DE GRUYTER

i-com 2025; 24(1): 9-25 a

Research Article

Jonas Pdhler*, Nadine Flegel, Tilo Mentler and Kristof Van Laerhoven*

Keeping the human in the loop: are autonomous

decisions inevitable?

https://doi.org/10.1515/icom-2024-0068
Received November 29, 2024; accepted March 5, 2025;
published online April 1, 2025

Abstract: Control rooms play a crucial role in monitor-
ing and managing safety-critical systems, such as power
grids, emergency response, and transportation networks.
As these systems become increasingly complex and gen-
erate more data, the role of human operators is evolv-
ing amid growing reliance on automation and autonomous
decision-making. This paper explores the balance between
leveraging automation for efficiency and preserving human
intuition and ethical judgment, particularly in high-stakes
scenarios. Through an analysis of control room trends,
operator attitudes, and models of human-computer collab-
oration, this paper highlights the benefits and challenges
of automation, including risks of deskilling, automation
bias, and accountability. The paper advocates for a hybrid
approach of collaborative autonomy, where humans and
systems work in partnership to ensure transparency, trust,
and adaptability.

Keywords: control rooms; automation; human-computer
collaboration; decision-making; safety-critical environ-
ments; autonomy

1 Introduction

Control rooms are the nerve centers that underpin critical
infrastructure and public safety, ranging from small-scale
cockpits for 1-2 operators to large-scale settings with dozens
of them. Their systems are bolstered with complex IT infras-
tructures manned by skilled operators, monitoring, analyz-
ing and reacting to the inbound data. Nevertheless, with
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the increasing pressure on these environments, the control
room demand to work efficiently and in a timely manner
also increases.

Operators in control rooms are now required to sift
through millions of data points, handle thousands of alerts,
make split-second decisions and manage more information
than ever before — all leading to cognitive strain and the
risk of information overload. Simultaneously, existing tech-
nology has evolved high-potent automated tools with poten-
tial to supplement or even supplant many decision-making
functions. These new technologies such as machine learning
algorithms that predict system failures and pervasive com-
puting solutions that enable real time monitoring over large
areas, etc., are changing the way operational control rooms
work.

This leaves one to wonder: are these technological
advancements going to lead to more autonomous decision-
making in the control room, and inevitably less need for
human operators? Some developments like Airbus push for
single pilot operations in the cockpit lead to the assumption:
*Humans need not apply”.!

However, has this progression of innovation also led
us to the point where we have to start asking whether or
not we are moving towards a future whereby decisions
within control rooms will be made entirely by automated
computer systems, at the potential loss of human input?
Fully autonomous decision-making offers tempting benefits
but it also poses significant ethical and practical challenges,
especially in safety-critical domains that have tradition-
ally required human intuition and situational awareness.
Recent empirical studies have shown that under reliable
automated support, joint task performance increases with
the degree of automation.® In such cases, additional human
intervention may not only be redundant but could even
degrade the quality of outcomes by introducing delays or
errors. This evidence suggests that as automation becomes
more robust, the efficiency gains and risk mitigation it offers
could render traditional human oversight less beneficial
for routine tasks. At one end, the complexity of the control
room tasks and instant responsive actions suggest a need
for automation. The use of autonomous systems may be
able to mitigate human error, produce greater operational
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efficiencies and a quicker response during crises.5’ How-
ever, full autonomy comes with new dangers: mode confu-
sion, degradation of operator skills, and separation from the
experience of critical situational awareness. The future of
the control room therefore must balance between human
decision making and automated insights.*8-10

The key question this paper addresses is whether fully
autonomous decisions in control rooms are, or should be,
inevitable or if systems can be designed so that human
operators remain actively involved in the decision-making
loop? Through review of control room technological trends,
operator independence attitudes and models of human-
computer collaboration, this paper argues that such a bal-
ance may be the best solution available. This style of opera-
tion could enable the control rooms to utilize the speed and
reliability offered by autonomous systems while still pro-
tecting what is unique about human decision-makers, espe-
cially in high-isolation situations that require agility and
tact. In the first few chapter this paper deals with the chang-
ing role of control rooms and requirements which follows
automation. This paper will then examine the state of auton-
omy in control room work, factors impacting operators’ per-
ceptions of tech and psychology, and the barriers to automa-
tion. Drawing from experiences in different domains, it
will suggest ways to integrate automation while preserving
human oversight. Finally this paper will end with a discus-
sion of the potential impact on future design of control room
systems.

2 Methodology

This paper applied a structured literature review to sys-
tematically map out the changing role of automation in
control rooms and its implications for human supervi-
sion, with the aim of identifying, analyzing and syn-
thesizing relevant scholarly work, maximizing the min-
imization of bias and reproducibility. The review com-
menced with a systematic search using Google Scholar,
which was selected for its broad coverage of inter-
disciplinary research. Search terms included “control
room automation,” “human-in-the-loop decision-making,”
“safety-critical systems,” “autonomous control rooms” and
“operator attitudes toward automation”. Boolean operators
like AND and OR narrowed the search results, for example,
by linking “control room” with “automation bias” or “legal
accountability”. The first set of queries returned more than
1,200 publications, which were sequentially filtered for rel-
evance to the research aims.

The search results were then screened using pre-
specified inclusion and exclusion criteria. The analysis was
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centered on peer-reviewed articles, conference proceedings
and book chapters published from the years 2000 onward
through October 2024, which covered technical, human-
factor or ethical aspects of automation in safety-critical
contexts (e.g., aviation, energy grids, emergency response).
Conversely, data acquired from non-peer-reviewed sources
(blogs and white papers); publications irrelevant to control
room operation and automation debates; non-English texts;
and duplicate studies were excluded from review. This was
to guarantee that only thematically relevant and method-
ologically sound works informed the analysis.

The selection happened in three stages. First, title and
abstract screening rejected obviously irrelevant sources like
papers that deal with fields that are unrelated to control
room operations. This lead to 120 documents whose full
text was screened for compliance with inclusion criteria.
Next, through snowball sampling approaches, the reference
lists of seminal works (e.g. Endsley ° and Sheridan ') were
explored to identify further relevant studies. This multi-
stage process resulted in a total of 85 publications, never-
theless covering a wide range of domains (e.g., aviation,
industrial control systems) and perspectives (e.g., technical,
psychological).

Three major strategies formed the analytical frame-
work. We performed thematic synthesis to find common
themes (for example deskilling, trust in automation, ethical
challenges) and to cluster them into meaningful domains.
Finally, a review of the identified literature mapped against,
and revealed areas where not much has been covered,
specifically, the potential long-term cognitive implications
of reduced manual control.

Despite its methodical rigor, this review was not with-
out its limitations. Relying on Google Scholar as the princi-
pal database may omit some specialized repositories, and
limiting the search to English-language publications could
potentially miss crucial studies and innovations in certain
regions.

3 The evolving role of control
rooms and it’s increasing
complexity

Control rooms have seen a dramatic evolution over the
last few decades. As the systems, they manage, have grown
larger and more complex, so too has the cognitive burden
on human operators.'?-14

Historically, control room operators have been a bridge
between complex physical systems and high-level decision-
makers who relied on them. They had to monitor hundreds
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of metrics, analyze trends and data and then take action to
keep the system running smoothly and safely. Yet, electronic
control systems, ubiquitous computing and a multitude of
data sources have profoundly broadened the horizon — and
particularly expanded the scale of what a control room
operation looks like.

As one source points out, ”The subsequent twin effects
of increasing geographic cover, and economies of scale, has
raised the stakes for getting control rooms right the first
time”.> Control rooms now monitor an interconnected net-
works stretching across country or even continent, facing
a dramatically higher volume and velocity of information
flowing in to them — while this is a small nugget of informa-
tion among many, and combined with pressure to respond
quickly when something new arises, this creates quite the
cognitive burden on human operators.

Control and command rooms are key in energy man-
agement, emergency response, and transportation as places
of real-time decision-making and monitoring/management
of complex systems. Control rooms serve as the connec-
tive tissue of critical infrastructure, requiring operators to
constantly evaluate information, react to alarms, and make
consequential decisions that affect safety or operational effi-
ciency. The job of a control room today is changing fast
— driven by technology, but also emerging demands from
a rising population and increased network complexity.'5!7

Control rooms, as it has traditionally been config-
ured, are built around a multi-screen workstation, where
operators work with mouse and keyboard to control and
interact with processes through established user inter-
faces.'>'®1% This approach focuses on the usability and work-
flow required by operators with a design that puts humans
at the center of decision-making, where all key decisions are
made by operators. This model has kept operators engaged
for decades, being able to use their expertise in novel situa-
tions and provide an element of flexibility needed in uncer-
tain conditions. It is also viewed as an advantage in deal-
ing with complex, ambiguous and unanticipated scenarios
where technological solutions may not suffice.

As the number of trouble-potential situations rises, so
does the reliance on a human-in-the-loop approach for con-
trol room operators; but the limitations of this approach
are becoming evident. As the number of variables to be
considered by operators increases — especially in environ-
ments where immediate and multisystem coordination is
needed, such as in military or public safety settings — con-
trol rooms that depend on human oversight may not scale
properly. That is where autonomous machines taking over
could outperform human operators — faster, more consis-
tent, and with greater computational power. Over the years,
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control rooms have evolved from basic monitoring stations
to active, information-rich spaces where operators perform
more tasks, analyze live data and process a larger volume of
alerts. There are many reasons for this growing complexity:

Control rooms are now interfaced with multiple data
sources, ranging from environmental sensors to connected
subsystems. This immense amount of data needs constant
filtering, prioritizing and interpretation.”0-%3

Control room operations have become broader in geo-
graphic range and scale, with standalone facilities responsi-
ble for distributed infrastructure and networks.!*-27

With the urbanisation and expansion of critical infras-
tructure, control rooms are being confronted with a grow-
ing number of incidents. With more events, the require-
ment for faster decision-making can try operators’ mental
acuity and concentration. All this means that control room
operators are experiencing greater cognitive loads than
they have ever faced before. In an environment where the
consequences of inaction or prolonged inactivity could be
catastrophic, human error is never far from the surface and
always worse under such pressure. Unsurprisingly, over-
stressed human operators have been shown to be less accu-
rate in processing information, with consequent degrada-
tion of situational awareness and decision making quality.

With an ever-increasing number of responsibilities and
cognitive loads placed on control room operators, manual
control becomes increasingly difficult to sustain for both
efficiency and accuracy. Research suggests that as task com-
plexity increases, operators can be overwhelmed and may
respond too late or make mistakes, resulting in decreased
situational awareness.**

High-stakes environments like these highlight the way
that many issues necessitate automated or semi-automated
technological solutions to help operate some functions
themselves, or at least a reduced mental load for the
operator.

The burgeoning complexity has resulted in greater
interest in automation and autonomous systems as a way
to lessen the load. Autonomous systems might be able to
help operators by filtering information, flagging important
alerts, or even autonomously making certain simple deci-
sions, freeing human operator efforts for more complex
or less-well-defined work.**% With automation, that may
allow for real-time response in situations, where a human
simply cannot do as much once the situation escalates past
a certain level of stress. Now, given this transition, it also
raises the question of the balance of control and the extent
to which human intuition and expertise are important in
safety-critical environments.
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4 Decision-making in safety-critical
environments

The process of making decisions in control rooms is a com-
plicated task that requires real-time data evaluation, situa-
tional awareness and critical thought, often under time con-
straints. Especially in safety-critical scenarios (e.g., energy
grids, emergency response traffic management), these deci-
sions are rightfully linked with public safety and oper-
ational integrity. This chapter describes decision-making

— what it is, how it works in control rooms, and why it may

change with new automation.

Decision-making in the control room is seldom that
simple. However, operators have many competing interests
tojuggle like decisions under time pressure, uncertainty and
ambiguity, or coordinating with multiple actors:

— Decisions evolve within a high-stakes, time-critical con-
text; demanding innate urgency and complexity. When
multiple, interconnected systems are involved — there
are many potential data sources; and the potential for
your actions to cascade through other systems — the
complexity manifold multiplies.

—  Uncertainty and Ambiguity: Control room environment
is complex and has multiple variables, and incomplete
or uncertain information.

— Multiple Actors: Decision making in control rooms is
not an individual process; it typically involves one or
more operators, and sometimes between organizations
(e.g. coordination between fire departments and energy
providers). Transitioning into this collaborative space
involves both communicating across roles and depart-
ments as well as aligning on priorities.

— Data-Driven Grounding: Operators take long care in
basing decisions on data from monitoring systems,
models, and simulations. The decision foundation con-
tains real-time data as well as predictive models suf-
ficiently accurate that protocols or rules can mediate
action when the conditions of specific scenarios have
been met.

Such characteristics highlight that control room decisions
are evolving and influenced by multiple interdependent
variables, which make them unique (compared to routine,
low-stakes decision-making scenarios) as these belong to
high-intensity situations.>%%’

In safety-critical areas, decisions can be classified into
different types depending on what type of decision it is and
the degree of responsibility. Some possible classifications
are:
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- Strategic and Tactical Decisions: Strategic decisions are
those that are long-range in nature like policy deci-
sions, whereas tactical decisions are more short-term
or operational. In a control room situation, for instance,
tactical decisions are made on the spot by an operator
to react and adapt to evolving situations that occur in
real time, while strategic decisions take place at higher
levels.®®39

— Routine Decisions vs Non-Routine Decisions: Routine
decisions are those which either all of us make regu-
larly without straying too far from standard protocols
and procedures, whereas non-routine operations are
more creative and innovative in nature and require
consideration with unique context in mind.?”4°

— Roles of Responsibility and Accountability: Decision
making in control rooms comes with accountabil-
ity. While operators make the decision and therefore
own their decisions, responsibility for that action may
be held at supervisory or organizational levels. For
example, an operator may own a particular incident
but ownership of the effect on the organization may
not be at their level. Such a spread of responsibil-
ity requires clarity on roles and decision-making in
hierarchies."

By the integration of automation, this situation is compli-
cated by accountability issues where some decisions are
taken independently. When systems work independently or
even automatically, it’s essential to establish who is respon-
sible when an error occurs, or worst will happen. The speed
of technological growth outpacing legal frameworks, along
with the question about who is legally accountable for deci-
sions made autonomously — that being the technology or
human user(s), also raises ethical and operational dilem-
mas_42—44

Decision-making is profoundly influenced by several
organizational factors, like who has an expertise and power
to make what access control decision. In cases where quick
responses are essential, clearly defined roles and escalation
processes will make it a lot easier to decide who drives the
bus.

Guidance on procedures (i.e. standard operating pro-
cedures or SOPs) can provide a scaffolding for decision-
making by describing trajectories of steps and best prac-
tices taken in response to common scenarios. Many of these
guidelines are especially important in safety-critical situa-
tions where escalating events can be disruptive and even
dangerous.*>46

By automating data processing, scenario analysis and
recommendation generation, the decision-making process



DE GRUYTER

can also be improved. But as we approach a future of
automating decisions, it will impair effective automation in
situations that require more subtle judgement which can
adapt to the situation at hand.*’-*°

Automation can further alleviate cognitive load on the
operators as well. Automated systems allow operators to
concentrate on higher-level, knowledge-based behavior
by taking over mundane tasks and presenting only the
most pertinent information - increasing both efficiency
and accuracy in a high-stakes environment. However, for
automation to be viable the decision-making must be trans-
parent. To be able to trust these systems, the operators
should comprehend how these automated recommenda-
tions are produced. Openness is necessary so that operators
trust the outputs and understand how to read what came
out of the system.’' 3

All in all, the need for greater control, an increased
workload and a rising volume of data in Control Room
environments really create situations which challenge even
people to manage every part of decision-making.

Automation plays an essential role by getting rid of the
unreliability associated with human decision-making, but
poses its own unique challenges and dangers when intro-
ducing Al into safety-critical parts of decision-making. One
of the big challenges to address is trust and accountabil-
ity. During critical situations, automated systems must be
trusted by the operators. It poses the risk of automation
bias, because there is a chance that operators will start
to rely on automated recommendations and not question
what outputs the system delivers (miss an error). However,
absence of trust may make people reluctant to use auto-
mated support.

The other challenge relates to the decisions them-
selves. Not every decision made in control rooms can
be distilled to objective data. Most of the decisions are
subjective and machine does not have human intuition
required to replicate it as experience comes with time.
These subjective, non-reproducible nature of some deci-
sions suggests that automation can be helpful only in
cases where tasks are objective and should be performed
by humans if they involve complex decision-making or
judgement.

Legal and ethical considerations further complicate the
use of automation in decision-making. As mentioned, legal
frameworks often lag behind the rapid development of
autonomous systems, creating ambiguities in accountabil-
ity. When automated decisions lead to adverse outcomes,
determining liability can be complex, especially in scenarios
where operators only supervise automated processes rather
than making direct choices.
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5 Human affinity for technology
and operator attitudes

While the technical feasibility of autonomous systems will
always be a key component in their eventual success, a large
factor surrounding automation use in control rooms is actu-
ally the attitudes and preferences of operators themselves.
The adoption of automated tools in control room environ-
ments is largely influenced by operators: their enthusiasm
for technology and autonomy as well as the trust they have
built with these tools. This chapter focuses on the human
behavioral and psychological characteristics of operators
interacting with technology; it investigates how operator
attitudes influence the acceptance and use of automation in
safety-critical environments.

5.1 Technology interaction preference

Affinity towards technology interaction (ATI) is defined as
disposition to interact with technology.>* Operators present
in control rooms typically have high ATI as their job involves
constant interaction with complex IT systems and data visu-
alization tools.?’ But both research and anecdotal evidence
show affinity for various technologies is not the same across
domains, nor even influenced by particular ages, incomes
or explicit experience with that tech, but still part of some
operational need. As an example, operators on emergency
services and public utilities may be more technophilic than
their counterparts in maritime control, which can poten-
tially be explained through the structural congruence of
tasks within these fields alongside how environmental con-
ditions shape new technology interaction.?’

High ATI operators tend to be more open to technologi-
cal solutions and may be less resistant in making the switch
to sophisticated decision-support systems and automation
tools. These operators are more open to autonomous capa-
bilities that automate clear tasks and enable them to focus
on higher-level strategic decision-making. Operators with
lower ATI, on the other hand, may hold a more skeptical
or resistant stance towards automation — especially when
it changes existing workflows significantly or requires sub-
stantial behavioral change. Insights into such diversity will
help in the design of automation that meets the needs of
varying human user types within control rooms.>>*

5.2 Need for independence and authority

Equally, the longing for independence and command is a
paramount reason behind operator behavior in favorable
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conditions regarding automation. Decision-making: Con-
trol room operators work in high-stakes environments
where maintaining a degree of controllability over decision-
making is desirable; they want to be the one deciding actions
when the result influences public safety and operational
integrity. That autonomy matters to operators, for it allows
them incorporate their experience in lesser-defined scenar-
ios while making situationally aware and nuanced deci-
sions.>%’

But the growing complexity of control room tasks and
the demand for quick responses are driving many operators
to the realization that semi-autonomous or autonomous sys-
tems can help. Operators are often more comfortable dele-
gating routine or well-defined tasks to automation because
they want to hold authority over the higher-level, high-
impact decisions that can be very complex. This selec-
tive stance toward autonomy also demonstrates a tendency
toward collaborative automation, which perceives systems
as partners to aid or assist rather than replace human judg-
ment.>8%9

Whether operators prefer to have control also affects
the levels of trust they put in automation. Operators are
more trusting and willing to use systems when these sys-
tem designs enhance, rather than supersede, their deci-
sions. On the opposite side, fully autonomous systems
that take control away from operators can be anxiety-
provoking and mistrusted; users perceive their knowl-
edge and judgment as devalued. This points to the neces-
sity of designing automation that works with operators
in a way that supports their perceived control instead of
undermining it.'’

Trust is key to successful automation in control rooms
operators need to trust that automated systems will per-
form as expected, respond with accurate information and
assist them in achieving their objectives. In safety-critical
environments, trust is even more important as they need
to have confidence in the fact that systems will not fail nor
produce some unintended gray swans under high impact
scenarios.50-62

And this is where the transparency has a major role. A
good understanding of the automation process and how it
arrives at decisions builds operator trust, especially when
faced with novel situations. Systems that provide explain-
able recommendations and transparency in rationale for
automated actions will garner acceptance by operators. For
example, systems that act as a black box — producing an
answer but without the explanation for why its said answer
is correct — breeds distrust in an operator who might not
want to provide that guidance at a moment of critical
need.’>%
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The transparency and interpretability of automation
systems would also reduce the likelihood of operators
engaging in automation bias (i.e., an over-trust on what
these systems output). This understanding helps operators
to critically assess the tool’s recommendations and provide
interference when appropriate, which in turn improves
safety and contributes to effective operation.

5.3 General attitudes towards automation
in specific domains

Depending on the nature of the work, environmental con-
siderations as well as operational constraints, automation is
often regarded in very different ways across control room
domains. Additionally, in some domains where rapid deci-
sion making has to be done under high pressure situa-
tion as in emergency response control rooms, the opera-
tors might find automation which help filtering information
and prioritization of alerts more acceptable. The reason for
this acceptance is to remove mental burden and speed up
answers in time-sensitive situations.?’

In contrast, operators in public utility control rooms
— including the folks controlling our energy grids — may
have a more ambivalent view about automation. They will
embrace autonomous tools for routine monitoring and diag-
nostics of systems, but expect them to be prevented from
making massive changes without human supervision due to
widespread effects. Likewise, in the highly variable environ-
ment of maritime control rooms, operators tend to not use
automation due to uncertainty over capability and robust-
ness in unstructured environments.?%*

Such domain-specific attitudes further demonstrate
that automation design requires a construction method.
Automation systems must be designed for the types of func-
tionality that each control room domain truly needs, match-
ing automation with human oversight to conditions and
operator expectations.

5.4 Collaborated automation: assistance vs
control?

As a rule, operators prefer a middle-ground approach to
automation — systems that assist but do not take full control.
This collaborative automation model emphasizes human-
automated system partnership — combining strengths to
achieve effectiveness. In this model, automation takes care
of mundane, data-heavy tasks while operators maintain
control of complex, high-stakes decisions that demand judg-
ment and agility. 416>

Collaborative automation also enhances operator
engagement by allowing them to focus on tasks that align
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with their expertise and reduce the cognitive burden of
low-level monitoring. By presenting automation as a tool
that augments human capabilities rather than replaces
them, control rooms can foster an environment where
operators feel valued and empowered. This approach also
encourages operators to trust and rely on automation, as
they perceive it as an ally rather than a competitor.

6 Autonomy and human oversight

Automation can benefit the cognitive load, lead to quicker
responses and process repetitive tasks but should never
fully replace the human at centre stage in making deci-
sions, particularly for safety-critical ones. In this chapter
we will touch on the significance of balancing human
autonomy with oversight, dangers of becoming overly
reliant on automation, and possibilities to create a collab-
orative system that respects both technology and human
skill.

Especially in safety-critical environments such as con-
trol rooms, human decision-making adds vital flexibility
and adaptability into the mix, alongside ethical aspects that
may go beyond what an autonomous system can provide.
These trade-offs between humans and autonomous systems
may lead to synergy; for example, autonomous systems are
quick and efficient with large amounts of data — but human
operators bring contextual understanding, judgment, and
the ability to respond to novel situations, abilities that will
be vital for unpredictable high-stakes scenarios.

Finally, human oversight is a must: Automated systems
are often not equipped to handle unexpected scenarios
or variables that might be more nuanced and therefore
may not fall into predetermined parameters. Abstract — For
instance, an autonomous system in the control room for a
power network would be capable of identifying equipment
faults as well as trigger steps to mitigate them based on
known guidelines. However, it would likely not be able to
make those complex decisions when resource allocation
must be made during a regional outage in circumstances
of human interactions needed with real-time situational
awareness required to quantify trade-offs and prioritize
actions.

Additionally, the presence of human oversight enables
accountability in terms of ethics and law. Where the con-
sequences of poor judgment could have life or death rami-
fications, or widespread societal impact (think technologies
affecting many people), there should be a human in the loop
to ensure that action is ethical and that we can point fin-
gers when things go wrong. While autonomous systems can
based on data make decisions without human intervention,
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they cannot apply the moral and ethical reasoning that often
is required in a critical situations.%

Automation can improve efficiency, but excessive
dependence on autonomous systems comes with a number
of dangers. A risk here is automation bias where operators
are likely to be overly reliant on automated recommenda-
tion and won’t interrogate system outputs. This bias may
foster some level of acceptance in where the operators will
not critically engage with the output and accept whatever
comes from the system. Under a safety-critical domain, if
an incorrect recommendation cannot be challenged based
on automation bias, the results can be devastating.

A second risk, called deskilling, is gradually losing
important flap operator skills over time. With growing
automation in performing routine tasks, it may happen that
operators would not have an idea of how to perform man-
ual procedures and they might be compromised on their
ability to intervene during a failure. But in emergencies, if
an autonomous system faces a new problem, operators may
have to take over control using their manual skills as they
are weakened through underuse. In the long term, if human
skills are not retained, it may be challenging and costly to
shift back towards a more human-led approach instead of
an unsustainable stat that is solely dependent on automa-
tion — a situation commonly referred to as deskilling.®’

Moreover, autonomous systems induce confusion in
modes if operators do not have a clear view of the current
status, mode and level of automation of the system. Such
confusion can potentially cause mistakes if operators mis-
assume the extent of control they have or are unaware of
a system operating autonomously. Further, if mode confu-
sion does occur, it may make the division of responsibility
between human-run and autonomous systems less clear
than in other scenarios — especially problematic in critical
moments when a quick response is needed.

Due to the difficulties and dangers of achieving
complete autonomy a partially automated solution is
therefore an attractive compromise, often referred to as
“collaborative autonomy”. Automation plays the role of an
assistant to human operators, performing low-level data-
intensive tasks, but leaving decisions that would be con-
sidered critical in human hands (the augmenting path).
With collaborative autonomy, control rooms can reap the
efficiencies of automation while keeping human operators
— who provide crucial advantage to high-stakes environ-
ments — front and centre. Metnler et al. used the metaphor
of a shepherding dog within a flock to describe an ideal
human-AI collaborative system: the autonomous system
identifies opportunities and threats, provides warnings and
suggestions, but the human maintains the final say.*5°
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Human-centered autonomous systems are collabora-
tive, pursues the goal of supporting and enhancing human
capabilities instead of replacing them. As an example, a
collaborative system can observe various parameters of the
system and identify potential problems, but it would defer to
the human operator for making a decision. It also allows for
shared control between the system and the human operator,
while allowing human intervention at any point if complex
situations require subtle judgement.

From a practical standpoint, adaptive automation is
one manner in which the principle of collaborative auton-
omy can be realized, where the level of automation varies
dynamically as a function of situational requirements. The
system may take over more when in a non-safety critical,
repetitive setting and use less supervision for rudimen-
tary tasks. In high-stress or uncertain situations, though,
the system would ask the operator to intervene, effec-
tively handing off control back to the human operator for
context-sensitive decision-making. An adaptive model that
caters to the automation levels according to the type of
task and situation, ensuring human involvement where
needed.”%”!

Finally, training and skill retention are vital to ensure
that operators remain proficient even as automation
increases. To mitigate the risks of deskilling, regular train-
ing programs should be implemented to keep operators
proficient in both manual and automated procedures.
Simulation-based training can help operators maintain crit-
ical skills by providing practice scenarios that require man-
ual intervention. Training programs should also address
the specific challenges of working with automated systems,
such as managing automation bias and responding to mode
confusion.

Balancing autonomy and human oversight also
requires careful consideration of ethical and legal
implications. In safety-critical environments, autonomous
systems must adhere to ethical principles that prioritize
human well-being and safety. This adherence is particularly
important in decisions involving potential risks to human
life, where ethical reasoning is essential for making choices
that align with societal values.5

Regulatory frameworks and legal oversight are also
crucial to ensure that autonomous systems are designed and
deployed responsibly. For this regulations like EU 2024/1689
and national laws must be carefully considered.”>”

Legally, accountability in automated decision-making
must be clearly defined. When control room systems oper-
ate autonomously, it can be difficult to assign responsibil-
ity in cases of error or failure. Legal frameworks often
lag behind technological advancements, which may leave
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gaps in accountability. To address these issues, organiza-
tions may need to establish policies that define responsi-
bility for autonomous actions, clarify when operators are
expected to intervene, and specify protocols for monitoring
autonomous systems to ensure compliance with ethical and
regulatory standards.

7 Practical implications

Although the particular incorporation of automation into
control rooms might pose a challenge distinctive to the
individual situation, comparable issues are present in any
field where coordination between human operators and
autonomous systems is essential.

This chapter examines two case studies — aircraft cock-
pits and industrial control rooms — that illustrate the prac-
tical considerations of managing pilots and automation
in small-scale and large-scale aeronautical socio-technical
systems.

The differences we see here highlight the diversity of
what is needed/expected — and challenges for automation
to handle/control room — which in turn provide valuable
lessons for determining best practices on where autonomy
ends and human staff should take over.

7.1 Cockpits of aircrafts - a miniature
control room

By definition, a “cockpit”, can be seen as a control room
— and therefore an aircraft cockpit might possibly be the
most extreme case of control room with highly specialized
tasks in very limited space. Pilots in this environment oper-
ate adjacent to their automated systems, with little physical
separation from the flight controls that command complex
and safety-critical flight operations. Cockpit automation,
including autopilot systems and automated flight manage-
ment systems (FMS), has improved significantly over the last
several decades providing efficient and secure handling of
routine activities. On the other hand, this huge development
has posed a unique set of challenges around human over-
sight, situational awareness and trust in these automated
systems.

Automation is more prevalent in a modern cockpit for
routine tasks that have less significance while this brings
strategic decision-making into focus by the pilots. Current
autopilot systems can control altitude, speed and heading
largely without input from the pilot, while the FMS can auto-
matically determine fuel requirements, routes and ETA. By
alleviating some of the cognitive stress of standard flights,
these systems let pilots concentrate on monitoring how well
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the aircraft is performing and addressing irregularities. Yet,
as we have become more automated in our procedures
this has led to unintended consequences (e.g. »Automation
Complacency” where pilots are so reliant on the automation
they lose situational awareness).”*~76

As the 2009 crash of Air France Flight 447 illustrated,
there can be dangers from excessive dependence on cockpit
automation; after erroneous airspeed readings caused the
autopilot to turn off in this case, the pilots lost control of
their aircraft and crashed. For example, in this case the
abrupt transition became a phrasing for poor pilot training
and lack of situational awareness. Many lives were lost that
day, as the pilots were not ready to take control under those
conditions. The lesson: in uncertain environments like those
faced by cockpit crews, where situations can rapidly go
from bad to worse, automation must never be allowed to
overshadow human intervention.”””8

Another example for overshadowing the human
operator with automated operations is the Crash of
Lion-Air Flight 610 and Ethiopian-Airlines Flight 302 in
these cases the automated MCAS system encountered
an unexpected state and even though the pilots tried to
override the system they could not gain control quick
enough.”

In response to these problems, the aviation industry
has implemented some best practices — including improved
pilot training and simulation on manual control proficiency
and automation awareness. Current training emphasizes
the need for automation awareness, practice in responding
to abrupt changes in balance control modes, and recogni-
tion of states where pilots may be required to take man-
ual control. Cockpit system design also continues trends of
increased transparency and intuitive displays to enhance
pilots’ situational awareness by providing information on
the level of automation currently in use, its status, and
potential threats.”

Current trends in aircraft control aim to reduce the
workload of pilots to the point where it may be feasible
to operate an aircraft with a single pilot. Airbus’ push
for single-pilot operations underscores the extent to which
automation has already assumed a dominant role in aircraft
control systems.,’-83

7.2 Industrial control rooms - large-scale
automation

Unlike the small, extremely focused cockpit environment,
industrial control rooms are large-scale, often complex envi-
ronments where operators monitor extensive interrelated
systems across whole entities like power plants, oil refiner-
ies and manufacturing facilities. It’s common that such
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control rooms have many monitors, a lot of data input
and lots of controls, allowing operators to manage pro-
cesses hundreds or thousands of miles away with ter-
abytes (if not more) of real-time data. Industrial con-
trol rooms are fundamental in handling these large-
scale operations, usually taking care of routine monitor-
ing, fault detection and process adjustments through a
utomation.®*

In anindustrial control room, automation is used exten-
sively to facilitate the handling of everyday work and ensure
stable operation. An example would be power generation
plants where automation systems monitor the electricity
requirements, balance the load and identify faults. Such
automated processes free up operators for high-level super-
vision, instead of being tied to basic system parameters.
While this automation provides a lot of benefits, it also
poses some challenges in the case which are unexpected.
If automated systems encounter scenarios they cannot han-
dle, operators must be able to take over easily — that’s not
easy to do if they’ve been away from manual control for long
periods of time.5%

An iconic example of the perils of mass automation
in industrial control rooms is the explosion at the Texas
City Refinery in 2005. Subsequent investigations into the
incident found that it was exacerbated by the failure of
automated systems to warn operators about unsafe con-
ditions in the facility, leading to a catastrophic failure
with multiple fatalities and enormous environmental dam-
age. This incident also demonstrated the dangers of over-
dependence on automated systems that are not augmented
by sufficient human perception: The operators did not
have a good enough picture of the situation to manage a
growing threat appropriately. Following the incident there
were widespread demands for better training and bet-
ter alarms, as well as stricter safety protocols.®*®’ In the
aftermath of events similar to Texas City, a focus within
the industry has been on automation and human con-
trol room interaction design in industrial environments.
Such initiatives include an overhaul of alarm models that
ensures the avoidance of overload while filtering out non-
critical alerts so that operators can get a glimpse of real
threats. Training programs have adjusted to encourage
the need for manual skills and knowledge on how to
read the alerts generated by automated systems and what
action to take when they appear. Furthermore, there is
exploration into adaptive automation strategies where the
control transfers dynamically between human operators
and systems based on the operational context to enhance
human-system collaboration while exploiting strengths of
automation.
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8 Are autonomous decisions
inevitable?

With a positive development in automation technology,
and mounting pressures on control rooms, many wonder:
Will autonomous decision-making become unavoidable
in safety-critical environments? Across various industries,
control rooms are increasingly implementing advanced lev-
els of automated systems that can integrate numerous com-
plex data processing and fault detection as well as some
decision-making capabilities. However, although the trend
seems inevitable that autonomous systems will take over
more and more standard processes, there are fundamen-
tal legal, ethical and operational arguments for believing
that human intervention will still be necessary in many
cases.8®

8.1 The argument for full autonomy

Over the long term, human operators in control rooms are
more likely to transition from active decision making to
watching and overseeing autonomous systems. Many of the
tasks we carry out regularly, especially those that contain
repetitive watching and analysis or predictable decision
points, may be automated. Autonomous systems can ana-
lyze big data as it emerges, perform pattern recognition
and deploy pre-defined neural networks to make immediate
decisions in relatively simple situations. This transition is
especially valuable in areas with high cognitive load and
multi-tasking which can lead to decreased human perfor-
mance, as well as higher error rates.*%

For many of the more mundane activities and tasks in
various sectors such as manufacturing as well as energy
management, automation has already handled these func-
tions with human operators now taking on a supervi-
sory role. Automation unburdens operators from repetitive
tasks and allows him/her to focus on higher-level duties
like — analysis of complex situations, handling unforeseen
events, and making strategic decisions. Essentially, human
operators become automation managers, managing the pro-
cesses to ensure they comply with safety and objectives.

This shift to being more of a monitor is most useful
in contexts where you can draw on routine work, and the
consequences of error can be reduced through preplanned
modalities. With adaptive automation getting stronger, sys-
tems will also get better in knowing when the need for
human intervention arises, thereby lessening the depen-
dence on regular human involvement in routine tasks. The
monitoring role does not mean we can abandon human
interaction entirely, it means that we capture the nature of
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human engagement by oversight and intervention rather
than control.

While legal, ethical, and operational challenges may
constrain the extent of full autonomy in control room
decision-making, a growing body of research provides com-
pelling arguments for increasing reliance on automation.
First, empirical studies have demonstrated that higher
degrees of automation significantly enhance routine per-
formance and reduce operator workload.>?° Under reliable
support, joint task performance increases with the degree of
automation, as autonomous systems efficiently handle data
filtering and well-defined tasks, minimizing human error in
safety-sensitive environments.

Complementing these efficiency gains is the evolving
nature of human-automation interaction. As automated
systems consistently deliver reliable outcomes, operators
tend to develop increased trust and dependency on them.
This phenomenon, often referred to as “automation hias”,
manifests as reduced manual oversight — even when human
supervision remains a necessary safeguard.’*> Notably,
when automation reaches a high level of reliability and per-
formance, further human intervention may actually lower
the overall quality of outcomes. In such cases, operators’
attempts to override or second-guess the automation can
introduce delays, errors, or disruptions that ultimately
degrade system performance.

Moreover, the risk mitigation capabilities of
autonomous systems further bolster the case for increased
automation. In high-stakes contexts — where human
error can have catastrophic consequences — autonomous
decision-making ensures consistent adherence to optimal
protocols. Although explainable AI approaches aim to
maintain transparency and allow for human intervention
when needed, the overall evidence suggests that minimizing
unnecessary human interference in routine processes
substantially reduces the risk of error ° (Figure 1).

The traditional Fitts List °>** delineates human
strengths in sensory functions, perceptual abilities,
flexibility, judgment, and reasoning. However, recent

Figure 1: Fitts list consists of tasks where the human is best at (on the
left) and where the machine is best at (on the right).*
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advances in artificial intelligence necessitate a critical
reappraisal of this framework. Modern technologies not
only rival but, in many cases, exceed human performance
in these domains. Lets look at the different claims:

Sensory Functions: Historically, humans have been
celebrated for their acute sensory thresholds. Yet, mod-
ern sensors - such as LiDAR and hyperspectral imaging
— detect phenomena far beyond human capabilities. These
machine “eyes” not only see more, but they react faster
— processing images in milliseconds, which is impossible
for human vision’s 200 ms response limit. In image recogni-
tion benchmarks, Al vision has surpassed humans: by 2015,
deep neural networks achieved lower error rates in object
recognition than people, marking the first time machines
beat humans at classifying diverse images.” In fields like
medical diagnostics, computer systems analyze MRI and CT
scans to identify anomalies that may elude human radiolo-
gists.%6-9%8

Perceptual Abilities: Humans excel at generalizing
sensory input under varying conditions, a strength once
thought unique. Today, deep learning networks have trans-
formed pattern recognition. Advanced facial recognition
systems operate with over 99 % accuracy across diverse
scenarios, and computer vision applications in quality con-
trol and autonomous navigation demonstrate a level of
consistency and scalability that challenges human percep-
tual reliability. On the ImageNet challenge (a broad test
of visual object recognition), Al surpassed human perfor-
mance: a 2015 deep network by He et al. achieved only 4.5 %
error, slightly better than the 5 % error of expert humans.”
In fields like medical imaging, this pattern-recognition
prowess has tangible impact. A deep learning system at
Stanford (CheXNeXt) was able to screen chest X-rays for 14
types of disease in seconds, performing as well as radiolo-
gists on most conditions — and even outperforming human
experts on one pathology.*

Flexibility: While human adaptability in novel situa-
tions has long been admired, machines have made signifi-
cant strides in this area. Reinforcement learning algorithms
— exemplified by systems like AlphaZero — develop strate-
gies through self-play, often surpassing human ingenuity
in complex games.'”° Humans typically specialize (the best
chess grandmaster isn’t an elite Go player), but AlphaZero
showed an algorithm could flexibly apply itself to multiple
complex domains and achieve superhuman skill in each.

Judgment and Selective Recall: Human judgment has
traditionally relied on the selective recall of experiential
knowledge. However machines have shown times and times
again that they are more and more able to learn from
a large troth of knowledge. Recent advancements in LLM
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technology shown that selective recall is a discipline where
machines have eclipsed the human. Making judgement calls
based on the available information has also been shown
to be above human performance. One study showed an Al
outperforming the traditional Breast Cancer Risk Assess-
ment Tool in predicting which women would develop breast
cancer within 5 years.'%!

Reasoning: The human capacity for inductive rea-
soning has been a cornerstone of scientific inquiry. Yet,
machines have begun to master both inductive and abduc-
tive reasoning. Systems such as AlphaFold accelerate sci-
entific discovery by predicting protein structures, while
large language models generate creative hypotheses and
solutions across a range of applications — from experiment
design to complex code generation. In one demonstration,
GPT-4 scored around the top 10 % of test-takers on a sim-
ulated bar exam, which includes complex legal reasoning
and essay writing, exceeding the performance of most law
graduates.'”

This transition is also reflected in the changing role
of human operators. As automation takes over more rou-
tine functions, human operators are increasingly redefined
as supervisors and strategic decision-makers. This evolu-
tion preserves critical human expertise for non-routine
and complex scenarios, ensuring that human judgment
remains central when it matters most.'®® Finally, technolog-
ical progress and economic incentives drive the irreversible
adoption of higher automation. Once autonomous systems
exceed human capabilities in specific domains, cost sav-
ings and reduced liability risks further accelerate their inte-
gration.” Additionally, studies in human-robot interaction
indicate growing social acceptance of autonomous agents,
suggesting that both operators and the public are increas-
ingly comfortable with systems that assume greater control
over routine tasks.'® Collectively, these factors converge to
argue that increased automation in control rooms is not
only technologically feasible but also strategically advanta-
geous. The combined benefits of enhanced efficiency, effec-
tive risk mitigation, and a redefined supervisory human role
make the shift toward more autonomous decision-making
a natural and necessary evolution in managing complex,
safety-critical systems.

8.2 Legal and ethical limitations to complete
autonomy

While the advantages of automation are evident, there
will be deep-rooted legal and ethical safeguards against
machines taking over all aspects of control room decision-
making. Safey-critical environments, e.g., healthcare or avi-
ation, often focus on ethically and socially consequential
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decisions. By these terms, the stakes are astronomical — a
bad call could mean someone dies, an ecosystem remains
irrevocably fractured, or economies collapse. These types
of situations call for moral reasoning and ethical judgments
that autonomous systems, which operate blindly according
to algorithms or pre-set directions, cannot provide.>105106

Legally, it is hard to find fault when an autonomous
system goes awry.

Constraints on the ability of machines to operate inde-
pendently are also established by legal frameworks, espe-
cially when decisions influence human lives. Liability is
a big deal when it comes to this. Determining liability
becomes complicated when people are harmed due to a
choice made by an autonomous system. As legal account-
ability currently falls mostly on human operators or orga-
nizations, the decision chain from machine to human must
remain intact in order for humans to take responsibility for
outcomes. In high-stakes settings, the legal and ethical issues
with fully autonomous systems cannot be overcome without
clear accountability.*106-109

In addition, in complex real-world situations, unex-
pected edge cases or novel scenarios that the programming
has not been previously exposed to may create problems for
autonomous systems.

In addition, ethical perspectives highlight the need for
human oversight in areas where compassion, empathy, or
value-based decisions are needed — things machines simply
cannot do. Although an autonomous system might perform
well when rules and the environment are highly structured,
in complex moral dilemmas or where values conflict the
autonomous system is unlikely to do a good job as it lacks
context. So, for example, in a control room for emergency
response, the decision to allocate scarce resources in rela-
tion to an ongoing crisis cannot be purely evidence based
because that will inevitably involve balancing competing
priorities and trade-offs which embody social values and
ethical principles. Those types of decisions are human, and
should never be fully delegated to a machine."*!"

While autonomous systems are taking over most of the
routine tasks, human operators will always be imposing
their ways in high-stakes decision-making scenarios, where
flexibility, critical thinking, and adaptive choices should be
exercised. The nature of autonomous systems, which oper-
ate with fixed constraints and set algorithms, means that
they struggle to cope in situations where the right action or
sequence of actions is not sufficiently pre-established, and
they may fail to identify the factors driving a scenario.

By contrast, human operators have the cognitive flex-
ibility to evaluate unusual situations, interpret incomplete
data, and rapidly adapt in ways that machines can’t. When
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a high-pressure situation arises, or system failure occurs,
sometimes it requires human voices to override the auto-
mated impulse reaction and instead construct a solution
through thinking outside of the box, or action across mul-
tiple systems and organizations. Our ability to adapt is espe-
cially important in any kind of control room scenario where
events can be unpredictable and responses cannot always
be mapped out ahead of time.Human operators will be
involved primarily in exception handling: that is, where the
automation exceeds its functional limits or happens upon
an unanticipated situation. And, they may even serve as
a crucial successful hand-in-hand validator for validating
organization-wide critical machine-made choices concern-
ing ethical, legal, and operational aspects. Human operators
are still there for a safety net, making sure that automation
does not operate in a vacuum but under human judgment
and control as they maintain the final authority in critical
situations. 8312113

However, with control rooms also being increasingly
furnished with autonomous systems, there are significant
implications for design and training. Firstly, control rooms
need to be a hybrid between the human operator and
autonomous systems, yet still have humans engaging in
the loop and capable of intervening when necessary. These
systems call for interfaces that convey the state, intent, and
constraints of the system in a clear manner so that operators
know what is going on and when they need to intervene
as automation reaches its limits. Providing visual or sound
indication if the user is going to interfere or need an opera-
tion with more detail. This will not only make your operator
responsible but also keep him on a lookout when there are
automated actions being executed.

Thirdly, training programs need to adjust in order that
operators will be trained for their new tasks. Operators will
require training, not for manual interventions but for mon-
itoring skills and critical assessment of automated outputs
with an easy intervention method when there is a need to
handle exceptions. Operators can benefit from simulation-
based training that gives them practice by experiencing
many scenarios in which they will have to deal with the
automatic-to-manual control handoff; In addition, it helps
reduce deskilling among operators because they remain
familiar with the underlying systems while taking on a
supervisory role.5%

Human factor smart systems will also include
autonomous decision-making, and therefore regulatory
frameworks and formalized ethical guidelines will
have to adapt to the pace of technological change. In
addition, explicit and concrete policies on accountability,
transparency and such triggers for intervention are
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required to avoid that automation systematically goes
beyond what we have decided as a society or through our
law. Organizations need to develop clear frameworks of
when operators need to intervene, as well as the roles of
humans and machines in shared control situations.*>

Ultimately, yes autonomous systems will help augment
many aspects of control room operations in the future
but humans are still key. Because accountability, ethi-
cal judgment, and situationally adaptive decision-making
are important in high-stakes environments, operators will
always be the final backstop — always holding authority
and an ability to override automated decisions with human
expertise and judgment.

9 Conclusions

While much of the discussion will focus on the oppor-
tunities, incorporating these technologies will also raise
challenges as well. Automation has already been shown
to increase efficiency and decrease cognitive burden for
humans in environments where data needs to be processed
rapidly, and decisions made every few seconds. Automation
isnow crucial for managing complicated frameworks inside
industrial control rooms to aircraft cockpits, and keeping
them from going haywire. Given the increasingly complex
and demanding requirements of a modern control room,
the potential areas where automation could help — faster
responses, less errors, ability to handle repetitive tasks
— are significant. Across many industries, human agents
have already started taking on the role of a supervisor who
oversees and monitors an automated process with mini-
mal intervention. With this change in focus from verifiers
to overseers, people can concentrate on higher level tasks
related to oversight and strategy while autonomous systems
deal with daily operations. So will this trend continue and
the human niche become smaller and smaller until the
machine controls everything? Maybe. The technical possi-
bility for a level of automation is there. Operators are open
to more automation and more technology in their work
environment. In some cases it seems that only the missing
legal framework stands in the way of full autonomous deci-
sions. However there are also compelling legal, ethical and
operational reasons why full autonomy is unlikely to hap-
pen soon. Even if they reach higher efficiency, autonomous
systems lack the moral reasoning and flexibility required
to confront challenging ethical problems and unknown sit-
uations. Finally, existing legal codes limit the amount of
jurisdiction that machines can have — especially in liability
and accountability-sensitive aspects. While control rooms of
the future may have all human or full autonomy, it could
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be messy to assign accountability in case of failure or error
with little transparency built-in mechanisms.

For the near future, these legal hurdles seem to form
the control as a hybrid environment where automation
will take over control of routine aspects, but humans are
not likely to be removed from the loop completely, espe-
cially in safety-critical situations. This balanced partnership
harnesses the strengths of both machines and humans to
improve efficiency and resilience in complex systems.

Looking ahead, it will be crucial to monitor how reg-
ulatory frameworks evolve and how swiftly technology
advances. This next phase of automation will determine
the balance between human oversight and machine-driven
processes, ensuring accountability, ethical considerations,
and efficient operation. To summarise, future control rooms
are not a choice between man and machine, for now, but
rather a partnership bringing both strengths to the table.
In the long run, if the intelligence and capabilities of the
machine continues to develop at rapid speed, there may be
a time when we say: Humans need not apply.
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