export to Picture Archiving and Communica-
tion System (PACS)), enabling users to view edited series
in their DICOM viewer or integrate them directly into

reports. The viewer can display the Al-generated structured
graphic (Figure 8), reducing input errors, increasing effi-
ciency, and ensuring consistent outputs transferable to final
reports.

In Figure 9, the inputs are structured into sections
aligned with the diagnostic workflow observed in our con-
text study, reducing cognitive effort by maintaining famil-
iar procedures. Checkboxes in each section support pro-
cess documentation and help radiologists resume work
after interruptions. The first section addresses diagnos-
tic image quality, which is pre-filled by AI according to
the concept. The prostate measurements section shows
PSA, prostate volume, and PSA density, automatically cal-
culated from AI segmentation to improve efficiency and
reduce errors. The option to validate the values is avail-
able by assessing the right-side images. The lesion-finding
section lists Al-detected lesions, which remain editable by
the user. While the PI-RADS score is automatically derived
from registered values, users can input a manual score for
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Figure 5: Low-fidelity prototype: figma sketch of diagnostic tool UI with the PI-RADS sector map'® and a T2W image.
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Figure 6: High-fidelity prototype: detailed UI with examination-details page of a patient.
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findings list*®). The final part registers the overall assess-
ment score. Each section is structured as a table where the
current exam is a row.

5.3 Middle-fidelity prototype

Within our iterative process, multiple design and eval-
uation cycles were conducted. After evaluating the Hi-
Fi version, a Mid-Fi prototype was created in Figma
(Figure 10).

The Mid-Fi prototype aims to reduce perceptual and
cognitive load by enabling radiologists to make quick,
pre-defined decisions on Al-suggested abnormalities. This
reflects the radiologists’ request to mark easily categoriz-
able lesions using their expertise (P09). The AI suggestions
can validate decisions or be overridden in case of disagree-
ment, serving purely as supportive augmentation. Confi-
dence bars promote diagnostic caution, and an on/off switch
enables AI use either as pre-diagnostic guidance or as a
confirmatory tool.
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6 Initial evaluation of the HCAI
prototypes

The evaluation of the Hi-Fi and Mid-Fi prototypes provided
valuable insights into integrating Al-based solutions into
prostate MRI diagnosis. Alongside supporting the design
concepts’ efficacy in meeting user needs, as reflected in
overall positive feedback, the evaluation also highlighted
key considerations essential for developing Al solutions in
this domain.

For both prototypes, greater transparency about how
AT works appeared to influence trust in the results. P09
emphasized that, if the system works reliably, it could sub-
stantially reduce workload and save time, as current tasks

Lymphknoten Knochen Andere

N/A N/A N/A

Prostatitis Atrophie Fibrosis

N/A N/A N/A

PRECISE

N/A

such as reviewing hundreds of images, manual reporting,
and volume calculation are highly time-consuming.
Moreover, the evaluation highlighted the importance of
supporting a smooth and efficient workflow as radiologists
reported visual strain toward the end of the workday. There-
fore, features such as quickly jumping to the respective
lesion delineation from the input form were appreciated.
However, it was also emphasized that the solution’s effec-
tiveness hinges on the performance of the AI algorithm.
P09 explains that the AI system is particularly effective
at detecting small lesions that he might have overlooked,
empowering him to complete a more accurate diagnosis.
Regarding the workflow order, most radiologists prefer
to briefly review MRI images themselves before activating
the AL But also parallel viewing — with and without Al — for
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Figure 10: Middle-fidelity prototype after iteration: diagnostic tool UI with a more streamlined design.

direct comparison was mentioned. As P09 noted, a “tool
that significantly supports me or even identifies these lesions
itself, and I simply verify” would be helpful. So, individual
preferences must be addressed. Hence, the Mid-Fi version
includes a feature to enable or disable AI support for indi-
vidual preferences, which was appreciated by radiologists,
as it enabled them to switch seamlessly between AI mode
and original mode to support a dynamic workflow.

6.1 Usability evaluation: first iteration

The Hi-Fi prototype was evaluated first, with radiologists
generally endorsing its overall concept during the study. P06
highlighted his recognition by saying “I would take it how
it is right now, with the points we discussed, the changes,
improvements, etc. I would take it, let it be certified, and
bring it to the market.” The Ul was perceived as easy to
use, enabling users to orient themselves quickly; however,
this applies mainly to individuals “who are familiar with the
subject matter” (P02).

The presentation of prostate delineations and iden-
tified lesions on the T2W images was considered bene-
ficial by all participants, enabling users to examine the
Al algorithm’s outcomes easily. Highlighting suspicious
regions facilitated the assessment of lesion number, size,
and location, while navigation through the full image stack
supported a comprehensive understanding of AI conclu-
sions. Active mask visualization “[.] facilitates and fastens

a quick overview. If I want to see where the algorithm finds
something, I don’t need to scroll through the whole image set
but can approach it directly” (P05).

Participants acknowledged the importance of the
prostate measurement section and the relevance of each
displayed value for the graphic. Especially, the automated
calculation of prostate volume and PSA density was valued.
As P06 noted, “This is in principle what facilitates one’s work,
that you don’t have to type into your calculator or ask Siri.”

Incorporating the PI-RADS score for each sequence, as
well as the overall final score, was considered essential for
the assisted workflow. The automated calculation of the
final lesion score and the option for manual input were
regarded as practical. The potential inclusion of visual alerts
in cases where the manually assigned score contradicts the
PI-RADS algorithm was regarded as a beneficial safeguard.

During task completion, participants used separate
screens for the prototype and their DICOM viewer, as
intended. The concept of assessing images within the DICOM
viewer while simultaneously utilizing the AI solution on a
distinct screen was deemed logical. According to P07, he
does the diagnosis in the DICOM viewer anyway, and then he
cross-checks on the other side. Conversely, P05 highlighted
the potential advantages of direct integration into the exist-
ing PACS, which could reduce cognitive load.

The input form on the left side received a unani-
mous positive response from all participants, appreciat-
ing the structure’s alignment with their current workflow.
This arrangement allowed the participants to methodically
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progress through individual steps and seamlessly proceed
once they were completed. P07 said, “This already represents
my approach very nicely, how I would work through the
diagnosis. That’s what I need. That I can go through this
and mentally tick my things. And then I have my finished
graphic and report.” All radiologists (also in the second eval-
uation cycle) appreciated automatic reporting, valuing any
functionality that saves time and reduces workload. The
ability to manually add lesions and correct values is deemed
beneficial. However, P02 mentions a desire to have more
flexibility when selecting secondary findings, e.g., by hiding
irrelevant options. As this is a minor issue, we were able to
change that directly in the Hi-Fi prototype.

The prostate sector map and the marked lesions also
received positive feedback, along with suggestions for
improvement. Especially, marking lesions based on their
delineation results in a more precise representation was
acknowledged. All participants recognized the advantages
of automatically generating a lesion graphic, such as its
time-saving and enhanced efficiency. Furthermore, it erad-
icates the potential for transfer errors and guarantees a
consistent graphic outcome.

Although participants agreed on most features, varia-
tions exist between the values, preferences, and workflows
of individual radiologists. Divergences emerged regarding
aspects such as the importance of the lesion volume, infor-
mation included in the report graphic, and the use of color
for highlighting. This represents the challenge that design
decisions valued by some can be inconvenient for others.
As suggested by participants, customizable settings could
mitigate this issue.

6.2 Usability evaluation: second iteration

In our case, the final version is the Mid-Fi prototype, which
was created after evaluating the Hi-Fi prototype. In gen-
eral, the Al is viewed as effective not only when making
accurate assessments but also for not significantly disrupt-
ing the workflow when predictions are incorrect. While
P08 expects high accuracy, he recognizes false positives
as inevitable and suggests a threshold to limit displayed
lesions, though he wants to see enough abnormalities to
avoid missing cancerous lesions. P04 and P06 readily over-
ride Al assessments, appreciating that the prototype sup-
ports human oversight to compensate for Al fallibility. P07
highlighted the importance of quickly and intuitively dis-
missing false positives, valuing the ability to easily delete Al
suggestions, particularly in the TZ where they are frequent.
P07 found it more efficient to correct an inaccurate Al sug-
gestion with minimal adjustments than to manually input
findings from scratch. Though he acknowledged the risk of

S. M. Plinz-SaBmannshausen et al.: Designing a human-centered Al solution with radiologists == 521

diminishing intuition, which could be particularly problem-
atic given the relatively frequent occurrence of edge cases.

P09 appreciates the Al by saying, “Of course, I think it is
good that the system shows you where an abnormal finding is
and allows you to see boundaries, so I can get an idea of how
large the finding is”. He also appreciated the Al-suggested
lesions in the list, praising the clear presentation of their
details, such as numbering, zone assignment, and size.

The confidence bars were positively received as they
offer amore natural experience (P08) and allow participants
to choose among multiple Al suggestions rather than rely-
ing on a single prediction. P04 compared this to differen-
tial diagnosis, where physicians weigh several possibilities
before deciding, and P06 highlighted its novelty for prostate
cancer, “I find it helpful. [It] is already used in other fields
[.], where diagnostic suggestions are provided along with a
probability. I think it is an interesting feature. I have never
seen anything like this in prostate cancer diagnosis before”.

As P09 evaluated a pre-version of the Mid-Fi prototype,
he found it challenging to link lesions in the MRI sequence
to the corresponding Al-generated entries in the list, par-
ticularly when multiple lesions were present, “On the left,
I have two lesions labeled as ‘Lesion 1’ and ‘Lesion 2.” When I
see the red-highlighted lesion in the MRI image on the right, I
cannot tell which of the two it is” (P09). He further suggested
sorting Al-identified lesions by size, from largest to smallest,
reflecting his typical workflow in which larger lesions are
examined first before identifying smaller ones. That was
already implemented in the final version, which can be seen
in Figure 10.

6.3 Design recommendations for redesign

During the evaluation, several design recommendations for
improvement were suggested. While we will address key
points here, we will not delve into suggestions for minor
changes, as they are not the primary focus.

Similar to other Al-generated data, the ability to mod-
ify map markings should always be adjustable to integrate
smoothly into clinical workflows. This includes the ability to
remove or add lesions and, as P06 and P07 proposed, to man-
ually delineate new ones directly on the MRI. This would
allow the system to auto-populate values based on the image
data within the delineated region. We believe that incorpo-
rating this feature may empower radiologists to have more
control over the mapping process, while also addressing
concerns regarding the practicality and efficiency of manual
lesion delineation expressed by P05.

The evaluation revealed the importance of preserv-
ing overwritten Al-generated results while ensuring clear
visual differentiation. Retaining original outputs allows
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radiologists to compare their input with Al suggestions,
track discrepancies over time, and monitor Al performance.
To support this, a dedicated dashboard might facilitate
this monitoring. Visual contrast between rectified and Al-
generated values, such as overlaying both delineations, as
suggested by P07, was considered essential to avoid con-
fusion and make discrepancies transparent. This differen-
tiation aids radiologists in indicating Al-generated results
and understanding the process leading to outcomes. More-
over, it facilitates crafting reports, as discrepancies from
AT output can be communicated to the referrer. Moreover,
maintaining access to original values supports retroactive
traceability, particularly for cases requiring re-evaluation.

For the Hi-Fi prototype, concerns were raised regarding
the accuracy of markings on the prostate sector map. “The
graphic does not match the anatomy” (P02). In this case, the
lesion would have to be corrected manually. Participants
further expected large lesions to be consistently marked
across all relevant planes (base, middle, apex) and criticized
the absence of markings in sagittal and coronal views or
alternative sequences (e.g., DWI), though opinions on their
relevance varied. P02 suggested color-coding lesions (“/.] to
distinguish between them, with the target lesion in red and
secondary lesions in a different color”). While this was then
implemented in the Mid-Fi prototype, P07 and P08 misin-
terpreted the colors as indicators of cancer severity, which
might be an unintended but potentially useful feature, as
such coding is familiar from other software.

7 Discussion

We have learned that new technologies, such as Al, can be
particularly useful in the medical sector to achieve more
efficient workflows. However, such technologies can also be
imperfect,'%1% which is critical, especially in healthcare,
as sensitive data are processed and misdiagnosis can cause
patients harm.'”” As demonstrated by both the literature
and our study, seamless integration into radiologists’ work-
flows is essential for ensuring the efficiency and usability of
Al systems.

Conducting a DCS and following the structured, three-
phase process allowed us to continuously involve radiolo-
gists and gain an in-depth understanding of their real-world
workflows, challenges, and expectations toward Al support.
Focusing on a specific use case enabled targeted empirical
inquiry and the derivation of contextually grounded design
requirements.”® The DCS framework further guided the
translation of these insights into concrete design solutions
for the seamless integration of the Al system into existing
diagnostic workflows. This approach proved particularly
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valuable for aligning technological innovation with clin-
ical practice through iterative, user-centered refinement.
While our study was situated in the German healthcare
context and focused on prostate cancer diagnostics, many
identified insights and design principles extend beyond
this scope. Both the literature and our empirical data?®
included references to other cancer types and interna-
tional approaches, underscoring the broader relevance of
our findings. The proposed prototype and interaction con-
cepts can be adapted to other cancers and healthcare sys-
tems, provided they align with local workflows and stan-
dards. More broadly, the underlying principles, like inter-
disciplinary collaboration, human oversight, and trans-
parency through visualization, are transferable across med-
ical domains and national contexts, supporting human-
centered Al in healthcare.

While AT has the potential to significantly enhance radi-
ological practices, challenges such as limited interpretabil-
ity and transparency remain critical in high-stakes environ-
ments_50,108,109

Addressing these issues through explainability requires
interdisciplinary collaboration among Al experts, radiolo-
gists, designers, and researchers to develop systems that are
both accurate and explainable, fostering trust and enabling
seamless integration into radiological workflows.”>7

While AI may provide accurate results,"®'"" under-
standing the AI's conclusion remains unclear'?-"* which
can lead to mistrust and hinder the broader adoption of
Al technologies.*>3 Though in our study, radiologists gen-
erally expressed trust in AL, with confidence increasing
through repeated use and demonstrated accuracy,”® consis-
tent with prior work,'™ they would also accept a certain
margin of error, noting that human interpretation is like-
wise prone to mistakes, particularly under visual strain.

However, addressing such issues through explainabil-
ity requires an interdisciplinary approach™® with partici-
patory design approaches'” to minimize the likelihood of
creating undesirable technology."®

One of the greatest strengths of our contribution is our
interdisciplinary collaboration with radiologists, Al devel-
opers, UX designers, and HCI researchers during the con-
text study, as well as in the design study to consider dif-
ferent perspectives and to thus achieve a HCAI solution,
that is both accurate and explainable,”” fostering trust
and enabling seamless integration into radiological work-
flows.”® Our study highlights that integrating Al into med-
ical practice requires more than technical expertise; it
depends on continuous interdisciplinary collaboration and
genuine co-design with practitioners.®*"® Creating proto-
types at varying levels of fidelity to iteratively refine the
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product is fundamental to the practice of HCL.™™ In this way,
our work demonstrates how different stakeholders without
prior design experience can effectively contribute their own
ideas for advanced Al solutions through DT, ensuring that
radiologists’ perspectives remain central and are translated
into concrete design ideas. Concerning feasibility in terms of
implementation, the perspectives of the Al developers were
also leveraged. The group dynamics proved to be an ideal
mix to achieve the optimal outcome in our context.

Our study confirms the potential of AI in prostate
cancer diagnostics but emphasizes that decision-making
responsibility must remain with radiologists. AI should be
framed as a collaborative partner that augments, rather
than replaces, human expertise by offering a second opin-
ion, for instance, by highlighting suspicious regions, dis-
tinguishing prostate zones, and suggesting PI-RADS scores.
Such an approach reflects principles of Human-AI Collab-
oration, where the Al directs attention and provides com-
plementary input while the radiologist retains final respon-
sibility. This aligns with Griesshaber et al., who empha-
size the importance of Al systems capable of guiding users
toward relevant findings.’® The role of the second opin-
ion also highlights its effectiveness in bringing attention to
aspects that busy radiologists might overlook due to time
constraints and burnout.”?! Moreover, it is important to have
a sanity check by the radiologist to ensure the accuracy
and reliability of the AI findings. Our collaboration with
radiologists indicates that the AI can serve as an assistant,
supporting their daily practice by offering suggestions that
they can choose to accept, reject or correct, which can
increase Al acceptance rates.'?>'? Striking the right balance
between human judgment and Al recommendations is cru-
cial to ensure optimal outcomes. Our design, using approx-
imate confidence bars, resembles human estimation, pre-
serves professional agency, and encourages critical engage-
ment with Al suggestions according to Human Augmenta-
tion, arguing for high human control over the technology.”
Hence, we suggest that HCAI systems should support, rather
than replace, radiologists’ judgment in uncertain diagnostic
contexts.

Our study confirms findings from the literature sug-
gesting that the decision of the AI system will be made
more understandable and transparent through visualiza-
tions, which will lead to a fair and responsible perception of
the human-system decisions.?” This can lead us forward in
a discussion of whether visualization can be the first step of
explainability. All radiologists in our evaluation study also
agreed that it was helpful that the prostate delineations and
detected lesions were presented on the MRI images, making
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it simple and understandable for them to detect and review
the results of the AI system.

Although AI models can demonstrate a high and con-
sistent level of accuracy based on their training data, they
are still subject to inherent limitations, uncertainties, and
biases.?6?* These models rely on patterns within the data
they were trained on and may not always account for
unforeseen scenarios or unique cases. Moreover, if the train-
ing data is not representative or lacks diversity, the Al
model may perform well in some instances but poorly in
others.’*?* We have learned in our study that obtaining
prostate cancer data is challenging, and additionally, most
patients are male, older, and predominantly white due to
the German medical data we work with, leading to an inher-
ent bias in the training process that we must be aware of.
Consistent with previous literature, our study indicates that
users require a comprehensive understanding of the AI's
strengths and limitations.

An extensively explored aspect of the state-of-the-art
revolves around determining the optimal point at which
the diagnostic Al output should be introduced to the
radiologist’s process.”~1?” Some studies show that people
blindly trust collaborative assistants, regardless of their
own ability.’®?° On the other hand, Berkel et al., found
that the participants were focused on relying solely on their
skills and judgment, and they disregarded any visual indica-
tors that could potentially disrupt their capability to identify
abnormalities.®® However, in our study, most radiologists
prefer to first analyze the MRI images independently of
the AI and then use the AI results as support so as not
to be too influenced. When evaluating the Al prototype, a
significant requirement that emerged was the need for ver-
ification. Despite the absence of specific XAI techniques in
our prototype to enhance the understanding of Al outputs,
participants still utilized available information to interpret
the automatically generated results. Researchers found out
that the Al-driven system could improve clinicians’ trust in
Al suggestions by offering evidence of their reliability and
relevance to individual cases and by relying on a consistent
validation process, similar to how clinicians validate each
other’s suggestions in practice,'® which we are also plan-
ning to incorporate in the future steps.

7.1 Limitations

While our contribution offers valuable insights into our
research goal, it is important to acknowledge its limita-
tions, particularly concerning our sample. Although we
have invested great effort in recruiting radiologists, we
faced considerable challenges in the process due to the
scarcity of available professionals. Nevertheless, we were
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Figure 11: Images of MRI sequences for A) T2W, B) ADC, C) DWI, D) DCE of prostate.*®
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Figure 12: Workflow of a radiologist in prostate cancer diagnosis.

able to engage experienced individuals in our workshops
and evaluation sessions, providing valuable insights.

Appropriation phase in a Design Case Study (DCS) pri-
marily focuses on the long-term adoption of the technical
artifact. However, due to our current stage, we have not
yet implemented the new tool within radiological organi-
zations over an extended period. Moving forward, we plan
to integrate the final AI solution into real-world settings
and incorporate radiologists’ feedback through a human-
in-the-loop approach, necessitating further evaluation and
appropriateness studies with larger participant pools and
long-term evaluations.

An additional constraint concerned our DT workshops,
which had to be conducted within a few hours due to
participants’ limited availability. Therefore, we used an
adapted design sprint with DT as the methodological frame-
work and, instead of requiring participants to conduct their
own research, provided them with insights from our prior
empirical study. Radiologists explained their daily prac-
tices and challenges to non-medical participants in the first

Derive PI-RADS Score

workshop, and we shared these insights with students in
the second workshop to help them empathize with real
users. However, some HCI methods proved difficult for radi-
ologists to grasp, leading to critical discussions about the
purpose of DT and its structured approach. With little time
to bridge these knowledge gaps, it was also challenging for
us as researchers to convey the value of HCD, highlighting
the need for more time on foundational understanding in
future workshops.

8 Conclusions

In this paper, we presented a HCAI solution to support
radiologists in diagnosing prostate cancer, designed through
a combination of practice-centered and HCD approaches.
We worked closely and collaboratively with radiologists,
Al developers, HCI researchers, and UX professionals, who
were directly involved in our design study through DT
workshops and evaluation sessions. We present how we
maintained a focus on real users through their strong
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involvement while paying close attention to their practices.
This, we argue, has enabled us to address their needs and
to design an Al tool that can support current radiological
practice.

Our iterative path for designing the prototype, from
Lo-Fi to Hi-Fi and back to Mid-Fi, proved to be an effec-
tive methodological choice that refined interactions and
strengthened the final design. The workshops and evalua-
tion sessions enabled interaction with different prototypes,
playing a significant role in facilitating practical discussions
among different stakeholders about specific features and
their alignment with user needs.

Our interdisciplinary approach to designing a HCAI
solution, incorporating the expertise and practical insights
of end users and other stakeholders, provides a valu-
able framework for future AI developments in health-
care. Our study highlights that collaborative and itera-
tive HCD processes are essential to developing meaningful
HCALI solutions applicable across the HCI community and
beyond.

Our future work will build on these findings by further
refining the prototype based on user feedback, testing its
effectiveness in real-world clinical settings, and investigat-
ing the long-term impacts of HCAI solutions on workflow
efficiency and patient outcomes.
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A: Appendix

Glossary

AFS The Anterior Fibromuscular Stroma (AFS) is a region within
the prostate gland consisting of fibrous and muscular tissues
located anteriorly, playing a crucial role in prostate anatomy

AIMDSS  Al-based Medical Diagnosis Support Systems
CAD Computer-Aided Detection

CAID Computer-Aided Intelligent Diagnosis

CDS Clinical Decision Support

CDSS Clinical Decision Support Systems

CNN Convolutional Neural Network

cz The Central Zone (CZ) located between the transition zone and
peripheral zone, is involved in the ejaculatory ducts and consti-
tutes a small portion of the prostate gland

DCE Dynamic Contrast-Enhanced (DCE) imaging involves continu-
ously acquiring images before, during, and after contrast agent
injection. It helps evaluate tissue perfusion and vascularity,
providing insights into tissue characteristics

DCS Design Case Study

DICOM  Digital Imaging and Communications in Medicine

DT Design Thinking

DWI Diffusion-Weighted Imaging (DWI) measures the random
motion of water molecules in tissues. It aids in identifying
tissue characteristics and abnormalities based on the diffusion
of water molecules

HCAI Human-Centered Artificial Intelligence

HCD Human-Centered Design

HCI Human Computer Interaction

Hi-Fi High-Fidelity

HMW How-Might-We

Lo-Fi Low-Fidelity

Mid-Fi Medium-Fidelity

mpMRI  Multiparametric Magnetic Resonance Imaging

MRI Magnetic Resonance Imaging

PACS Picture Archiving and Communication System

PI-RADS Prostate Imaging Reporting and Data System (PI-RADS) is a

structured reporting scheme for mpMRI in the evaluation of
suspected prostate cancer
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Point-of-View

Prostate Specific Antigen (PSA) is a protein made by cells in the
prostate gland (both normal cells and cancer cells). Elevated
levels in blood tests can indicate various prostate conditions,
including prostate cancer, but it is not solely diagnostic and
needs further evaluation

The Peripheral Zone (PZ) refers to the outer region of the
prostate gland and is the most common location for prostate
cancer to develop

Semi-Supervised Learning

A T2-Weighted (T2W) image is a type of MRI sequence that
emphasizes differences in the spin-spin relaxation time (T2)
of tissues. It enhances contrast based on tissue water content
and is valuable in imaging anatomical structures, especially in
visualizing fluid-filled spaces and abnormalities within tissues
The Transitional Zone (TZ) refers to a region within the prostate
gland that surrounds the urethra

User Interface

User eXperience

eXplainable Artificial Intelligence
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