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Abstract: Prostate cancer is a significant health concern

with rising incidence rates in Germany. While recent

research highlights the potential of artificial intelligence

(AI) to support radiologists by increasing diagnostic accu-

racy and efficiency, the successful integration of such tech-

nology depends on carefully designed, practice-oriented

approaches. This paper presents a design case study (DCS)

on a human-centered artificial intelligence (HCAI) solu-

tion to assist radiologists in diagnosing prostate cancer. In

our contribution, we emphasize that by combining human-

centered design (HCD) and practice-centered computing,

we can contribute towards a seamless and usable integra-

tion of AI into healthcare. Through interdisciplinary col-

laboration among radiologists, user experience (UX) design-

ers, AI developers, and human-computer interaction (HCI)

researchers, we employed Design Thinking (DT) to itera-

tively develop low-, mid-, and high-fidelity prototypes of

an AI solution for improving diagnostic workflow, which
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were evaluated by radiologists. Our findings advance the

state-of-the-art in computing support for prostate cancer

diagnosis by introducing an artifact designedwith bothHCD

and practice-centered computing in mind.
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1 Introduction

Prostate cancer is a prevalent and significant health concern

in Germany, accounting for a considerable number of new

cases and associated mortality. In 2022 alone, 74,895 new

cases of prostate cancer were registered, leading to 15,196

deaths in 2023.1 This malignancy predominantly affects

elderly men, with a median diagnosis age of 71, and rarely

occurs before 50. 1,2 Early detection and risk stratification

are key elements in effectively managing prostate cancer, as

identifying the disease at an early stage allows for timely

and appropriate interventions that can improve patient out-

comes. In contrast, delayed or missed diagnosis can worsen

prognosis and require aggressive treatments.3 Conversely,

some prostate tumors remain indolent, and overdiagnosis

may cause unnecessary side effects.4

In the diagnosis process for prostate cancer, various

clinicians are involved. Among these, the radiologist plays

a crucial role in the process by utilizing imaging techniques

such as Magnetic Resonance Imaging (MRI) to diagnose,

stage, and monitor the disease, which guides further treat-

ment planning. However, the increasing number of cases

exposes the limitation of available radiologists in Germany,

as only 10,139 doctors are radiologists (2.32 % of the total),5

making this scarcity a crucial obstacle in prostate cancer

diagnosis.

Given the ongoing advancements in artificial intelli-

gence (AI) research, incorporating AI-driven solutions into
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medical workflows is becoming increasingly relevant. AI

has made significant advancements in various medical

fields, including radiology, where its application in medi-

cal imaging has shown promising potential.6 Its ability to

assist radiologists in managing the exponential surge in

medical data volume and complexity while enhancing diag-

nostic accuracy makes this technology highly appealing.

This assistance to healthcare professionals becomes critical

in countries with proven shortages of radiologists. In Ger-

many, for instance, where 46 % of hospitals face radiology

staffing problems,7 the gap between the number of prac-

ticing radiologists and the growing demand for radiology

services emphasizes the need for additional tools to bridge

this divide.

Radiology is expected to evolve in parallel with the

capabilities and potential of AI.8,9 At the same time, most

radiologists anticipate the widespread adoption of AI in

their field over the next decade, which is expected to signif-

icantly change it in the process.10,11 Radiologists recognize

AI as a valuable tool for improving diagnostic accuracy

and efficiency, addressing staffing shortages, and ultimately

enhancing patient care.8,9,12–14

AI applications for prostate cancer are rapidly grow-

ing to the point where AI may serve as decision support,

decreasing inter-observer variability.15,16 Though AI models

have shown promising results, only a few AI-driven sys-

tems have transitioned from controlled laboratory environ-

ments to real-world clinical workflows.17 Acknowledging

the importance of the human experience within its contex-

tual environment, a broader spectrum of factors relevant to

the success of any technical solution has been emphasized

over the years.18–20 Nevertheless, the sociotechnical dimen-

sions have been considerably underappreciated,21 particu-

larly at the intersection of AI and healthcare,22,23 where the

focus lies on technical performance and clinical outcomes.

Not accounting for these aspects has been demonstrated to

factor into the non-adoption of technology in healthcare.24,25

While AI excels in rapidly processing vast datasets

and identifying nuances evading the human eye, the

radiologist’s strength lies in domain expertise and the ability

to identify nearly optimal solutions.6 Hence, the expected

role of AI in radiology is not to replace the radiologist

from the workflow but rather to serve as a second reader

and optimize the workflow10 by assisting the radiologists.

Thus, involving radiologists in AI development to define

clinical requirements and evaluate AI tools can help main-

tain expertise while avoiding over-reliance on technology.26

Furthermore, engaging radiologists in the design phase

and presenting them with transparent and comprehensible

visual representations of the system’s decisions aims to pro-

vide a “fair and responsible perception of the system-human

decisions”.25,27

Previous research has demonstrated how ethnograph-

ically informed approaches can be useful in understanding

radiologist practices and uncovering user requirements for

tools to support them with their duties.28 However, little

can be found in the literature about how this can be done

during the design phase. Given the prominence of Design

Thinking (DT) within Human-Centered Design (HCD),29–31

especially for health interventions to improve outcomes,

product quality, service adoption, and user satisfaction,32–34

we have drawn on the approach for the design of an AI-

based aid to support radiologists in prostate cancer diagno-

sis. In addition,we have used a practice-centered computing

lens,35,36 which acknowledges that only by understanding

practices can we effectively design computer technologies

to support people in their endeavors.

The aim of our research is, therefore, to introduce

a Human-Centered AI (HCAI) solution for radiologists by

embracing a human-centered design approach combined

with practice-centered computing through involving radi-

ologists and other stakeholders such as AI developers, UX

designers, and HCI researchers to benefit from their vari-

ous perspectives throughout the design process to ensure

the AI solution was thoughtfully designed to fully harness

its potential in the healthcare system to provide better

improvements and user satisfaction.13,37,38 In this paper, we

present our Design Case Study (DCS) to contribute a human-

centered AI solution to support radiologists in their current

practice within the diagnosis of prostate cancer using MRI

data.

From our previous ethnographically informed context

study,28 we gained insights into radiologists’ practices and

how these practices can inform the design of AI support,

proposing a solution with the potential to improve their

workflow by seamlessly integrating AI into radiology prac-

tices. Building on these insights, this paper contributes:

1) the design of low-, mid-, and high-fidelity prototypes

through an interdisciplinary and iterative process spanning

both a HCD and a practice-centered computing perspective;

2) the initial evaluation of the referred HCAI solution with

radiologists, with reflections on the extent towhich it helped

us to achieve a solution that would respond to the sociotech-

nical aspects concerning the diagnosis of prostate cancer

by radiologist; and finally, 3) deep insights and practical

guidance on how the interdisciplinary capabilities of differ-

ent stakeholders can be effectively utilized in collaborative

settings to generate design ideas and how to address user
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Figure 1: Our design case study framework, including context study, design study, and appropriation study.

needs, design preferences, and interactions with the AI sys-

tem within the radiologists’ diagnostic workflow.

2 Research background

The work presented in this paper was conducted within

an interdisciplinary project aimed at supporting research

on interactive technologies for health and quality of life.

Between August 2021 and May 2024, we collaborated closely

with a software development company in telemedicine

and multiple associated partners in the field of radiology.

Despite challenges arising from the COVID-19 pandemic, the

involvement of the GermanRadiological Society1 enabled us

to generate considerable interest among radiologists, ulti-

mately facilitating close collaboration with 13 professionals

in the field.

We defined our work within the DCS framework intro-

duced by Wulf and colleagues,36,39 which conceptualizes

practice-centered computing initiatives through three inter-

related activities: context study, design study, and appropri-

ation study.35 According to Stevens et al., “good design case

studies are characterized by an in-depth understanding and

1 German: Die Deutsche Röntgengesellschaft, Website: https://www

.drg.de.

descriptions of social practices in the field of application,

with a specific focus on how these empirical findings may

contribute to the design of IT artifacts”.35

To provide such an in-depth understanding of cur-

rent practices, we also divided our work into three phases,

depicted in Figure 1, which outlines the individual phases

of our DCS, the associated activities, and their interrela-

tions. The context study provides an in-depth understand-

ing of the practice, which forms the foundation; build-

ing on that, the design study translates these insights into

design concepts and prototypes, and the appropriation

study examines how these artifacts are integrated into real-

world practices. The three phases – context, design, and

appropriation – were embedded in an iterative process,

ensuring the ongoing emergence of insights and iterative

refinements.

The design study,which is presented in this paper (high-

lighted in pink in Figure 1), is based on our context study,

which we will briefly summarize in this section. The con-

textual empirical fieldwork and the analysis of the data fall

out of the scope of this paper, as we are focusing here on the

design study, and the main parts of the context study can

already be read in our previous paper.28 The appropriation

study will be conducted as future work and therefore lies

beyond the scope of this paper, too.

https://www.drg.de
https://www.drg.de
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2.1 Context study

We conducted qualitative research by working with dif-

ferent radiology centers across Germany for 2.5 years.

We had 11 contextual inquiry sessions,40 involving seven

radiologists and other medical staff members, each last-

ing between three and five hours. Furthermore, we con-

ducted 11 semi-structured interviewswith radiologists, with

a duration ranging from 40 to 80 minutes. Additionally, two

workshops were organized: first, an ethics workshop with

seven participants (excluding the first two authors) from

the fields of ethics, radiology, HCI, and AI development,

and second, an internationalworkshop onHuman-Centered

AI in Healthcare held at the ECSCW conference in 2022,

which involved 10 participants (excluding the first three

authors) with backgrounds in HCI/CSCW, healthcare, and AI

development.41

Through the context study, we gathered in-depth

insights into the daily practices of radiologists.42 We learned

about individual steps within their workflows, contex-

tual factors influencing the practice, usage of various arti-

facts and systems, internal and external communications,

practitioners’ needs, practitioners’ challenges, and their

perspectives towards AI as a potential assistant. This in-

depth analysis aimed to establish a solid foundation of

understanding and to define requirements, serving as the

basis of the development of our HCAI solution. Part of our

insights has been published in the proceedings of the CHI

conference in 2024,28 where we discussed a section of our

iterative empirical study on radiologist practices in diag-

nosing prostate cancer and how AI can enhance decision-

making in that context. While additional empirical insights

emerged through our iterative work, which are not yet

published, we will not discuss them in detail in this paper,

as it focuses on the design study. But to comprehend our

design decisions, we will briefly present key insights from

the whole context study, including an overview of current

prostate cancer diagnosis procedures using MRI, the user

needs, and requirements for an AI tool to support radiolo-

gists in the diagnostic process.

2.1.1 Current practices in diagnosing prostate cancer

We categorized the complex diagnosis process into five

stages: Patient inquiry, Image acquisition, Image interpre-

tation, Reporting, and Verification, as shown in Figure 12 (in

appendix).

Before the examination, radiologists gather relevant

medical history, including Prostate Specific Antigen (PSA)

value from the patients. Next, through an MRI exam, they

acquire theMultiparametricMRI (mpMRI), which combines

multiple imaging sequences including T2-Weighted (T2W),

Diffusion-Weighted Imaging (DWI), and Dynamic Contrast-

Enhanced (DCE) imaging to evaluate the prostate gland,

with each sequence highlighting different areas of anatomy

and prostate structure segmentation. An example of the

most common sequences we have observed can be seen in

Figure 11 (in the appendix).

Afterwards, the radiologist analyzes MRI imaging data

to detect and assess lesions, considering that not every

lesion is characterizable in every image, necessitating a

comprehensive reviewof images fromvarious perspectives.

Prostate MRI interpretation is complex, with radiologists

using the standardized scoring system Prostate Imaging

Reporting and Data System (PI-RADS), which assigns scores

from one to five based on the lesion’s assessment from

key mpMRI sequences to indicate the likelihood of clini-

cal significance.43 However, the sequence contributing to

the score varies depending on the prostate zone in which

the lesion is located. These zones encompass the Periph-

eral Zone (PZ), Transitional Zone (TZ), Central Zone (CZ),

and Anterior Fibromuscular Stroma (AFS). After assigning

scores to each lesion identified in the mpMRI images, the

overall PI-RADS score is determined, equivalent to the score

of the highest-rated lesion.

The findings from the diagnosis are documented in a

report together with the patient’s metadata and the previ-

ously collected data about the medical history in the fourth

phase. The final diagnosis also entails the PI-RADS score

with required diagnostic metrics, a standardized prostate

sector map with identified lesions marked, and recommen-

dations for subsequent actions.

The optional fifth phase involves occasional commu-

nication with other doctors, primarily for verification pur-

poses in complex cases, but routine feedback is seldom

received in daily radiological practice.44

2.1.2 Identified user needs

During our observations,we identified severalmanual tasks

performed by radiologists that might be addressed through

AI. For example, they manually measure the prostate’s

length, width, and height from MRI and calculate prostate

volume using a private calculator, subsequently manually

calculate PSA density by dividing the PSA level by the vol-

ume. Additionally, report writing involves copy-paste and a

dictation system that requires frequent manual corrections

due to limited accuracy. Radiologists also use pre-printed

prostate sector maps to manually mark lesion locations,

further adding to their workload.
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Determining individual prostate zones is important for

assessing lesion severity, but both zone segmentation and

lesion identification canbe challenging. AlthoughPI-RADS is

a standardized scoring system, radiologists criticized it as it

gives the impression of being straightforward. The accuracy

of prostate volume calculation can vary among radiologists

due to manual measurement, which can potentially lead to

issues, as PI-RADS imposes stringent limits for critical val-

ues. PI-RADS also suggests having a double analysis policy

for prostate exams, improving anomaly detection and diag-

nostic accuracy by having two radiologists assess each case.

However, we observed thatmost of the clinics don’t have the

resources, e.g., staff and time to follow that approach, and

each case is diagnosed by one radiologist (except in complex

cases).

2.2 Requirements of the AI-tool

The insights and challenges we have identified through our

context study are transformed into user needs and require-

ments. According to the often-mentioned user needs, we

have prioritized the most relevant requirements:

1. Identification of the prostate location

2. Segmentation of distinct prostate regions

3. Detection and localization of potential lesions

4. Classification of identified lesions following the PI-

RADS scheme

5. Calculation of prostate volume and PSA density

6. Standardization of the reporting system

7. Giving feedback about AI results

Later, in explaining the prototyping process in Section 5, we

will refer to the requirements numeration, which doesn’t

imply a priority.

3 Related work

In this section, we explore the existing literature that

informs our research, engaging ourselves in the field of

AI in healthcare, specifically in radiology. We look at how

AI developments have improved diagnosis accuracy and

efficiency. We also explore the significance of maintaining

humans at the heart of AI development lifespans through

HCD.45,46

3.1 AI and decision-support systems
in radiology and prostate cancer
diagnosis

AI is being used more and more for a variety of activities,

but decision support is the primary application it serves.47

AI-driven decision aids are increasingly adopted in hospi-

tals and clinics to supportmedical practitioners in analyzing

medical data and interpreting results more accurately.48

Clinical Decision Support (CDS)/Clinical Decision Support

Systems (CDSS) are developed to offer timely, evidence-

based recommendations for diagnosis and treatment.49–51

With advanced AI AI-based Medical Diagnosis Support Sys-

tems (AIMDSS) are growing into a significant component in

pathology and radiology,52 while Computer-Aided Detection

(CAD)/Computer-Aided Intelligent Diagnosis (CAID) shifted

from just detecting suspicious regions to also interpreting

and diagnosing those regions.49,53,54

AI has the potential to revolutionize radiology prac-

tice by offering valuable support to radiologists in vari-

ous aspects and steps of their workflow.25,55,56 There exists

a variety of studies on the use of AI for prostate cancer

diagnosis. As the prostate exhibits high variability in shape

and appearance, Convolutional Neural Network (CNN) can

better cope with these issues, gaining popularity for seg-

mentation.57 Many examples58–65 demonstrate CNN applica-

tions in medical imaging for prostate cancer detection and

segmentation, with a primary focus on utilizing MRI images

for image classification, analysis, and segmentation.

Litjens et al., developed an automated CAD for prostate

cancer using MRI, comprising steps such as prostate seg-

mentation, feature extraction, and candidate classification.

Their evaluation showed superior performance, suggest-

ing potential usefulness for radiologists in both first- and

second-reader settings.66 To understand physicians’ views

on AI, Buck et al.67 interviewed German physicians and

medical professionals closely tied to radiology. They dis-

covered that while specialists acknowledged AI risks, they

tended to double-check its recommendations, leading to

extra effort. One participant expressed frustration when

AI missed details, requiring thorough reviews and negat-

ing potential time-saving benefits. Penzkofer et al., aimed

to identify prerequisites for the successful implementation

of clinically relevant AI in prostate MRI diagnosis.68 They

noted limited adoption of AI in clinical practice despite
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numerous studies exploring its diagnostic potential. Regard-

ing usability, they suggested tailoring user interfaces to

radiologists’ workflows for comprehensive MRI evaluation

alongside AI results.

Studies on the use of AI for prostate cancer diagnostics

primarily focus on the technical perspective, describing the

development of AI algorithms. The HCI perspective, which

involves understanding user needs and desired interactions

with theAI, is often overlooked. Ourwork addresses this gap

by emphasizing strong collaboration with radiologists.

3.2 Human-centered design in healthcare

The integration ofAI algorithmshas encountered challenges

in real-world applications when not considering insights

and recommendations arising from the field of HCI.49 Users

who lack an understanding of the system’s functionality

and capabilities become overwhelmed by the system’s out-

put, have limited situational awareness, and may experi-

ence a loss of control over the system.69 Procter et al.,

also highlighted that AI systems in healthcare often lack

an understanding of the organizational context, limiting

practitioner trust in their recommendations.70 However,

integrating an HCAI assistant into the radiology workflow

enhances result precision, visually simplifies analysis, and

significantly reduces assessment time, thus boosting work-

flow efficiency for radiologists.71

Following an HCD process, the current context of use

can be fully analyzed to define requirements for the new

AI tool, ensuring effective, efficient, and satisfactory user

utilization. Particularly in the field of healthcare, where

sensitive data is processed, considering human factors and

putting humans at the center of an AI design process is the

key to good usability and users’ acceptance of the system,72

especially when it comes to designing an eXplainable AI

(XAI),47,73 emphasizing the need for interfaces to offer algo-

rithmic decision descriptions, multi-layer rationalization,

and data origin information.74,75 This supports increased

transparency and trust between users and the AI system,

which are found to be decisive in the adoption of such sys-

tems.76 The successful deployment of AI technologies hinges

on their seamless integration into existing clinical work-

flows and infrastructure, preserving tasks and processes

unaltered.77–79 Understanding the current context of use is

crucial for ensuring positive adoption.77,80

Socio-technical, participatory methods have been rec-

ommended by an increasing amount of research to effec-

tively involve domain experts throughout the AI devel-

opment lifecycle.81–83 Ooge et al.84 emphasize the vital

role of domain experts and end-users in developing visual

analytics tools, aligning with recommendations from HCI

scholars. Health professionals’ feedback underscores the

efficacy of participatory and user-centered interaction

design methods, particularly in UI drawings, facilitating

requirement description and common understanding with

system developers.85 Increased user involvement in design

is crucial, with user input identified as pivotal in the

success or failure of complex technology.86 Furthermore,

researchers from the community have argued that engaging

users in the design process and especially in design deci-

sions, according to the participatory design premises,87,88

can contribute toward more ethical, adaptable, and useful

AI systems.89

Usability is crucial for integrating medical software

intoworkflow and adoption.90 HCDmethodologies facilitate

achieving usability in medical technology.91 DT, known for

its empathy, creativity, and collaboration, is effective across

healthcare domains, offering user-centered solutions.31 Its

success in healthcare stems from considering contextual

factors, including user needs and clinical evidence.92 DT out-

comes in healthcare outperform traditional interventions

in terms of usability and effectiveness.93 Given the impor-

tance of usefulness and ease of use in medical technology

adoption,94 DT presents a promising approach. Additionally,

Chen et al., emphasize a human-centered approach inDT for

explainable medical imaging systems.30

4 Methodological approach of the

design process

Following the design case study framework,35 we employed

an iterative HCD process and adopted a practice-centered

computing approach36 to develop an AI prototype aimed at

supporting prostate cancer diagnosis. Our research project

underwent ethical review by the institutional review board

committee of our university and received clearance.

For this design study, we paid strong attention to the

participation of different stakeholders, including radiolo-

gists, AI developers, HCI researchers, and UX design pro-

fessionals, throughout the entire process. Across two DT

workshops with a total of 31 participants, we collabora-

tively explored and refined design ideas that resulted in the

development of nine prototypes of varying fidelity (low-,

mid-, and high-fidelity). We had 10 evaluation sessions with

radiologists to assess the usability of the Medium-Fidelity

(Mid-Fi)- and High-Fidelity (Hi-Fi) prototypes. The detailed

methodological approach is explained below.

Table 1 presents an overview of the participants in this

design study. The irregular numbering reflects that certain

pseudonyms (P01, P03, P10, P11) had been assigned in the
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Table 1: List of participants in our design study.

Participant Role Involvement

P07 Radiologist DT Workshop

P08 Radiologist DT Workshop

P12 Radiologist DT Workshop

P13 AI Developer DT Workshop

P14 AI Developer DT Workshop

P15 AI Developer DT Workshop

P16 UX Professional DT Workshop

P17 UX Professional DT Workshop

P18 HCI Researcher DT Workshop

P19 HCI Researcher DT Workshop

P20 HCI Researcher DT Workshop

P21 HCI Master Student DT Workshop

(. . . )a HCI Master Student DT Workshop

P40 HCI Master Student DT Workshop

P02 Radiologist Evaluation

P04 Radiologist Evaluation

P05 Radiologist Evaluation

P06 Radiologist Evaluation

P07 Radiologist Evaluation

P08 Radiologist Evaluation

P09 Radiologist Evaluation

P41 Radiologist Evaluation

aP22 to P39 not shown individually for conciseness.

context study, but those participants did not take part in

the design study due to their time constraints. Notably,

seven of the radiologists (P02, P04, P05, P06, P07, P08, P09)

participated in both our context and design studies, while

two of them (P06, P07) evaluated both the Mid-Fi and Hi-Fi

prototypes.

4.1 Design thinking workshops
and low-fidelity prototypes

Weorganized two dynamic and collaborative DTworkshops

to leverage interdisciplinary collaboration, fostering cre-

ative problem-solving and stimulating out-of-the-box think-

ing, particularly beneficial due to the time constraints faced

by the radiologists and their widespread distribution. Since

there are multiple models available illustrating the process

of DT,95,96 we have adapted the DT process according to our

available resources, such as time, place, and participants

(see Subsection 7.1). Our goal was to generate innovative

ideas for an AI-based diagnostic tool tailored for prostate

cancer diagnosis and explore visual concepts for different

features.

The first workshop was conducted online to integrate

participants from different locations. The session lasted for

150 min, bringing together a diverse group of 11 partic-

ipants considering innovations in healthcare come from

diverse user types.31 The participants included three radi-

ologists experienced in prostate cancer diagnosis, three

developers with AI experience, two UX professionals, and

three HCI researchers (including one HCI research assis-

tant). For recruiting, we used social media platforms such

as LinkedIn2 and Meetup3 to advertise the workshop as

an event and to explicitly motivate AI developers, radi-

ologists, UX designers, and HCI enthusiasts to participate.

While social media effectively reached most roles, radiolo-

gists were specifically invited through direct contact. Some

radiologists expressed interest in our research project after

learning about it through the German Radiological Soci-

ety, allowing us to extend explicit invitations to the work-

shop. Most of the participants did not know each other

before the workshop. We used Webex4 to meet online and

Miro5 to gather our insights. We divided the participants

according to their roles into twomultidisciplinary break-out

rooms to work on the tasks together and facilitate diverse

discussions.

We structured our workshop into five phases, namely

Empathize, Define, Ideation, Prototyping, and Evaluation,95

to collaboratively engage with our participants. First, we

explained the context of use and described the key findings

from our context study, which set the focus for the work-

shop. Then we requested insights from the radiologists in

each group to discuss challenges and limitations in their

current practices regarding our focus and share their expec-

tations about an AI-driven tool with the group members, so

that the participants can gain an empathetic understanding

of the user needs. Our previously identified user needs and

requirements were confirmed by the radiologists through

these steps in the workshop.

We delved into understanding the users’ perspectives

using an empathy map. Building on that, we crafted action-

able problem statements as Point-of-View (POV) statements

to help us define specific needs and core challenges of our

users. Afterward, we defined How-Might-We (HMW) state-

ments as open-ended questions to generate multiple ideas

focusing on desired outcomes. Then we created sketches

for rapid ideation by identifying innovative solutions to

the problem statements. After finalizing the best parts of

the sketches using Dot Voting, we focused on prototyping

2 www.linkedin.com.

3 www.meetup.com.

4 www.webex.com.

5 www.miro.com.

http://www.linkedin.com
http://www.meetup.com
http://www.webex.com
http://www.miro.com
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by producing low-fidelity versions of the tool. Participants

were instructed to visually map out the interface or key

functionalities of the prototype based on the MRIs we pro-

vided using the Wireframe tool on Miro. We evaluated

the prototypes made by each group with a feedback ses-

sion with the whole group. Though we discussed together

after each of the phases, the final discussion ensured a

comprehensive exploration of ideas and the refinement of

solutions.

The second workshop was done in person and spanned

90 min, bringing together 20 master’s students of HCI from

our university. This approach aimed to leverage HCI and

design perspectives during the creative phase, potentially

fostering even more innovative ideas. The students were

all part of an HCI course, so they knew each other. The

insights gained from the context study and the feedback

received during the first workshop served as the foundation

for developing further design ideas. We didn’t show them

concrete design ideas from the first workshop to avoid bias.

We divided the participants into four groups consisting of

five students, where at least one of them in each group has

professional experience in UX design. Owing to scheduling

restrictions, we scaled down the scope of our in-person

workshop and concentrated mostly on the ideation and

prototyping stages with the participants. An information

document detailing the scope of our study was sent to them

in advance, and to build empathy with stakeholders, we

reaffirmed the context of use and the main findings at the

beginning of the workshop. We provided four POVs, which

were generated in the previous workshop, to streamline the

ideation process, ensuring a focused exploration of specific

problem areas within the limited time frame. Each group

was given one unique POV, which was used by the partici-

pants to create multiple HMWs.

Following that, each participant brainstormed solu-

tions for the HMWs they had chosen, utilizing the Crazy 8

method. Based on the dot voting on the best design parts,

participants advanced to the prototyping step by using the

provided materials to build four paper prototypes, one for

each group.

4.2 Hi-Fi prototypes and evaluation

The six prototypes created by the participants at the end

of the two DT workshops, two from the first and four

from the second, were not intended as finished solutions;

instead, they served as a foundation that our research

team, involving HCI researchers and AI developers, further

merged and refined through brainstorming sessions while

considering participant feedback, translating the design

ideas into a clickable Low-Fidelity (Lo-Fi) prototype on

Figma.6

Derived from that, we developed a Hi-Fi prototype,

which was evaluated with five radiologists. Afterwards, we

returned to a Mid-Fi Figma prototype to focus on iterative

refinement of core features of the solution based on the ini-

tial feedback without being constrained by implementation

details. This allowedus to rapidly integrate insights from the

first evaluation and test design alternatives more flexibly.

The Mid-Fi prototype was also evaluated with another five

radiologists.

We have conducted initial evaluations through usabil-

ity tests as a pre-stage to the appropriation study. The

evaluation aimed to assess the usability of the AI-based

solution by examining user needs and identifying poten-

tial flaws. Eight of the usability tests were conducted indi-

vidually via Zoom,7 allowing them to participate remotely

from their work environment. Three participants (P05, P06,

P07) remotely completed approximately 90-min sessions

each, accessing the Hi-Fi prototype hosted on a univer-

sity server through a standard internet browser, along

with anonymized MRI images for importing into their Dig-

ital Imaging and Communications in Medicine (DICOM)

viewer. One 30-min session with two participants (P02, P41)

was conducted on-site at a radiology center, where the

radiologists accessed the same prototype directly on the

researcher’s laptop. Additionally, five sessions of approx-

imately 45 min were conducted remotely, where partici-

pants (P04, P06, P07, P08, P09) accessed theMid-Fi prototype

through a shared Figma project.

While the remote participants shared their screens

and live video during their exploration, participants on-site

were directly observed. All participants interacted directly

with the prototype and had to simulate a prostate MRI

diagnosis using the prototype and provided MRI images,

following a specific scenario. They were encouraged to

vocalize their thoughts throughout the process using the

think-aloud method.97 To capture these thoughts, all ses-

sions were recorded, transcribed, and analyzed using a the-

matic analysis approach98 to identify key topics, issues, and

design implications raised by participants. The participants’

feedback was helpful to refine the prototypes iteratively.

Some design ideas that emerged through the evaluation

were already addressedwithin iterative design cycles; other

potential features not implemented in the prototype were

discussed. Participants shared insights on the benefits and

drawbacks of the features. Familiarity with the prototype

6 https://www.figma.com.

7 https://zoom.us.

https://www.figma.com
https://zoom.us
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likely facilitated participants’ ability to envision the planned

features as potential additions to the software solution.

5 The HCAI prototypes for the

diagnostic tool

In this section, we present the creative ideation and design

phase, where solution concepts are generated and visual-

ized in an iterative approach to address user needs and

requirements.

5.1 Low-fidelity prototypes

The Lo-Fi prototypes were generated from our workshops

and through internal sketching efforts within the research

team.99 The interdisciplinary collaboration in our study fos-

tered a rich exchange of ideas, ranging from user-centric

interface designs to interactive features for the prototypes

aimed at tackling the identified problems, while our focus

remained on exploring how a potential solution could best

meet user needs and onuncovering crucial factors thatmust

be considered100 when designing for actual work practices.

5.1.1 Online design thinking workshop

During the workshop, we expanded upon the user needs

and requirements that we gathered and created POV state-

ments to aid in specifying the particular requirements,

and employed HMW statements to discover several con-

cepts centered around the intended results. For example,

while working on the requirement “segmentation of distinct

prostate regions” (reference to requirement #2), we crafted

the POV statement “The radiologist needs the segmentation

of the individual zones of the prostate for the biopsies because

it is time-consuming to annotate them by hand.”which led to

the HMW statement of “How might we provide the segmen-

tation of the individual zones of the prostate (central gland,

peripheral zone, transitional zone, seminal vesicle) for the

biopsies to save time?” which was addressed through the

prototype that was designed during the workshop.

Through collaborative efforts within two interdisci-

plinary groups, we successfully crafted two Lo-Fi pro-

totypes. Subsequently, we fine-tuned certain elements of

these prototypes, guided by the feedback received dur-

ing the workshop. To enhance the comprehensiveness of

our designs, we incorporated sticky notes containing some

HMW statements, insights, and ideas, addressing aspects

that couldn’t be accommodated within the prototypes due

to time constraints. This process ensures that the final pro-

totypes not only reflect the diverse perspectives within

the groups but also integrate valuable insights for a more

refined outcome.

Figure 2 presents the prototype created by group one

during the workshop. Their primary focus was on consoli-

dating crucial information into a single frame, minimizing

the need for extensive interaction with various screens and

elements to reduce distractions and time. According to the

requirements list (see Subsection 2.2 to check the require-

ments list), the participants demonstrated the visualization

of AI-detected zones, lesions, and segmentation through

contours (reference to requirements #1, #2, #3). Emphasizing

the importance of displaying key information about lesions

and the prostate, they showcased overlays. A table was

designed to provide an overview of all AI-identified lesions,

including the PI-RADS score (requirement #4), with options

for result verification and explanations of the score. Also, a

detailed view featured extensive information about lesions

and patients, offering an option for editing. Participants also

streamlined the reporting process, incorporating relevant

images directly into the report through checkboxes acti-

vated by the “Generate Report” button (requirement #6).

However, time constraints hindered the completion of a

graphical representation of lesion progress.

In the second prototype presented in Figure 3 made

by group two, the radiologist in the group identified com-

paring AI-based pre-diagnoses with original MRI images

as an important user need, which was then focused on.

The radiologists’ design idea emphasizes a parallel order

of the AI results (“annotated images”) and the original MRI

images (“original images”). These images should be linked

to each other and change synchronously while scrolling

through themousewithout additional interaction elements.

Also, the detection of the prostate borders as well as the

segmentation of different zones and lesions were visual-

ized through contours or a heatmap (requirements #1, #2,

#3). Participants incorporated an option for corrections of

the markings. The right side of the interface shows space

for reporting (requirement #6). In a table format, the AI

should provide automatic calculations of the prostate and

lesions volume (requirement #5). It is intended to ensure

the classification of identified lesions following the PI-RADS

scheme and to automatically calculate the PI-RADS score

(requirement #4). Other HMW statements, which couldn’t

be addressed in the prototype, refer to a Prostate Sector

Map according to PI-RADS, which should be provided and

generated automatically, and show the individual lesions,

their weighting zone, and the PI-RADS score.
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Figure 2: Low-fidelity prototype by Group 1 from online design thinking workshop.

5.1.2 On-site design thinking workshop

A second DT workshop was conducted on-site with 20 par-

ticipants divided into four groups. Consequently, four paper

prototypes were crafted as seen in Figure 4, reflecting the

collaborative efforts of the groups and demonstrating the

convergence of diverse perspectives into cohesive design

solutions for a specific problem.

Group 1 concentrated on showcasing the automatic

identification and segmentation of distinct prostate regions

using contours, offering a 3D view, and providing an option

for radiologist verification (requirements #1 and #2). Group

2 focused on visualizing the automatic detection and local-

ization of potential lesions with classification, emphasiz-

ing its potential role in identifying cancer severity among

patients and prioritizing cases beforehand (requirements

#3 and #4). Group 3 envisioned the automatic calculation of

prostate volume and PSA density, emphasizing the impor-

tance of allowing radiologists to adjust AI-detected borders

for accuracy (requirement #5). Group 4 demonstrated a

standardized reporting system that not only provided feed-

back on AI results but also included a Likert scale option for

radiologists to indicate the severity of a misdiagnosis by AI

(requirements #6 and #7).

5.1.3 Low-fidelity prototype using figma

Following the prior prototypes and feedback, our research

team used quick visual sketching in Figma to support the

creative ideation process,99 which allowed for rapid idea

externalization, including the use of images like MRI scans

(Figure 5), and proved pivotal in creating a well-informed,

user-centered design.

Since our main target users are German radiologists,

the UI text for this Lo-Fi and subsequent prototypes was in

German to ensure a realistic and familiar user experience.

All of the seven Lo-Fi prototypes were discussed and refined

within the research team and used for the next iteration of

prototyping to create a Hi-Fi prototype.

5.2 High-fidelity prototype

The primary goal in translating the Lo-Fi prototypes into a

Hi-Fi prototype was to create a user experience that closely

resembled interacting with a finished product. To enhance
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Figure 3: Low-fidelity prototype by Group 2 from online design thinking workshop.

the realism of the prototype interaction, real MRI exami-

nation data and actual AI-generated output were utilized

and integrated into the Hi-Fi prototype, which was imple-

mented as a front-end web application using AngularJS.

The AI developers of our team were concurrently imple-

menting and training the AI algorithm. They used the Semi-

Supervised Learning (SSL) technique to train our AI model,

since it produces more accurate outcomes by learning from

both labeled and unlabeled data,102,103 and has the potential

for medical image segmentation.104 The technical details of

the implementation and training process of the AI algorithm

are beyond the scope of this paper. Although the algorithm

was not directly linked to the back-end of the Hi-Fi proto-

type, the AI results were visibly presented within the UI

using Adobe Photoshop.8

8 https://www.adobe.com/products/photoshop.html.

Once the AI algorithms have processed theMRI images,

the results are made available via a web-based front-

end application, allowing users to examine each image in

greater detail. The AI primarily focuses on detecting clini-

cally significant lesions and accurately delineating both the

whole prostate and the lesions, which are presented to the

user in a simplified DICOM viewer. Additionally, the solu-

tion generates a structured and informative graphic to be

included in the radiological report.

Here, we will provide a detailed description of our

UI and highlight key features. At first, radiologists start

to select an MRI exam from an overview page listing all

exams (scans) processed with patient details, exam date

(newest first), and the AI’s processing status. The details

page, as shown in Figure 6, is split into a left side for textual

data and a right-side viewer for graphical data, such as the

MRI images and lesion graphics. This simultaneous display

allows users to easily make connections and comparisons,

https://www.adobe.com/products/photoshop.html
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Figure 4: Low-fidelity paper prototypes from Group 1 to Group 4 from on-site design thinking workshop. (a) Paper prototype of Group 1. (b) Paper

prototype of Group 2. (c) Paper prototype of Group 3. (d) Paper prototype of Group 4.

which in turn reduces cognitive load by eliminatingmanual

view switching.

The viewer includes the MRI series relevant to PI-RADS

scoring. Users can navigate between series via top but-

tons, the scroll bar, or direct mouse-wheel scrolling, a com-

mon interaction element in the DICOM viewer and explic-

itly identified as a user need during the workshop. The

viewer also displays AI-generated delineations. Through

mask options, the prostate segmentation, PZ, and any lesion

detected are presented and classified as significant by the

AI algorithm (Figure 7). Activated masks remain visible

throughout the image stack during scrolling. For orienta-

tion, the scroll bar thumbnails were color-coded accord-

ing to active masks, with distinct colors differentiating

organ/zone from lesion delineations.

Data transfer features are included (copy to clipboard,

download, or export to Picture Archiving and Communica-

tion System (PACS)), enabling users to view edited series

in their DICOM viewer or integrate them directly into

reports. The viewer can display the AI-generated structured

graphic (Figure 8), reducing input errors, increasing effi-

ciency, and ensuring consistent outputs transferable to final

reports.

In Figure 9, the inputs are structured into sections

aligned with the diagnostic workflow observed in our con-

text study, reducing cognitive effort by maintaining famil-

iar procedures. Checkboxes in each section support pro-

cess documentation and help radiologists resume work

after interruptions. The first section addresses diagnos-

tic image quality, which is pre-filled by AI according to

the concept. The prostate measurements section shows

PSA, prostate volume, and PSA density, automatically cal-

culated from AI segmentation to improve efficiency and

reduce errors. The option to validate the values is avail-

able by assessing the right-side images. The lesion-finding

section lists AI-detected lesions, which remain editable by

the user. While the PI-RADS score is automatically derived

from registered values, users can input a manual score for
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Figure 5: Low-fidelity prototype: figma sketch of diagnostic tool UI with the PI-RADS sector map101 and a T2W image.

Figure 6: High-fidelity prototype: detailed UI with examination-details page of a patient.

ambiguous cases. The lesion-finding section allows check-

ing corresponding delineations, adding new lesions, or hid-

ing registered ones to manage graphics and dismiss AI

suggestions. The documentation section covers the local

and external cancer spreading and additional findings,

using structured fields (oriented on the PI-RADS v2.1 benign
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Figure 7: High-fidelity prototype: viewer options

with four different kinds of segmentation masks.

(a) Prostate. (b) Peripheral zone (PZ). (c) Lesion.

(d) Prostate, PZ, and Lesion.

Figure 8: High-fidelity prototype: AI-generated sector map

with structured table.

findings list43). The final part registers the overall assess-

ment score. Each section is structured as a table where the

current exam is a row.

5.3 Middle-fidelity prototype

Within our iterative process, multiple design and eval-

uation cycles were conducted. After evaluating the Hi-

Fi version, a Mid-Fi prototype was created in Figma

(Figure 10).

The Mid-Fi prototype aims to reduce perceptual and

cognitive load by enabling radiologists to make quick,

pre-defined decisions on AI-suggested abnormalities. This

reflects the radiologists’ request to mark easily categoriz-

able lesions using their expertise (P09). The AI suggestions

can validate decisions or be overridden in case of disagree-

ment, serving purely as supportive augmentation. Confi-

dence bars promote diagnostic caution, and an on/off switch

enables AI use either as pre-diagnostic guidance or as a

confirmatory tool.
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Figure 9: High-fidelity prototype: detailed UI with complete input form.

6 Initial evaluation of the HCAI

prototypes

The evaluation of the Hi-Fi and Mid-Fi prototypes provided

valuable insights into integrating AI-based solutions into

prostate MRI diagnosis. Alongside supporting the design

concepts’ efficacy in meeting user needs, as reflected in

overall positive feedback, the evaluation also highlighted

key considerations essential for developing AI solutions in

this domain.

For both prototypes, greater transparency about how

AI works appeared to influence trust in the results. P09

emphasized that, if the system works reliably, it could sub-

stantially reduce workload and save time, as current tasks

such as reviewing hundreds of images, manual reporting,

and volume calculation are highly time-consuming.

Moreover, the evaluation highlighted the importance of

supporting a smooth and efficient workflow as radiologists

reported visual strain toward the end of theworkday. There-

fore, features such as quickly jumping to the respective

lesion delineation from the input form were appreciated.

However, it was also emphasized that the solution’s effec-

tiveness hinges on the performance of the AI algorithm.

P09 explains that the AI system is particularly effective

at detecting small lesions that he might have overlooked,

empowering him to complete a more accurate diagnosis.

Regarding the workflow order, most radiologists prefer

to briefly review MRI images themselves before activating

the AI. But also parallel viewing – with and without AI – for
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Figure 10: Middle-fidelity prototype after iteration: diagnostic tool UI with a more streamlined design.

direct comparison was mentioned. As P09 noted, a “tool

that significantly supports me or even identifies these lesions

itself, and I simply verify” would be helpful. So, individual

preferences must be addressed. Hence, the Mid-Fi version

includes a feature to enable or disable AI support for indi-

vidual preferences, which was appreciated by radiologists,

as it enabled them to switch seamlessly between AI mode

and original mode to support a dynamic workflow.

6.1 Usability evaluation: first iteration

The Hi-Fi prototype was evaluated first, with radiologists

generally endorsing its overall concept during the study. P06

highlighted his recognition by saying “I would take it how

it is right now, with the points we discussed, the changes,

improvements, etc. I would take it, let it be certified, and

bring it to the market.” The UI was perceived as easy to

use, enabling users to orient themselves quickly; however,

this applies mainly to individuals “who are familiar with the

subject matter” (P02).

The presentation of prostate delineations and iden-

tified lesions on the T2W images was considered bene-

ficial by all participants, enabling users to examine the

AI algorithm’s outcomes easily. Highlighting suspicious

regions facilitated the assessment of lesion number, size,

and location, while navigation through the full image stack

supported a comprehensive understanding of AI conclu-

sions. Active mask visualization “[.] facilitates and fastens

a quick overview. If I want to see where the algorithm finds

something, I don’t need to scroll through the whole image set

but can approach it directly” (P05).

Participants acknowledged the importance of the

prostate measurement section and the relevance of each

displayed value for the graphic. Especially, the automated

calculation of prostate volume and PSA density was valued.

As P06 noted, “This is in principle what facilitates one’s work,

that you don’t have to type into your calculator or ask Siri.”

Incorporating the PI-RADS score for each sequence, as

well as the overall final score, was considered essential for

the assisted workflow. The automated calculation of the

final lesion score and the option for manual input were

regarded as practical. The potential inclusion of visual alerts

in cases where the manually assigned score contradicts the

PI-RADS algorithm was regarded as a beneficial safeguard.

During task completion, participants used separate

screens for the prototype and their DICOM viewer, as

intended. The concept of assessing imageswithin theDICOM

viewer while simultaneously utilizing the AI solution on a

distinct screen was deemed logical. According to P07, he

does the diagnosis in theDICOMviewer anyway, and thenhe

cross-checks on the other side. Conversely, P05 highlighted

the potential advantages of direct integration into the exist-

ing PACS, which could reduce cognitive load.

The input form on the left side received a unani-

mous positive response from all participants, appreciat-

ing the structure’s alignment with their current workflow.

This arrangement allowed the participants to methodically
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progress through individual steps and seamlessly proceed

once theywere completed. P07 said, “This already represents

my approach very nicely, how I would work through the

diagnosis. That’s what I need. That I can go through this

and mentally tick my things. And then I have my finished

graphic and report.” All radiologists (also in the second eval-

uation cycle) appreciated automatic reporting, valuing any

functionality that saves time and reduces workload. The

ability tomanually add lesions and correct values is deemed

beneficial. However, P02 mentions a desire to have more

flexibility when selecting secondary findings, e.g., by hiding

irrelevant options. As this is a minor issue, we were able to

change that directly in the Hi-Fi prototype.

The prostate sector map and the marked lesions also

received positive feedback, along with suggestions for

improvement. Especially, marking lesions based on their

delineation results in a more precise representation was

acknowledged. All participants recognized the advantages

of automatically generating a lesion graphic, such as its

time-saving and enhanced efficiency. Furthermore, it erad-

icates the potential for transfer errors and guarantees a

consistent graphic outcome.

Although participants agreed on most features, varia-

tions exist between the values, preferences, and workflows

of individual radiologists. Divergences emerged regarding

aspects such as the importance of the lesion volume, infor-

mation included in the report graphic, and the use of color

for highlighting. This represents the challenge that design

decisions valued by some can be inconvenient for others.

As suggested by participants, customizable settings could

mitigate this issue.

6.2 Usability evaluation: second iteration

In our case, the final version is the Mid-Fi prototype, which

was created after evaluating the Hi-Fi prototype. In gen-

eral, the AI is viewed as effective not only when making

accurate assessments but also for not significantly disrupt-

ing the workflow when predictions are incorrect. While

P08 expects high accuracy, he recognizes false positives

as inevitable and suggests a threshold to limit displayed

lesions, though he wants to see enough abnormalities to

avoid missing cancerous lesions. P04 and P06 readily over-

ride AI assessments, appreciating that the prototype sup-

ports human oversight to compensate for AI fallibility. P07

highlighted the importance of quickly and intuitively dis-

missing false positives, valuing the ability to easily delete AI

suggestions, particularly in the TZ where they are frequent.

P07 found it more efficient to correct an inaccurate AI sug-

gestion with minimal adjustments than to manually input

findings from scratch. Though he acknowledged the risk of

diminishing intuition, which could be particularly problem-

atic given the relatively frequent occurrence of edge cases.

P09 appreciates the AI by saying, “Of course, I think it is

good that the system shows youwhere an abnormal finding is

and allows you to see boundaries, so I can get an idea of how

large the finding is”. He also appreciated the AI-suggested

lesions in the list, praising the clear presentation of their

details, such as numbering, zone assignment, and size.

The confidence bars were positively received as they

offer amorenatural experience (P08) andallowparticipants

to choose among multiple AI suggestions rather than rely-

ing on a single prediction. P04 compared this to differen-

tial diagnosis, where physicians weigh several possibilities

before deciding, and P06 highlighted its novelty for prostate

cancer, “I find it helpful. [It] is already used in other fields

[.], where diagnostic suggestions are provided along with a

probability. I think it is an interesting feature. I have never

seen anything like this in prostate cancer diagnosis before”.

As P09 evaluated a pre-version of the Mid-Fi prototype,

he found it challenging to link lesions in the MRI sequence

to the corresponding AI-generated entries in the list, par-

ticularly when multiple lesions were present, “On the left,

I have two lesions labeled as ‘Lesion 1’ and ‘Lesion 2.’ When I

see the red-highlighted lesion in the MRI image on the right, I

cannot tell which of the two it is” (P09). He further suggested

sorting AI-identified lesions by size, from largest to smallest,

reflecting his typical workflow in which larger lesions are

examined first before identifying smaller ones. That was

already implemented in the final version, which can be seen

in Figure 10.

6.3 Design recommendations for redesign

During the evaluation, several design recommendations for

improvement were suggested. While we will address key

points here, we will not delve into suggestions for minor

changes, as they are not the primary focus.

Similar to other AI-generated data, the ability to mod-

ify map markings should always be adjustable to integrate

smoothly into clinical workflows. This includes the ability to

remove or add lesions and, as P06 andP07 proposed, toman-

ually delineate new ones directly on the MRI. This would

allow the system to auto-populate values based on the image

data within the delineated region. We believe that incorpo-

rating this feature may empower radiologists to have more

control over the mapping process, while also addressing

concerns regarding the practicality and efficiency ofmanual

lesion delineation expressed by P05.

The evaluation revealed the importance of preserv-

ing overwritten AI-generated results while ensuring clear

visual differentiation. Retaining original outputs allows
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radiologists to compare their input with AI suggestions,

track discrepancies over time, andmonitor AI performance.

To support this, a dedicated dashboard might facilitate

this monitoring. Visual contrast between rectified and AI-

generated values, such as overlaying both delineations, as

suggested by P07, was considered essential to avoid con-

fusion and make discrepancies transparent. This differen-

tiation aids radiologists in indicating AI-generated results

and understanding the process leading to outcomes. More-

over, it facilitates crafting reports, as discrepancies from

AI output can be communicated to the referrer. Moreover,

maintaining access to original values supports retroactive

traceability, particularly for cases requiring re-evaluation.

For theHi-Fi prototype, concernswere raised regarding

the accuracy of markings on the prostate sector map. “The

graphic does not match the anatomy” (P02). In this case, the

lesion would have to be corrected manually. Participants

further expected large lesions to be consistently marked

across all relevant planes (base, middle, apex) and criticized

the absence of markings in sagittal and coronal views or

alternative sequences (e.g., DWI), though opinions on their

relevance varied. P02 suggested color-coding lesions (“[.] to

distinguish between them, with the target lesion in red and

secondary lesions in a different color”). While this was then

implemented in the Mid-Fi prototype, P07 and P08 misin-

terpreted the colors as indicators of cancer severity, which

might be an unintended but potentially useful feature, as

such coding is familiar from other software.

7 Discussion

We have learned that new technologies, such as AI, can be

particularly useful in the medical sector to achieve more

efficient workflows. However, such technologies can also be

imperfect,105,106 which is critical, especially in healthcare,

as sensitive data are processed and misdiagnosis can cause

patients harm.107 As demonstrated by both the literature

and our study, seamless integration into radiologists’ work-

flows is essential for ensuring the efficiency and usability of

AI systems.

Conducting a DCS and following the structured, three-

phase process allowed us to continuously involve radiolo-

gists and gain an in-depth understanding of their real-world

workflows, challenges, and expectations toward AI support.

Focusing on a specific use case enabled targeted empirical

inquiry and the derivation of contextually grounded design

requirements.28 The DCS framework further guided the

translation of these insights into concrete design solutions

for the seamless integration of the AI system into existing

diagnostic workflows. This approach proved particularly

valuable for aligning technological innovation with clin-

ical practice through iterative, user-centered refinement.

While our study was situated in the German healthcare

context and focused on prostate cancer diagnostics, many

identified insights and design principles extend beyond

this scope. Both the literature and our empirical data28

included references to other cancer types and interna-

tional approaches, underscoring the broader relevance of

our findings. The proposed prototype and interaction con-

cepts can be adapted to other cancers and healthcare sys-

tems, provided they align with local workflows and stan-

dards. More broadly, the underlying principles, like inter-

disciplinary collaboration, human oversight, and trans-

parency through visualization, are transferable acrossmed-

ical domains and national contexts, supporting human-

centered AI in healthcare.

While AI has the potential to significantly enhance radi-

ological practices, challenges such as limited interpretabil-

ity and transparency remain critical in high-stakes environ-

ments.50,108,109

Addressing these issues through explainability requires

interdisciplinary collaboration among AI experts, radiolo-

gists, designers, and researchers to develop systems that are

both accurate and explainable, fostering trust and enabling

seamless integration into radiological workflows.25,70

While AI may provide accurate results,110,111 under-

standing the AI’s conclusion remains unclear112–114 which

can lead to mistrust and hinder the broader adoption of

AI technologies.49,113 Though in our study, radiologists gen-

erally expressed trust in AI, with confidence increasing

through repeated use and demonstrated accuracy,28 consis-

tent with prior work,115 they would also accept a certain

margin of error, noting that human interpretation is like-

wise prone to mistakes, particularly under visual strain.

However, addressing such issues through explainabil-

ity requires an interdisciplinary approach116 with partici-

patory design approaches117 to minimize the likelihood of

creating undesirable technology.118

One of the greatest strengths of our contribution is our

interdisciplinary collaboration with radiologists, AI devel-

opers, UX designers, and HCI researchers during the con-

text study, as well as in the design study to consider dif-

ferent perspectives and to thus achieve a HCAI solution,

that is both accurate and explainable,25 fostering trust

and enabling seamless integration into radiological work-

flows.70 Our study highlights that integrating AI into med-

ical practice requires more than technical expertise; it

depends on continuous interdisciplinary collaboration and

genuine co-design with practitioners.83,116 Creating proto-

types at varying levels of fidelity to iteratively refine the
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product is fundamental to the practice of HCI.119 In this way,

our work demonstrates how different stakeholders without

prior design experience can effectively contribute their own

ideas for advanced AI solutions through DT, ensuring that

radiologists’ perspectives remain central and are translated

into concrete design ideas. Concerning feasibility in terms of

implementation, the perspectives of the AI developers were

also leveraged. The group dynamics proved to be an ideal

mix to achieve the optimal outcome in our context.

Our study confirms the potential of AI in prostate

cancer diagnostics but emphasizes that decision-making

responsibility must remain with radiologists. AI should be

framed as a collaborative partner that augments, rather

than replaces, human expertise by offering a second opin-

ion, for instance, by highlighting suspicious regions, dis-

tinguishing prostate zones, and suggesting PI-RADS scores.

Such an approach reflects principles of Human-AI Collab-

oration, where the AI directs attention and provides com-

plementary input while the radiologist retains final respon-

sibility. This aligns with Griesshaber et al., who empha-

size the importance of AI systems capable of guiding users

toward relevant findings.120 The role of the second opin-

ion also highlights its effectiveness in bringing attention to

aspects that busy radiologists might overlook due to time

constraints and burnout.121 Moreover, it is important to have

a sanity check by the radiologist to ensure the accuracy

and reliability of the AI findings. Our collaboration with

radiologists indicates that the AI can serve as an assistant,

supporting their daily practice by offering suggestions that

they can choose to accept, reject or correct, which can

increase AI acceptance rates.122,123 Striking the right balance

between human judgment and AI recommendations is cru-

cial to ensure optimal outcomes. Our design, using approx-

imate confidence bars, resembles human estimation, pre-

serves professional agency, and encourages critical engage-

ment with AI suggestions according to Human Augmenta-

tion, arguing for high human control over the technology.74

Hence, we suggest that HCAI systems should support, rather

than replace, radiologists’ judgment in uncertain diagnostic

contexts.

Our study confirms findings from the literature sug-

gesting that the decision of the AI system will be made

more understandable and transparent through visualiza-

tions, which will lead to a fair and responsible perception of

the human-system decisions.27 This can lead us forward in

a discussion of whether visualization can be the first step of

explainability. All radiologists in our evaluation study also

agreed that it was helpful that the prostate delineations and

detected lesions were presented on the MRI images, making

it simple and understandable for them to detect and review

the results of the AI system.

Although AI models can demonstrate a high and con-

sistent level of accuracy based on their training data, they

are still subject to inherent limitations, uncertainties, and

biases.26,124 These models rely on patterns within the data

they were trained on and may not always account for

unforeseen scenarios or unique cases.Moreover, if the train-

ing data is not representative or lacks diversity, the AI

model may perform well in some instances but poorly in

others.50,124 We have learned in our study that obtaining

prostate cancer data is challenging, and additionally, most

patients are male, older, and predominantly white due to

the Germanmedical dataweworkwith, leading to an inher-

ent bias in the training process that we must be aware of.

Consistent with previous literature, our study indicates that

users require a comprehensive understanding of the AI’s

strengths and limitations.

An extensively explored aspect of the state-of-the-art

revolves around determining the optimal point at which

the diagnostic AI output should be introduced to the

radiologist’s process.125–127 Some studies show that people

blindly trust collaborative assistants, regardless of their

own ability.128,129 On the other hand, Berkel et al., found

that the participants were focused on relying solely on their

skills and judgment, and they disregarded any visual indica-

tors that could potentially disrupt their capability to identify

abnormalities.130 However, in our study, most radiologists

prefer to first analyze the MRI images independently of

the AI and then use the AI results as support so as not

to be too influenced. When evaluating the AI prototype, a

significant requirement that emerged was the need for ver-

ification. Despite the absence of specific XAI techniques in

our prototype to enhance the understanding of AI outputs,

participants still utilized available information to interpret

the automatically generated results. Researchers found out

that the AI-driven system could improve clinicians’ trust in

AI suggestions by offering evidence of their reliability and

relevance to individual cases and by relying on a consistent

validation process, similar to how clinicians validate each

other’s suggestions in practice,131 which we are also plan-

ning to incorporate in the future steps.

7.1 Limitations

While our contribution offers valuable insights into our

research goal, it is important to acknowledge its limita-

tions, particularly concerning our sample. Although we

have invested great effort in recruiting radiologists, we

faced considerable challenges in the process due to the

scarcity of available professionals. Nevertheless, we were
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Figure 11: Images of MRI sequences for A) T2W, B) ADC, C) DWI, D) DCE of prostate.43

Figure 12: Workflow of a radiologist in prostate cancer diagnosis.

able to engage experienced individuals in our workshops

and evaluation sessions, providing valuable insights.

Appropriation phase in a Design Case Study (DCS) pri-

marily focuses on the long-term adoption of the technical

artifact. However, due to our current stage, we have not

yet implemented the new tool within radiological organi-

zations over an extended period. Moving forward, we plan

to integrate the final AI solution into real-world settings

and incorporate radiologists’ feedback through a human-

in-the-loop approach, necessitating further evaluation and

appropriateness studies with larger participant pools and

long-term evaluations.

An additional constraint concerned our DT workshops,

which had to be conducted within a few hours due to

participants’ limited availability. Therefore, we used an

adapted design sprint with DT as the methodological frame-

work and, instead of requiring participants to conduct their

own research, provided them with insights from our prior

empirical study. Radiologists explained their daily prac-

tices and challenges to non-medical participants in the first

workshop, and we shared these insights with students in

the second workshop to help them empathize with real

users. However, some HCImethods proved difficult for radi-

ologists to grasp, leading to critical discussions about the

purpose of DT and its structured approach. With little time

to bridge these knowledge gaps, it was also challenging for

us as researchers to convey the value of HCD, highlighting

the need for more time on foundational understanding in

future workshops.

8 Conclusions

In this paper, we presented a HCAI solution to support

radiologists in diagnosing prostate cancer, designed through

a combination of practice-centered and HCD approaches.

We worked closely and collaboratively with radiologists,

AI developers, HCI researchers, and UX professionals, who

were directly involved in our design study through DT

workshops and evaluation sessions. We present how we

maintained a focus on real users through their strong
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involvement while paying close attention to their practices.

This, we argue, has enabled us to address their needs and

to design an AI tool that can support current radiological

practice.

Our iterative path for designing the prototype, from

Lo-Fi to Hi-Fi and back to Mid-Fi, proved to be an effec-

tive methodological choice that refined interactions and

strengthened the final design. The workshops and evalua-

tion sessions enabled interaction with different prototypes,

playing a significant role in facilitating practical discussions

among different stakeholders about specific features and

their alignment with user needs.

Our interdisciplinary approach to designing a HCAI

solution, incorporating the expertise and practical insights

of end users and other stakeholders, provides a valu-

able framework for future AI developments in health-

care. Our study highlights that collaborative and itera-

tive HCD processes are essential to developing meaningful

HCAI solutions applicable across the HCI community and

beyond.

Our future work will build on these findings by further

refining the prototype based on user feedback, testing its

effectiveness in real-world clinical settings, and investigat-

ing the long-term impacts of HCAI solutions on workflow

efficiency and patient outcomes.
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A: Appendix

Glossary

AFS The Anterior Fibromuscular Stroma (AFS) is a region within

the prostate gland consisting of fibrous and muscular tissues

located anteriorly, playing a crucial role in prostate anatomy

AIMDSS AI-based Medical Diagnosis Support Systems

CAD Computer-Aided Detection

CAID Computer-Aided Intelligent Diagnosis

CDS Clinical Decision Support

CDSS Clinical Decision Support Systems

CNN Convolutional Neural Network

CZ The Central Zone (CZ) located between the transition zone and

peripheral zone, is involved in the ejaculatory ducts and consti-

tutes a small portion of the prostate gland

DCE Dynamic Contrast-Enhanced (DCE) imaging involves continu-

ously acquiring images before, during, and after contrast agent

injection. It helps evaluate tissue perfusion and vascularity,

providing insights into tissue characteristics

DCS Design Case Study

DICOM Digital Imaging and Communications in Medicine

DT Design Thinking

DWI Diffusion-Weighted Imaging (DWI) measures the random

motion of water molecules in tissues. It aids in identifying

tissue characteristics and abnormalities based on the diffusion

of water molecules

HCAI Human-Centered Artificial Intelligence

HCD Human-Centered Design

HCI Human Computer Interaction

Hi-Fi High-Fidelity

HMW How-Might-We

Lo-Fi Low-Fidelity

Mid-Fi Medium-Fidelity

mpMRI Multiparametric Magnetic Resonance Imaging

MRI Magnetic Resonance Imaging

PACS Picture Archiving and Communication System

PI-RADS Prostate Imaging Reporting and Data System (PI-RADS) is a

structured reporting scheme for mpMRI in the evaluation of

suspected prostate cancer
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POV Point-of-View

PSA Prostate Specific Antigen (PSA) is a protein made by cells in the

prostate gland (both normal cells and cancer cells). Elevated

levels in blood tests can indicate various prostate conditions,

including prostate cancer, but it is not solely diagnostic and

needs further evaluation

PZ The Peripheral Zone (PZ) refers to the outer region of the

prostate gland and is the most common location for prostate

cancer to develop

SSL Semi-Supervised Learning

T2W A T2-Weighted (T2W) image is a type of MRI sequence that

emphasizes differences in the spin-spin relaxation time (T2)

of tissues. It enhances contrast based on tissue water content

and is valuable in imaging anatomical structures, especially in

visualizing fluid-filled spaces and abnormalities within tissues

TZ The Transitional Zone (TZ) refers to a region within the prostate

gland that surrounds the urethra

UI User Interface

UX User eXperience

XAI eXplainable Artificial Intelligence
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