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Abstract: Control rooms play a crucial role in monitor-

ing and managing safety-critical systems, such as power

grids, emergency response, and transportation networks.

As these systems become increasingly complex and gen-

erate more data, the role of human operators is evolv-

ing amid growing reliance on automation and autonomous

decision-making. This paper explores the balance between

leveraging automation for efficiency and preserving human

intuition and ethical judgment, particularly in high-stakes

scenarios. Through an analysis of control room trends,

operator attitudes, and models of human-computer collab-

oration, this paper highlights the benefits and challenges

of automation, including risks of deskilling, automation

bias, and accountability. The paper advocates for a hybrid

approach of collaborative autonomy, where humans and

systems work in partnership to ensure transparency, trust,

and adaptability.

Keywords: control rooms; automation; human-computer

collaboration; decision-making; safety-critical environ-

ments; autonomy

1 Introduction

Control rooms are the nerve centers that underpin critical

infrastructure and public safety, ranging from small-scale

cockpits for 1–2 operators to large-scale settingswith dozens

of them. Their systems are bolsteredwith complex IT infras-

tructures manned by skilled operators, monitoring, analyz-

ing and reacting to the inbound data. Nevertheless, with
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the increasing pressure on these environments, the control

room demand to work efficiently and in a timely manner

also increases.

Operators in control rooms are now required to sift

through millions of data points, handle thousands of alerts,

make split-second decisions and manage more information

than ever before – all leading to cognitive strain and the

risk of information overload. Simultaneously, existing tech-

nology has evolved high-potent automated tools with poten-

tial to supplement or even supplant many decision-making

functions. These new technologies such asmachine learning

algorithms that predict system failures and pervasive com-

puting solutions that enable real timemonitoring over large

areas, etc., are changing the way operational control rooms

work.

This leaves one to wonder: are these technological

advancements going to lead to more autonomous decision-

making in the control room, and inevitably less need for

human operators? Some developments like Airbus push for

single pilot operations in the cockpit lead to the assumption:

”Humans need not apply”.1

However, has this progression of innovation also led

us to the point where we have to start asking whether or

not we are moving towards a future whereby decisions

within control rooms will be made entirely by automated

computer systems, at the potential loss of human input?

Fully autonomous decision-making offers tempting benefits

but it also poses significant ethical and practical challenges,

especially in safety-critical domains that have tradition-

ally required human intuition and situational awareness.

Recent empirical studies have shown that under reliable

automated support, joint task performance increases with

the degree of automation.5 In such cases, additional human

intervention may not only be redundant but could even

degrade the quality of outcomes by introducing delays or

errors. This evidence suggests that as automation becomes

more robust, the efficiency gains and riskmitigation it offers

could render traditional human oversight less beneficial

for routine tasks. At one end, the complexity of the control

room tasks and instant responsive actions suggest a need

for automation. The use of autonomous systems may be

able to mitigate human error, produce greater operational
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efficiencies and a quicker response during crises.6,7 How-

ever, full autonomy comes with new dangers: mode confu-

sion, degradation of operator skills, and separation from the

experience of critical situational awareness. The future of

the control room therefore must balance between human

decision making and automated insights.4,8–10

The key question this paper addresses is whether fully

autonomous decisions in control rooms are, or should be,

inevitable or if systems can be designed so that human

operators remain actively involved in the decision-making

loop? Through review of control room technological trends,

operator independence attitudes and models of human-

computer collaboration, this paper argues that such a bal-

ance may be the best solution available. This style of opera-

tion could enable the control rooms to utilize the speed and

reliability offered by autonomous systems while still pro-

tecting what is unique about human decision-makers, espe-

cially in high-isolation situations that require agility and

tact. In the first few chapter this paper deals with the chang-

ing role of control rooms and requirements which follows

automation. This paperwill then examine the state of auton-

omy in control roomwork, factors impacting operators’ per-

ceptions of tech and psychology, and the barriers to automa-

tion. Drawing from experiences in different domains, it

will suggest ways to integrate automation while preserving

human oversight. Finally this paper will end with a discus-

sion of the potential impact on future design of control room

systems.

2 Methodology

This paper applied a structured literature review to sys-

tematically map out the changing role of automation in

control rooms and its implications for human supervi-

sion, with the aim of identifying, analyzing and syn-

thesizing relevant scholarly work, maximizing the min-

imization of bias and reproducibility. The review com-

menced with a systematic search using Google Scholar,

which was selected for its broad coverage of inter-

disciplinary research. Search terms included “control

room automation,” “human-in-the-loop decision-making,”

“safety-critical systems,” “autonomous control rooms” and

“operator attitudes toward automation”. Boolean operators

like AND and OR narrowed the search results, for example,

by linking “control room” with “automation bias” or “legal

accountability”. The first set of queries returned more than

1,200 publications, which were sequentially filtered for rel-

evance to the research aims.

The search results were then screened using pre-

specified inclusion and exclusion criteria. The analysis was

centered on peer-reviewed articles, conference proceedings

and book chapters published from the years 2000 onward

through October 2024, which covered technical, human-

factor or ethical aspects of automation in safety-critical

contexts (e.g., aviation, energy grids, emergency response).

Conversely, data acquired from non-peer-reviewed sources

(blogs and white papers); publications irrelevant to control

room operation and automation debates; non-English texts;

and duplicate studies were excluded from review. This was

to guarantee that only thematically relevant and method-

ologically sound works informed the analysis.

The selection happened in three stages. First, title and

abstract screening rejected obviously irrelevant sources like

papers that deal with fields that are unrelated to control

room operations. This lead to 120 documents whose full

text was screened for compliance with inclusion criteria.

Next, through snowball sampling approaches, the reference

lists of seminal works (e.g. Endsley 9 and Sheridan 11) were

explored to identify further relevant studies. This multi-

stage process resulted in a total of 85 publications, never-

theless covering a wide range of domains (e.g., aviation,

industrial control systems) and perspectives (e.g., technical,

psychological).

Three major strategies formed the analytical frame-

work. We performed thematic synthesis to find common

themes (for example deskilling, trust in automation, ethical

challenges) and to cluster them into meaningful domains.

Finally, a review of the identified literaturemapped against,

and revealed areas where not much has been covered,

specifically, the potential long-term cognitive implications

of reduced manual control.

Despite its methodical rigor, this review was not with-

out its limitations. Relying on Google Scholar as the princi-

pal database may omit some specialized repositories, and

limiting the search to English-language publications could

potentially miss crucial studies and innovations in certain

regions.

3 The evolving role of control

rooms and it’s increasing

complexity

Control rooms have seen a dramatic evolution over the

last few decades. As the systems, they manage, have grown

larger and more complex, so too has the cognitive burden

on human operators.12–14

Historically, control room operators have been a bridge

between complex physical systems and high-level decision-

makers who relied on them. They had to monitor hundreds
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of metrics, analyze trends and data and then take action to

keep the system running smoothly and safely. Yet, electronic

control systems, ubiquitous computing and a multitude of

data sources have profoundly broadened the horizon – and

particularly expanded the scale of what a control room

operation looks like.

As one source points out, ”The subsequent twin effects

of increasing geographic cover, and economies of scale, has

raised the stakes for getting control rooms right the first

time”.15 Control rooms now monitor an interconnected net-

works stretching across country or even continent, facing

a dramatically higher volume and velocity of information

flowing in to them – while this is a small nugget of informa-

tion among many, and combined with pressure to respond

quickly when something new arises, this creates quite the

cognitive burden on human operators.

Control and command rooms are key in energy man-

agement, emergency response, and transportation as places

of real-time decision-making and monitoring/management

of complex systems. Control rooms serve as the connec-

tive tissue of critical infrastructure, requiring operators to

constantly evaluate information, react to alarms, and make

consequential decisions that affect safety or operational effi-

ciency. The job of a control room today is changing fast

– driven by technology, but also emerging demands from

a rising population and increased network complexity.16,17

Control rooms, as it has traditionally been config-

ured, are built around a multi-screen workstation, where

operators work with mouse and keyboard to control and

interact with processes through established user inter-

faces.12,18,19 This approach focuses on the usability andwork-

flow required by operators with a design that puts humans

at the center of decision-making, where all key decisions are

made by operators. This model has kept operators engaged

for decades, being able to use their expertise in novel situa-

tions and provide an element of flexibility needed in uncer-

tain conditions. It is also viewed as an advantage in deal-

ing with complex, ambiguous and unanticipated scenarios

where technological solutions may not suffice.

As the number of trouble-potential situations rises, so

does the reliance on a human-in-the-loop approach for con-

trol room operators; but the limitations of this approach

are becoming evident. As the number of variables to be

considered by operators increases – especially in environ-

ments where immediate and multisystem coordination is

needed, such as in military or public safety settings – con-

trol rooms that depend on human oversight may not scale

properly. That is where autonomous machines taking over

could outperform human operators – faster, more consis-

tent, and with greater computational power. Over the years,

control rooms have evolved from basic monitoring stations

to active, information-rich spaces where operators perform

more tasks, analyze live data and process a larger volume of

alerts. There are many reasons for this growing complexity:

Control rooms are now interfaced with multiple data

sources, ranging from environmental sensors to connected

subsystems. This immense amount of data needs constant

filtering, prioritizing and interpretation.20–23

Control room operations have become broader in geo-

graphic range and scale, with standalone facilities responsi-

ble for distributed infrastructure and networks.17,24–27

With the urbanisation and expansion of critical infras-

tructure, control rooms are being confronted with a grow-

ing number of incidents. With more events, the require-

ment for faster decision-making can try operators’ mental

acuity and concentration. All this means that control room

operators are experiencing greater cognitive loads than

they have ever faced before. In an environment where the

consequences of inaction or prolonged inactivity could be

catastrophic, human error is never far from the surface and

always worse under such pressure. Unsurprisingly, over-

stressed human operators have been shown to be less accu-

rate in processing information, with consequent degrada-

tion of situational awareness and decision making quality.

With an ever-increasing number of responsibilities and

cognitive loads placed on control room operators, manual

control becomes increasingly difficult to sustain for both

efficiency and accuracy. Research suggests that as task com-

plexity increases, operators can be overwhelmed and may

respond too late or make mistakes, resulting in decreased

situational awareness.34

High-stakes environments like these highlight the way

that many issues necessitate automated or semi-automated

technological solutions to help operate some functions

themselves, or at least a reduced mental load for the

operator.

The burgeoning complexity has resulted in greater

interest in automation and autonomous systems as a way

to lessen the load. Autonomous systems might be able to

help operators by filtering information, flagging important

alerts, or even autonomously making certain simple deci-

sions, freeing human operator efforts for more complex

or less-well-defined work.4,9,35 With automation, that may

allow for real-time response in situations, where a human

simply cannot do as much once the situation escalates past

a certain level of stress. Now, given this transition, it also

raises the question of the balance of control and the extent

to which human intuition and expertise are important in

safety-critical environments.
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4 Decision-making in safety-critical

environments

The process of making decisions in control rooms is a com-

plicated task that requires real-time data evaluation, situa-

tional awareness and critical thought, often under time con-

straints. Especially in safety-critical scenarios (e.g., energy

grids, emergency response traffic management), these deci-

sions are rightfully linked with public safety and oper-

ational integrity. This chapter describes decision-making

– what it is, how it works in control rooms, and why it may

change with new automation.

Decision-making in the control room is seldom that

simple. However, operators have many competing interests

to juggle like decisions under timepressure, uncertainty and

ambiguity, or coordinating with multiple actors:

– Decisions evolve within a high-stakes, time-critical con-

text; demanding innate urgency and complexity. When

multiple, interconnected systems are involved – there

are many potential data sources; and the potential for

your actions to cascade through other systems – the

complexity manifold multiplies.

– Uncertainty andAmbiguity: Control room environment

is complex and has multiple variables, and incomplete

or uncertain information.

– Multiple Actors: Decision making in control rooms is

not an individual process; it typically involves one or

more operators, and sometimes between organizations

(e.g. coordination betweenfire departments and energy

providers). Transitioning into this collaborative space

involves both communicating across roles and depart-

ments as well as aligning on priorities.

– Data-Driven Grounding: Operators take long care in

basing decisions on data from monitoring systems,

models, and simulations. The decision foundation con-

tains real-time data as well as predictive models suf-

ficiently accurate that protocols or rules can mediate

action when the conditions of specific scenarios have

been met.

Such characteristics highlight that control room decisions

are evolving and influenced by multiple interdependent

variables, which make them unique (compared to routine,

low-stakes decision-making scenarios) as these belong to

high-intensity situations.36,37

In safety-critical areas, decisions can be classified into

different types depending on what type of decision it is and

the degree of responsibility. Some possible classifications

are:

– Strategic and Tactical Decisions: Strategic decisions are

those that are long-range in nature like policy deci-

sions, whereas tactical decisions are more short-term

or operational. In a control room situation, for instance,

tactical decisions are made on the spot by an operator

to react and adapt to evolving situations that occur in

real time, while strategic decisions take place at higher

levels.38,39

– Routine Decisions vs Non-Routine Decisions: Routine

decisions are those which either all of us make regu-

larly without straying too far from standard protocols

and procedures, whereas non-routine operations are

more creative and innovative in nature and require

consideration with unique context in mind.37,40

– Roles of Responsibility and Accountability: Decision

making in control rooms comes with accountabil-

ity. While operators make the decision and therefore

own their decisions, responsibility for that action may

be held at supervisory or organizational levels. For

example, an operator may own a particular incident

but ownership of the effect on the organization may

not be at their level. Such a spread of responsibil-

ity requires clarity on roles and decision-making in

hierarchies.41

By the integration of automation, this situation is compli-

cated by accountability issues where some decisions are

taken independently. When systems work independently or

even automatically, it’s essential to establish who is respon-

sible when an error occurs, or worst will happen. The speed

of technological growth outpacing legal frameworks, along

with the question about who is legally accountable for deci-

sions made autonomously – that being the technology or

human user(s), also raises ethical and operational dilem-

mas.42–44

Decision-making is profoundly influenced by several

organizational factors, like who has an expertise and power

to make what access control decision. In cases where quick

responses are essential, clearly defined roles and escalation

processes will make it a lot easier to decide who drives the

bus.

Guidance on procedures (i.e. standard operating pro-

cedures or SOPs) can provide a scaffolding for decision-

making by describing trajectories of steps and best prac-

tices taken in response to common scenarios. Many of these

guidelines are especially important in safety-critical situa-

tions where escalating events can be disruptive and even

dangerous.45,46

By automating data processing, scenario analysis and

recommendation generation, the decision-making process
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can also be improved. But as we approach a future of

automating decisions, it will impair effective automation in

situations that require more subtle judgement which can

adapt to the situation at hand.47–49

Automation can further alleviate cognitive load on the

operators as well. Automated systems allow operators to

concentrate on higher-level, knowledge-based behavior 50

by taking over mundane tasks and presenting only the

most pertinent information – increasing both efficiency

and accuracy in a high-stakes environment. However, for

automation to be viable the decision-making must be trans-

parent. To be able to trust these systems, the operators

should comprehend how these automated recommenda-

tions are produced. Openness is necessary so that operators

trust the outputs and understand how to read what came

out of the system.51–53

All in all, the need for greater control, an increased

workload and a rising volume of data in Control Room

environments really create situations which challenge even

people to manage every part of decision-making.

Automation plays an essential role by getting rid of the

unreliability associated with human decision-making, but

poses its own unique challenges and dangers when intro-

ducing AI into safety-critical parts of decision-making. One

of the big challenges to address is trust and accountabil-

ity. During critical situations, automated systems must be

trusted by the operators. It poses the risk of automation

bias, because there is a chance that operators will start

to rely on automated recommendations and not question

what outputs the system delivers (miss an error). However,

absence of trust may make people reluctant to use auto-

mated support.

The other challenge relates to the decisions them-

selves. Not every decision made in control rooms can

be distilled to objective data. Most of the decisions are

subjective and machine does not have human intuition

required to replicate it as experience comes with time.

These subjective, non-reproducible nature of some deci-

sions suggests that automation can be helpful only in

cases where tasks are objective and should be performed

by humans if they involve complex decision-making or

judgement.

Legal and ethical considerations further complicate the

use of automation in decision-making. As mentioned, legal

frameworks often lag behind the rapid development of

autonomous systems, creating ambiguities in accountabil-

ity. When automated decisions lead to adverse outcomes,

determining liability can be complex, especially in scenarios

where operators only supervise automated processes rather

than making direct choices.

5 Human affinity for technology

and operator attitudes

While the technical feasibility of autonomous systems will

always be a key component in their eventual success, a large

factor surrounding automation use in control rooms is actu-

ally the attitudes and preferences of operators themselves.

The adoption of automated tools in control room environ-

ments is largely influenced by operators: their enthusiasm

for technology and autonomy as well as the trust they have

built with these tools. This chapter focuses on the human

behavioral and psychological characteristics of operators

interacting with technology; it investigates how operator

attitudes influence the acceptance and use of automation in

safety-critical environments.

5.1 Technology interaction preference

Affinity towards technology interaction (ATI) is defined as

disposition to interact with technology.54 Operators present

in control rooms typically have highATI as their job involves

constant interactionwith complex IT systems and data visu-

alization tools.20 But both research and anecdotal evidence

show affinity for various technologies is not the same across

domains, nor even influenced by particular ages, incomes

or explicit experience with that tech, but still part of some

operational need. As an example, operators on emergency

services and public utilities may be more technophilic than

their counterparts in maritime control, which can poten-

tially be explained through the structural congruence of

tasks within these fields alongside how environmental con-

ditions shape new technology interaction.20

High ATI operators tend to be more open to technologi-

cal solutions and may be less resistant in making the switch

to sophisticated decision-support systems and automation

tools. These operators are more open to autonomous capa-

bilities that automate clear tasks and enable them to focus

on higher-level strategic decision-making. Operators with

lower ATI, on the other hand, may hold a more skeptical

or resistant stance towards automation – especially when

it changes existing workflows significantly or requires sub-

stantial behavioral change. Insights into such diversity will

help in the design of automation that meets the needs of

varying human user types within control rooms.55,56

5.2 Need for independence and authority

Equally, the longing for independence and command is a

paramount reason behind operator behavior in favorable
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conditions regarding automation. Decision-making: Con-

trol room operators work in high-stakes environments

wheremaintaining a degree of controllability over decision-

making is desirable; theywant to be the one deciding actions

when the result influences public safety and operational

integrity. That autonomy matters to operators, for it allows

them incorporate their experience in lesser-defined scenar-

ios while making situationally aware and nuanced deci-

sions.9,57

But the growing complexity of control room tasks and

the demand for quick responses are drivingmany operators

to the realization that semi-autonomous or autonomous sys-

tems can help. Operators are often more comfortable dele-

gating routine or well-defined tasks to automation because

they want to hold authority over the higher-level, high-

impact decisions that can be very complex. This selec-

tive stance toward autonomy also demonstrates a tendency

toward collaborative automation, which perceives systems

as partners to aid or assist rather than replace human judg-

ment.58,59

Whether operators prefer to have control also affects

the levels of trust they put in automation. Operators are

more trusting and willing to use systems when these sys-

tem designs enhance, rather than supersede, their deci-

sions. On the opposite side, fully autonomous systems

that take control away from operators can be anxiety-

provoking and mistrusted; users perceive their knowl-

edge and judgment as devalued. This points to the neces-

sity of designing automation that works with operators

in a way that supports their perceived control instead of

undermining it.10

Trust is key to successful automation in control rooms

operators need to trust that automated systems will per-

form as expected, respond with accurate information and

assist them in achieving their objectives. In safety-critical

environments, trust is even more important as they need

to have confidence in the fact that systems will not fail nor

produce some unintended gray swans under high impact

scenarios.60–62

And this is where the transparency has a major role. A

good understanding of the automation process and how it

arrives at decisions builds operator trust, especially when

faced with novel situations. Systems that provide explain-

able recommendations and transparency in rationale for

automated actions will garner acceptance by operators. For

example, systems that act as a black box – producing an

answer but without the explanation for why its said answer

is correct – breeds distrust in an operator who might not

want to provide that guidance at a moment of critical

need.52,63

The transparency and interpretability of automation

systems would also reduce the likelihood of operators

engaging in automation bias (i.e., an over-trust on what

these systems output). This understanding helps operators

to critically assess the tool’s recommendations and provide

interference when appropriate, which in turn improves

safety and contributes to effective operation.

5.3 General attitudes towards automation
in specific domains

Depending on the nature of the work, environmental con-

siderations as well as operational constraints, automation is

often regarded in very different ways across control room

domains. Additionally, in some domains where rapid deci-

sion making has to be done under high pressure situa-

tion as in emergency response control rooms, the opera-

torsmight find automationwhich help filtering information

and prioritization of alerts more acceptable. The reason for

this acceptance is to remove mental burden and speed up

answers in time-sensitive situations.20

In contrast, operators in public utility control rooms

– including the folks controlling our energy grids – may

have a more ambivalent view about automation. They will

embrace autonomous tools for routinemonitoring and diag-

nostics of systems, but expect them to be prevented from

makingmassive changes without human supervision due to

widespread effects. Likewise, in the highly variable environ-

ment of maritime control rooms, operators tend to not use

automation due to uncertainty over capability and robust-

ness in unstructured environments.20,64

Such domain-specific attitudes further demonstrate

that automation design requires a construction method.

Automation systems must be designed for the types of func-

tionality that each control room domain truly needs, match-

ing automation with human oversight to conditions and

operator expectations.

5.4 Collaborated automation: assistance vs
control?

As a rule, operators prefer a middle-ground approach to

automation – systems that assist but do not take full control.

This collaborative automation model emphasizes human-

automated system partnership – combining strengths to

achieve effectiveness. In this model, automation takes care

of mundane, data-heavy tasks while operators maintain

control of complex, high-stakes decisions that demand judg-

ment and agility.4,11,65

Collaborative automation also enhances operator

engagement by allowing them to focus on tasks that align
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with their expertise and reduce the cognitive burden of

low-level monitoring. By presenting automation as a tool

that augments human capabilities rather than replaces

them, control rooms can foster an environment where

operators feel valued and empowered. This approach also

encourages operators to trust and rely on automation, as

they perceive it as an ally rather than a competitor.

6 Autonomy and human oversight

Automation can benefit the cognitive load, lead to quicker

responses and process repetitive tasks but should never

fully replace the human at centre stage in making deci-

sions, particularly for safety-critical ones. In this chapter

we will touch on the significance of balancing human

autonomy with oversight, dangers of becoming overly

reliant on automation, and possibilities to create a collab-

orative system that respects both technology and human

skill.

Especially in safety-critical environments such as con-

trol rooms, human decision-making adds vital flexibility

and adaptability into the mix, alongside ethical aspects that

may go beyond what an autonomous system can provide.

These trade-offs between humans and autonomous systems

may lead to synergy; for example, autonomous systems are

quick and efficient with large amounts of data – but human

operators bring contextual understanding, judgment, and

the ability to respond to novel situations, abilities that will

be vital for unpredictable high-stakes scenarios.

Finally, human oversight is a must: Automated systems

are often not equipped to handle unexpected scenarios

or variables that might be more nuanced and therefore

may not fall into predetermined parameters. Abstract – For

instance, an autonomous system in the control room for a

power network would be capable of identifying equipment

faults as well as trigger steps to mitigate them based on

known guidelines. However, it would likely not be able to

make those complex decisions when resource allocation

must be made during a regional outage in circumstances

of human interactions needed with real-time situational

awareness required to quantify trade-offs and prioritize

actions.

Additionally, the presence of human oversight enables

accountability in terms of ethics and law. Where the con-

sequences of poor judgment could have life or death rami-

fications, or widespread societal impact (think technologies

affectingmany people), there should be a human in the loop

to ensure that action is ethical and that we can point fin-

gers when things go wrong. While autonomous systems can

based on data make decisions without human intervention,

they cannot apply themoral and ethical reasoning that often

is required in a critical situations.66

Automation can improve efficiency, but excessive

dependence on autonomous systems comes with a number

of dangers. A risk here is automation bias where operators

are likely to be overly reliant on automated recommenda-

tion and won’t interrogate system outputs. This bias may

foster some level of acceptance in where the operators will

not critically engage with the output and accept whatever

comes from the system. Under a safety-critical domain, if

an incorrect recommendation cannot be challenged based

on automation bias, the results can be devastating.

A second risk, called deskilling, is gradually losing

important flap operator skills over time. With growing

automation in performing routine tasks, it may happen that

operators would not have an idea of how to perform man-

ual procedures and they might be compromised on their

ability to intervene during a failure. But in emergencies, if

an autonomous system faces a new problem, operators may

have to take over control using their manual skills as they

are weakened through underuse. In the long term, if human

skills are not retained, it may be challenging and costly to

shift back towards a more human-led approach instead of

an unsustainable stat that is solely dependent on automa-

tion – a situation commonly referred to as deskilling.67

Moreover, autonomous systems induce confusion in

modes if operators do not have a clear view of the current

status, mode and level of automation of the system. Such

confusion can potentially cause mistakes if operators mis-

assume the extent of control they have or are unaware of

a system operating autonomously. Further, if mode confu-

sion does occur, it may make the division of responsibility

between human-run and autonomous systems less clear

than in other scenarios – especially problematic in critical

moments when a quick response is needed.68

Due to the difficulties and dangers of achieving

complete autonomy a partially automated solution is

therefore an attractive compromise, often referred to as

“collaborative autonomy”. Automation plays the role of an

assistant to human operators, performing low-level data-

intensive tasks, but leaving decisions that would be con-

sidered critical in human hands (the augmenting path).

With collaborative autonomy, control rooms can reap the

efficiencies of automation while keeping human operators

– who provide crucial advantage to high-stakes environ-

ments – front and centre. Metnler et al. used the metaphor

of a shepherding dog within a flock to describe an ideal

human-AI collaborative system: the autonomous system

identifies opportunities and threats, provides warnings and

suggestions, but the human maintains the final say.4,69
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Human-centered autonomous systems are collabora-

tive, pursues the goal of supporting and enhancing human

capabilities instead of replacing them. As an example, a

collaborative system can observe various parameters of the

systemand identify potential problems, but itwould defer to

the human operator for making a decision. It also allows for

shared control between the system and the human operator,

while allowing human intervention at any point if complex

situations require subtle judgement.

From a practical standpoint, adaptive automation is

one manner in which the principle of collaborative auton-

omy can be realized, where the level of automation varies

dynamically as a function of situational requirements. The

system may take over more when in a non-safety critical,

repetitive setting and use less supervision for rudimen-

tary tasks. In high-stress or uncertain situations, though,

the system would ask the operator to intervene, effec-

tively handing off control back to the human operator for

context-sensitive decision-making. An adaptive model that

caters to the automation levels according to the type of

task and situation, ensuring human involvement where

needed.70,71

Finally, training and skill retention are vital to ensure

that operators remain proficient even as automation

increases. To mitigate the risks of deskilling, regular train-

ing programs should be implemented to keep operators

proficient in both manual and automated procedures.

Simulation-based training can help operators maintain crit-

ical skills by providing practice scenarios that require man-

ual intervention. Training programs should also address

the specific challenges of working with automated systems,

such as managing automation bias and responding to mode

confusion.

Balancing autonomy and human oversight also

requires careful consideration of ethical and legal

implications. In safety-critical environments, autonomous

systems must adhere to ethical principles that prioritize

humanwell-being and safety. This adherence is particularly

important in decisions involving potential risks to human

life, where ethical reasoning is essential for making choices

that align with societal values.66

Regulatory frameworks and legal oversight are also

crucial to ensure that autonomous systems are designed and

deployed responsibly. For this regulations like EU 2024/1689

and national laws must be carefully considered.72,73

Legally, accountability in automated decision-making

must be clearly defined. When control room systems oper-

ate autonomously, it can be difficult to assign responsibil-

ity in cases of error or failure. Legal frameworks often

lag behind technological advancements, which may leave

gaps in accountability. To address these issues, organiza-

tions may need to establish policies that define responsi-

bility for autonomous actions, clarify when operators are

expected to intervene, and specify protocols for monitoring

autonomous systems to ensure compliance with ethical and

regulatory standards.

7 Practical implications

Although the particular incorporation of automation into

control rooms might pose a challenge distinctive to the

individual situation, comparable issues are present in any

field where coordination between human operators and

autonomous systems is essential.

This chapter examines two case studies – aircraft cock-

pits and industrial control rooms – that illustrate the prac-

tical considerations of managing pilots and automation

in small-scale and large-scale aeronautical socio-technical

systems.

The differences we see here highlight the diversity of

what is needed/expected – and challenges for automation

to handle/control room – which in turn provide valuable

lessons for determining best practices on where autonomy

ends and human staff should take over.

7.1 Cockpits of aircrafts – a miniature
control room

By definition, a “cockpit”, can be seen as a control room

– and therefore an aircraft cockpit might possibly be the

most extreme case of control room with highly specialized

tasks in very limited space. Pilots in this environment oper-

ate adjacent to their automated systems, with little physical

separation from the flight controls that command complex

and safety-critical flight operations. Cockpit automation,

including autopilot systems and automated flight manage-

ment systems (FMS), has improved significantly over the last

several decades providing efficient and secure handling of

routine activities. On the other hand, this huge development

has posed a unique set of challenges around human over-

sight, situational awareness and trust in these automated

systems.

Automation is more prevalent in a modern cockpit for

routine tasks that have less significance while this brings

strategic decision-making into focus by the pilots. Current

autopilot systems can control altitude, speed and heading

largelywithout input from the pilot, while the FMS can auto-

matically determine fuel requirements, routes and ETA. By

alleviating some of the cognitive stress of standard flights,

these systems let pilots concentrate onmonitoring howwell
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the aircraft is performing and addressing irregularities. Yet,

as we have become more automated in our procedures

this has led to unintended consequences (e.g. ”Automation

Complacency” where pilots are so reliant on the automation

they lose situational awareness).74–76

As the 2009 crash of Air France Flight 447 illustrated,

there can be dangers from excessive dependence on cockpit

automation; after erroneous airspeed readings caused the

autopilot to turn off in this case, the pilots lost control of

their aircraft and crashed. For example, in this case the

abrupt transition became a phrasing for poor pilot training

and lack of situational awareness. Many lives were lost that

day, as the pilots were not ready to take control under those

conditions. The lesson: in uncertain environments like those

faced by cockpit crews, where situations can rapidly go

from bad to worse, automation must never be allowed to

overshadow human intervention.77,78

Another example for overshadowing the human

operator with automated operations is the Crash of

Lion-Air Flight 610 and Ethiopian-Airlines Flight 302 in

these cases the automated MCAS system encountered

an unexpected state and even though the pilots tried to

override the system they could not gain control quick

enough.79

In response to these problems, the aviation industry

has implemented some best practices – including improved

pilot training and simulation onmanual control proficiency

and automation awareness. Current training emphasizes

the need for automation awareness, practice in responding

to abrupt changes in balance control modes, and recogni-

tion of states where pilots may be required to take man-

ual control. Cockpit system design also continues trends of

increased transparency and intuitive displays to enhance

pilots’ situational awareness by providing information on

the level of automation currently in use, its status, and

potential threats.7,80

Current trends in aircraft control aim to reduce the

workload of pilots to the point where it may be feasible

to operate an aircraft with a single pilot. Airbus’ push

for single-pilot operations underscores the extent to which

automation has already assumed a dominant role in aircraft

control systems.81–83

7.2 Industrial control rooms – large-scale
automation

Unlike the small, extremely focused cockpit environment,

industrial control rooms are large-scale, often complex envi-

ronments where operators monitor extensive interrelated

systems across whole entities like power plants, oil refiner-

ies and manufacturing facilities. It’s common that such

control rooms have many monitors, a lot of data input

and lots of controls, allowing operators to manage pro-

cesses hundreds or thousands of miles away with ter-

abytes (if not more) of real-time data. Industrial con-

trol rooms are fundamental in handling these large-

scale operations, usually taking care of routine monitor-

ing, fault detection and process adjustments through a

utomation.84

In an industrial control room, automation is used exten-

sively to facilitate the handling of everydaywork and ensure

stable operation. An example would be power generation

plants where automation systems monitor the electricity

requirements, balance the load and identify faults. Such

automated processes free up operators for high-level super-

vision, instead of being tied to basic system parameters.

While this automation provides a lot of benefits, it also

poses some challenges in the case which are unexpected.

If automated systems encounter scenarios they cannot han-

dle, operators must be able to take over easily – that’s not

easy to do if they’ve been away frommanual control for long

periods of time.6,85

An iconic example of the perils of mass automation

in industrial control rooms is the explosion at the Texas

City Refinery in 2005. Subsequent investigations into the

incident found that it was exacerbated by the failure of

automated systems to warn operators about unsafe con-

ditions in the facility, leading to a catastrophic failure

with multiple fatalities and enormous environmental dam-

age. This incident also demonstrated the dangers of over-

dependence on automated systems that are not augmented

by sufficient human perception: The operators did not

have a good enough picture of the situation to manage a

growing threat appropriately. Following the incident there

were widespread demands for better training and bet-

ter alarms, as well as stricter safety protocols.86,87 In the

aftermath of events similar to Texas City, a focus within

the industry has been on automation and human con-

trol room interaction design in industrial environments.

Such initiatives include an overhaul of alarm models that

ensures the avoidance of overload while filtering out non-

critical alerts so that operators can get a glimpse of real

threats. Training programs have adjusted to encourage

the need for manual skills and knowledge on how to

read the alerts generated by automated systems and what

action to take when they appear. Furthermore, there is

exploration into adaptive automation strategies where the

control transfers dynamically between human operators

and systems based on the operational context to enhance

human-system collaboration while exploiting strengths of

automation.
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8 Are autonomous decisions

inevitable?

With a positive development in automation technology,

and mounting pressures on control rooms, many wonder:

Will autonomous decision-making become unavoidable

in safety-critical environments? Across various industries,

control rooms are increasingly implementing advanced lev-

els of automated systems that can integrate numerous com-

plex data processing and fault detection as well as some

decision-making capabilities. However, although the trend

seems inevitable that autonomous systems will take over

more and more standard processes, there are fundamen-

tal legal, ethical and operational arguments for believing

that human intervention will still be necessary in many

cases.88

8.1 The argument for full autonomy

Over the long term, human operators in control rooms are

more likely to transition from active decision making to

watching and overseeing autonomous systems. Many of the

tasks we carry out regularly, especially those that contain

repetitive watching and analysis or predictable decision

points, may be automated. Autonomous systems can ana-

lyze big data as it emerges, perform pattern recognition

and deploy pre-defined neural networks tomake immediate

decisions in relatively simple situations. This transition is

especially valuable in areas with high cognitive load and

multi-tasking which can lead to decreased human perfor-

mance, as well as higher error rates.4,89

For many of the more mundane activities and tasks in

various sectors such as manufacturing as well as energy

management, automation has already handled these func-

tions with human operators now taking on a supervi-

sory role. Automation unburdens operators from repetitive

tasks and allows him/her to focus on higher-level duties

like – analysis of complex situations, handling unforeseen

events, and making strategic decisions. Essentially, human

operators become automationmanagers,managing the pro-

cesses to ensure they comply with safety and objectives.

This shift to being more of a monitor is most useful

in contexts where you can draw on routine work, and the

consequences of error can be reduced through preplanned

modalities. With adaptive automation getting stronger, sys-

tems will also get better in knowing when the need for

human intervention arises, thereby lessening the depen-

dence on regular human involvement in routine tasks. The

monitoring role does not mean we can abandon human

interaction entirely, it means that we capture the nature of

human engagement by oversight and intervention rather

than control.

While legal, ethical, and operational challenges may

constrain the extent of full autonomy in control room

decision-making, a growing body of research provides com-

pelling arguments for increasing reliance on automation.

First, empirical studies have demonstrated that higher

degrees of automation significantly enhance routine per-

formance and reduce operator workload.5,90 Under reliable

support, joint task performance increaseswith the degree of

automation, as autonomous systems efficiently handle data

filtering andwell-defined tasks, minimizing human error in

safety-sensitive environments.

Complementing these efficiency gains is the evolving

nature of human–automation interaction. As automated

systems consistently deliver reliable outcomes, operators

tend to develop increased trust and dependency on them.

This phenomenon, often referred to as ”automation bias”,

manifests as reducedmanual oversight – evenwhenhuman

supervision remains a necessary safeguard.91,92 Notably,

when automation reaches a high level of reliability and per-

formance, further human intervention may actually lower

the overall quality of outcomes. In such cases, operators’

attempts to override or second-guess the automation can

introduce delays, errors, or disruptions that ultimately

degrade system performance.

Moreover, the risk mitigation capabilities of

autonomous systems further bolster the case for increased

automation. In high-stakes contexts – where human

error can have catastrophic consequences – autonomous

decision-making ensures consistent adherence to optimal

protocols. Although explainable AI approaches aim to

maintain transparency and allow for human intervention

whenneeded, the overall evidence suggests thatminimizing

unnecessary human interference in routine processes

substantially reduces the risk of error 5 (Figure 1).

The traditional Fitts List 93,94 delineates human

strengths in sensory functions, perceptual abilities,

flexibility, judgment, and reasoning. However, recent

Figure 1: Fitts list consists of tasks where the human is best at (on the

left) and where the machine is best at (on the right).93
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advances in artificial intelligence necessitate a critical

reappraisal of this framework. Modern technologies not

only rival but, in many cases, exceed human performance

in these domains. Lets look at the different claims:

Sensory Functions: Historically, humans have been

celebrated for their acute sensory thresholds. Yet, mod-

ern sensors - such as LiDAR and hyperspectral imaging

– detect phenomena far beyond human capabilities. These

machine “eyes” not only see more, but they react faster

– processing images in milliseconds, which is impossible

for human vision’s 200 ms response limit. In image recogni-

tion benchmarks, AI vision has surpassed humans: by 2015,

deep neural networks achieved lower error rates in object

recognition than people, marking the first time machines

beat humans at classifying diverse images.95 In fields like

medical diagnostics, computer systems analyze MRI and CT

scans to identify anomalies that may elude human radiolo-

gists.96–98

Perceptual Abilities: Humans excel at generalizing

sensory input under varying conditions, a strength once

thought unique. Today, deep learning networks have trans-

formed pattern recognition. Advanced facial recognition

systems operate with over 99 % accuracy across diverse

scenarios, and computer vision applications in quality con-

trol and autonomous navigation demonstrate a level of

consistency and scalability that challenges human percep-

tual reliability. On the ImageNet challenge (a broad test

of visual object recognition), AI surpassed human perfor-

mance: a 2015 deep network by He et al. achieved only 4.5 %

error, slightly better than the 5 % error of expert humans.95

In fields like medical imaging, this pattern-recognition

prowess has tangible impact. A deep learning system at

Stanford (CheXNeXt) was able to screen chest X-rays for 14

types of disease in seconds, performing as well as radiolo-

gists on most conditions – and even outperforming human

experts on one pathology.99

Flexibility: While human adaptability in novel situa-

tions has long been admired, machines have made signifi-

cant strides in this area. Reinforcement learning algorithms

– exemplified by systems like AlphaZero – develop strate-

gies through self-play, often surpassing human ingenuity

in complex games.100 Humans typically specialize (the best

chess grandmaster isn’t an elite Go player), but AlphaZero

showed an algorithm could flexibly apply itself to multiple

complex domains and achieve superhuman skill in each.

Judgment and Selective Recall: Human judgment has

traditionally relied on the selective recall of experiential

knowledge. Howevermachines have shown times and times

again that they are more and more able to learn from

a large troth of knowledge. Recent advancements in LLM

technology shown that selective recall is a discipline where

machines have eclipsed the human.Making judgement calls

based on the available information has also been shown

to be above human performance. One study showed an AI

outperforming the traditional Breast Cancer Risk Assess-

ment Tool in predictingwhichwomenwould develop breast

cancer within 5 years.101

Reasoning: The human capacity for inductive rea-

soning has been a cornerstone of scientific inquiry. Yet,

machines have begun to master both inductive and abduc-

tive reasoning. Systems such as AlphaFold accelerate sci-

entific discovery by predicting protein structures, while

large language models generate creative hypotheses and

solutions across a range of applications – from experiment

design to complex code generation. In one demonstration,

GPT-4 scored around the top 10 % of test-takers on a sim-

ulated bar exam, which includes complex legal reasoning

and essay writing, exceeding the performance of most law

graduates.102

This transition is also reflected in the changing role

of human operators. As automation takes over more rou-

tine functions, human operators are increasingly redefined

as supervisors and strategic decision-makers. This evolu-

tion preserves critical human expertise for non-routine

and complex scenarios, ensuring that human judgment

remains central when it matters most.103 Finally, technolog-

ical progress and economic incentives drive the irreversible

adoption of higher automation. Once autonomous systems

exceed human capabilities in specific domains, cost sav-

ings and reduced liability risks further accelerate their inte-

gration.5 Additionally, studies in human–robot interaction

indicate growing social acceptance of autonomous agents,

suggesting that both operators and the public are increas-

ingly comfortable with systems that assume greater control

over routine tasks.104 Collectively, these factors converge to

argue that increased automation in control rooms is not

only technologically feasible but also strategically advanta-

geous. The combined benefits of enhanced efficiency, effec-

tive riskmitigation, and a redefined supervisory human role

make the shift toward more autonomous decision-making

a natural and necessary evolution in managing complex,

safety-critical systems.

8.2 Legal and ethical limitations to complete
autonomy

While the advantages of automation are evident, there

will be deep-rooted legal and ethical safeguards against

machines taking over all aspects of control room decision-

making. Safey-critical environments, e.g., healthcare or avi-

ation, often focus on ethically and socially consequential
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decisions. By these terms, the stakes are astronomical – a

bad call could mean someone dies, an ecosystem remains

irrevocably fractured, or economies collapse. These types

of situations call for moral reasoning and ethical judgments

that autonomous systems, which operate blindly according

to algorithms or pre-set directions, cannot provide.3,105,106

Legally, it is hard to find fault when an autonomous

system goes awry.

Constraints on the ability of machines to operate inde-

pendently are also established by legal frameworks, espe-

cially when decisions influence human lives. Liability is

a big deal when it comes to this. Determining liability

becomes complicated when people are harmed due to a

choice made by an autonomous system. As legal account-

ability currently falls mostly on human operators or orga-

nizations, the decision chain from machine to human must

remain intact in order for humans to take responsibility for

outcomes. In high-stakes settings, the legal and ethical issues

with fully autonomous systems cannot be overcomewithout

clear accountability.3,4,106–109

In addition, in complex real-world situations, unex-

pected edge cases or novel scenarios that the programming

has not been previously exposed tomay create problems for

autonomous systems.

In addition, ethical perspectives highlight the need for

human oversight in areas where compassion, empathy, or

value-based decisions are needed – things machines simply

cannot do. Although an autonomous system might perform

well when rules and the environment are highly structured,

in complex moral dilemmas or where values conflict the

autonomous system is unlikely to do a good job as it lacks

context. So, for example, in a control room for emergency

response, the decision to allocate scarce resources in rela-

tion to an ongoing crisis cannot be purely evidence based

because that will inevitably involve balancing competing

priorities and trade-offs which embody social values and

ethical principles. Those types of decisions are human, and

should never be fully delegated to a machine.110,111

While autonomous systems are taking over most of the

routine tasks, human operators will always be imposing

their ways in high-stakes decision-making scenarios, where

flexibility, critical thinking, and adaptive choices should be

exercised. The nature of autonomous systems, which oper-

ate with fixed constraints and set algorithms, means that

they struggle to cope in situations where the right action or

sequence of actions is not sufficiently pre-established, and

they may fail to identify the factors driving a scenario.

By contrast, human operators have the cognitive flex-

ibility to evaluate unusual situations, interpret incomplete

data, and rapidly adapt in ways that machines can’t. When

a high-pressure situation arises, or system failure occurs,

sometimes it requires human voices to override the auto-

mated impulse reaction and instead construct a solution

through thinking outside of the box, or action across mul-

tiple systems and organizations. Our ability to adapt is espe-

cially important in any kind of control room scenario where

events can be unpredictable and responses cannot always

be mapped out ahead of time.Human operators will be

involved primarily in exception handling: that is, where the

automation exceeds its functional limits or happens upon

an unanticipated situation. And, they may even serve as

a crucial successful hand-in-hand validator for validating

organization-wide critical machine-made choices concern-

ing ethical, legal, and operational aspects. Human operators

are still there for a safety net, making sure that automation

does not operate in a vacuum but under human judgment

and control as they maintain the final authority in critical

situations.88,112,113

However, with control rooms also being increasingly

furnished with autonomous systems, there are significant

implications for design and training. Firstly, control rooms

need to be a hybrid between the human operator and

autonomous systems, yet still have humans engaging in

the loop and capable of intervening when necessary. These

systems call for interfaces that convey the state, intent, and

constraints of the system in a clearmanner so that operators

know what is going on and when they need to intervene

as automation reaches its limits. Providing visual or sound

indication if the user is going to interfere or need an opera-

tion withmore detail. This will not onlymake your operator

responsible but also keep him on a lookout when there are

automated actions being executed.

Thirdly, training programs need to adjust in order that

operators will be trained for their new tasks. Operators will

require training, not for manual interventions but for mon-

itoring skills and critical assessment of automated outputs

with an easy intervention method when there is a need to

handle exceptions. Operators can benefit from simulation-

based training that gives them practice by experiencing

many scenarios in which they will have to deal with the

automatic-to-manual control handoff; In addition, it helps

reduce deskilling among operators because they remain

familiar with the underlying systems while taking on a

supervisory role.6,65

Human factor smart systems will also include

autonomous decision-making, and therefore regulatory

frameworks and formalized ethical guidelines will

have to adapt to the pace of technological change. In

addition, explicit and concrete policies on accountability,

transparency and such triggers for intervention are



J. Pöhler et al.: Are autonomous decision inevitable? — 21

required to avoid that automation systematically goes

beyond what we have decided as a society or through our

law. Organizations need to develop clear frameworks of

when operators need to intervene, as well as the roles of

humans and machines in shared control situations.9,59

Ultimately, yes autonomous systems will help augment

many aspects of control room operations in the future

but humans are still key. Because accountability, ethi-

cal judgment, and situationally adaptive decision-making

are important in high-stakes environments, operators will

always be the final backstop – always holding authority

and an ability to override automated decisions with human

expertise and judgment.

9 Conclusions

While much of the discussion will focus on the oppor-

tunities, incorporating these technologies will also raise

challenges as well. Automation has already been shown

to increase efficiency and decrease cognitive burden for

humans in environments where data needs to be processed

rapidly, and decisions made every few seconds. Automation

is now crucial formanaging complicated frameworks inside

industrial control rooms to aircraft cockpits, and keeping

them from going haywire. Given the increasingly complex

and demanding requirements of a modern control room,

the potential areas where automation could help – faster

responses, less errors, ability to handle repetitive tasks

– are significant. Across many industries, human agents

have already started taking on the role of a supervisor who

oversees and monitors an automated process with mini-

mal intervention. With this change in focus from verifiers

to overseers, people can concentrate on higher level tasks

related to oversight and strategywhile autonomous systems

deal with daily operations. So will this trend continue and

the human niche become smaller and smaller until the

machine controls everything? Maybe. The technical possi-

bility for a level of automation is there. Operators are open

to more automation and more technology in their work

environment. In some cases it seems that only the missing

legal framework stands in the way of full autonomous deci-

sions. However there are also compelling legal, ethical and

operational reasons why full autonomy is unlikely to hap-

pen soon. Even if they reach higher efficiency, autonomous

systems lack the moral reasoning and flexibility required

to confront challenging ethical problems and unknown sit-

uations. Finally, existing legal codes limit the amount of

jurisdiction that machines can have – especially in liability

and accountability-sensitive aspects.While control rooms of

the future may have all human or full autonomy, it could

be messy to assign accountability in case of failure or error

with little transparency built-in mechanisms.

For the near future, these legal hurdles seem to form

the control as a hybrid environment where automation

will take over control of routine aspects, but humans are

not likely to be removed from the loop completely, espe-

cially in safety-critical situations. This balanced partnership

harnesses the strengths of both machines and humans to

improve efficiency and resilience in complex systems.

Looking ahead, it will be crucial to monitor how reg-

ulatory frameworks evolve and how swiftly technology

advances. This next phase of automation will determine

the balance between human oversight and machine-driven

processes, ensuring accountability, ethical considerations,

and efficient operation. To summarise, future control rooms

are not a choice between man and machine, for now, but

rather a partnership bringing both strengths to the table.

In the long run, if the intelligence and capabilities of the

machine continues to develop at rapid speed, there may be

a time when we say: Humans need not apply.
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