
i-com 2024; 23(2): 273–292

Mandy Balthasar*

Social anthropology 4.0

The human-computer organism – a concrete utopia

https://doi.org/10.1515/icom-2024-0016

Received February 11, 2024; accepted June 24, 2024;

published online July 22, 2024

Abstract: Human-computer interaction as a coordinating

element between human and machine is used in many dif-

ferent ways. Due to their digital processes, countless indus-

tries are dependent on an effective intermeshing of humans

andmachines. This often involves preparatory work or sub-

processes being carried out bymachines, which humans ini-

tiate, take up, continue, finalise or check. Tasks are broken

down into sub-steps and completed by humans ormachines.

Aggregated cooperation conceals the numerous challenges

of hybrid cooperation in which communication and coordi-

nationmust bemastered in favour of joint decision-making.

However, research into human-computer interaction can

also be thought of differently than a mere aggregation

of humans and machines. We want to propose a nature-

inspired possibility that has been successfully practising

the complex challenges of joint decision-making as proof

of successful communication and coordination for millions

of years. Collective intelligence and the processes of self-

organisation offer biomimetic concepts that can be used to

rethink socio-technical systems as a symbiosis in the form

of a human-computer organism. For example, the effects of

self-organisation such as emergence could be used to exceed

the result of an aggregation of humans and machines as a

future social anthropology 4.0 many times over.

Keywords: collective intelligence; decisionmaking; human-

computer interaction; sociotechnical systems

1 Acting together – an introduction

This contribution proposes a new approach to human-

computer interaction (HCI) based on the scientific find-

ings of self-organisation and in particular on the social

example of swarms. The aim is to initiate a discussion about

the potential of self-organised collective intelligence in the
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connection between humans and machines on a horizon

in 50 years. To this end, various topics relating to col-

lective decision-making are discussed. A backward-looking

approach is taken.

Since the early 1950s, science is said to have been

preoccupied with the emerging phenomenon of complex-

ity and has since attempted to fathom it with the help of

artificial intelligence, cybernetics,mathematics and systems

theory. The aim of cybernetics was to understand human

and machine as elements of a self-controlling system. The

aim was also to combine intelligence. An approach that

comes close to the human being, as collective intelligence

is precisely what has brought humanity forward. If tech-

nological progress is also taken into account, the idea of a

hybrid collective intelligence, as an amalgamation of human

intelligence and artificial intelligence from silicon chips and

software, is inevitable.1 This collective intelligence in the

form of socio-technical human-machine systems has long

been the focus of scientific interest as collective intelligence

systems (CIS) in order to optimise their design.2,3

Today, in 2074, we look back and cannot understand

why a principle already given by nature, such as self-

organisation, was not applied in order to give the man-

agement of complexity a regulated process through this

desired amalgamation and thus make the bundled intelli-

gence usable for us. We live in constant dialogue with arti-

ficial agents. They enrich both our professional and private

lives. In all respects, from the wake-up call in themorning –

set specifically between deep sleep phases – to the coordi-

nated departure of one’s own avatar from the virtual world

after death in the analogue world. A created symbiosis of

human and machine, without which this complex world

would no longer be conceivable.

A flock of birds glides across the graywinter sky. A sight

that makes me smile and signals to my artificial colleague,

who makes this view possible, that it was a good idea to

open the roof hatch for this special moment. Such a dia-

log between human and machine increasingly became the

focus of interest in the 1980s.4 However, the term “human-

computer symbiosis”5 had already been coined in the early

1960s. The concept behind this was seen as a development

that could be expected for future cooperation between

human and machine. The background to this was the anal-

yses already available at the time, which indicated that a
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symbiosis of human and machine would be more effective

than could ever be achieved by humans alone.5 The discov-

ery of parallels between biological swarms and human soci-

eties,6 as well as between natural swarm intelligence and

logical computer science, also occurred in the second half of

the 19th century.7 Thus, numerous scientists were working

on the overlapping topics of complexity science and the

human-machine connection. And therewere probably some

of them who paved the way for our present-day life in this

symbiosis with artificial agents.

1.1 Joint decision-making in humans

This work begins with the challenges of joint decision-

making. To this end, the influencing parameters from psy-

chology and sociology in relation to humans and natural

systems are considered. The collective intelligence resulting

from successful communication, cooperation and coordi-

nation as well as their challenges are also examined. In

particular, the possibilities and impossibilities of utilising

human reactions and their subjective factors for optimal

communication and cooperation are discussed.

Flocks of birds, schools of fish or herds of buffalo – the

animal kingdom seems to have developed excellent collec-

tive decision-making skills from the very beginning. Until

the 1950s, on the other hand, humanswere denied the ability

to make optimal decisions with reference to their limited

rationality.8 Behind this attribution was the assumption of a

systematic susceptibility to choose arational and thus often

unfavourable options.9–11 It had yet to be proven that a

stroke of genius such as collective intelligence could succeed

in joint decision-making. The crowd, which was initially

declared stupid, was taken for granted until this could be

refuted by the crowd itself.12 Thus, despite limited rational-

ity at themicro level, collective intelligence ismade possible

by a common basis for decision-making at the macro level.

The degree of intelligence increases with the number of

actors. This increase applies to both natural and artificial

systems, such as robot swarms.13 In order to achieve the

highest possible degree of intelligence, challenges such as

successful communication, cooperation and coordination

between the actors must be overcome. For this reason, a

single-digit group size is assumed in order to be able to act

effectively.14,15 Initial approaches to overcome this hurdle of

limiting group size and thus also the limitation of collective

intelligence were advanced with the help of large language

models (LLMs) as so-called conversational swarm intelli-

gence (CSI).16 This was supported by the fact that humans

have been working together in communities for thousands

of years in order to survive. Thinking, sharing and acting

together is therefore already inherent in humans.17 And

decisions are rarely made alone.18

Yes, actually . . . my gaze continues to follow the flock of

birds in the sky until it finally disappears from my field of

vision. How could the potential of such perfect harmony in

a community remain untapped for so long?

The neuronal networks of a brain in the prefrontal

cortex already form couplings that act as interfaces. This

enables people to trigger emotional reactions in their coun-

terparts, for example. It is also possible that in the context of

joint decision-making processes, errors in thinking or biases

of an individual can also have an effect on co-decision-

makers. Who knows, maybe even in this swarm.

At the same time, other challenging characteristics

occur in human communities, which can be triggered by

group dynamics or inadequate communication.10 However,

the possibility of joint decision-making and acting in har-

mony through swarms, herds, schools or even groups has

always been visible in the world. These seemingly perfectly

functioning communities are strengthened by reciprocal

links, such as the transmission of emotional states. Trust

grows and people feel connected. This connectedness can

then be utilised in turn.19

The behaviour patterns from swarms and networks of

flora and fauna were therefore always available as a tem-

plate. For example, the metaheuristics for solving combina-

torial optimisation are based on the emergent abilities of ant

colonies.20 And in swarm intelligence, ant colony optimisa-

tion (ACO) is also the epitome of a metaheuristic based on

the foraging abilities of ant colonies.7,20–23 An equally well-

known example is an optimisation inspired by biological

swarms: Particle Swarm Optimisation (PSO), which is based

on the flocking behaviour of bird flocks just observed.24,25

These metaheuristics had already emerged in the 1990s and

2000s by simulating the behaviour of natural swarms in

order to solve central optimisation problems. Why was this

natural source of inspiration: swarms, not also used for joint

decision-making from person to person or, as is common

today, from person to machine?

Enriching phenomena such as the feeling of belong-

ing but also the challenge of being influenced by group

dynamics remain hidden from my artificial colleague: And

at the same time, his gesture of opening the roof hatch at

the right moment shows me his correct assessment of my

emotional world. To be more precise, my efferent reactions

can be determined on the basis of behaviour or movement

sequences, such as my smile, and collected, analysed and

evaluated as data bymy artificial colleague. However, this is

not yet possible for subjective factors such as phenomenal

values. It would have to be possible to specify the value for
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amental state, which expresses which feelings occur in con-

nectionwith a certain situation. But these values can only be

determined once the situation has already occurred, such as

my reactionwhenobserving theflock of birds. Nevertheless,

if this experience is made for the first time, it is epistem-

ically transformative and possibly also personally trans-

formative. Thus, an experience can permanently change

an individual’s phenomenology, replacing previously estab-

lished core preferences.26 With the weighted data of my

artificial colleague, however, the indeterminate change in

all previously collected data due to a single event is not

comprehensible or even predictable. This means that the

integration of subjective human factors in the development

of optimised human-machine systems remains out of the

question.

Moravec’s paradox has already shown that the most

challenging human abilities are those that occur uncon-

sciously.6,27 At the same time, this paradox also remains

valid in artificial neural networks. Why trivial processes

usually do not work or only work inadequately, while com-

plicated processes are executed without errors.28

At the same time, it could be concluded from this real-

isation of subjective factors that comprehensible human

decisions can only be assumed if no subjective values are

involved. This excludes decisions as calculable decisions

and thus as comprehensible decisions for my artificial col-

league as soon as the human decision-maker is or will be

affected by the decision outcome itself. However, this was

made possible by the generation of a “veil of ignorance”29 by

my artificial agent in joint decision-making processes. The

information basis of the initial situation is prepared by arti-

ficial systems in such a way that the human decision-maker

does not realise that they could be personally affected. For

example, information about age, gender or origin is omitted

in order to enable an almost uninfluenced decision.

The fact that a decision in favour of a potentially trans-

formative action can trigger feelings of uncertainty or even

fear is already taken into account.30 Since the occurrence

of uncertainty can lead to feedback on the evaluation of an

option,31 the evaluation is created as a variable in the data.

Other aspects, which is why the human condition cannot

be analysed from the outside as a glass box, are dislikes or

preferences as well as abilities and talents.

Afferent signals, which are detected by the body and

transmitted to the brain, provide another source of data.

In risky situations, these can already be intercepted by the

posterior horn in the spinal cord and converted into efferent

signals. This leads to a reaction of the body without having

been processed by the brain beforehand. Such endogenous

reflexes are already innate and can also be registered by an

artificial agent using sensor technology. As a result, these

reflex actions offer a barely distorted reaction to a stimulus,

which can provide new insights. One reason why the tea in

front of me is no longer brewed by my artificial colleague,

but is now made tolerably hot.

So both deciding agents, human and artificial, are capa-

ble of learning. In order to enable an artificial agent to do

this, knowledge of learning processes in human brains was

utilised. For example, the human brain constantly adapts

the connections between neurons during learning. This pro-

cedure should also be applied to the learning algorithms of

artificial agents in order to optimise them in terms of speed

and resistance. To date, the human brain has a head start

over machine learning systems. The difference between

natural and artificial learning becomes clear, for example,

when it comes to absorbing new information. While it may

be sufficient for the human brain to see something new just

once in order to learn, artificial agents still require hun-

dreds of attempts. In addition, newly learnt information is

added to existing information in the brain. In artificial neu-

ral networks (ANNs), however, until recently, newly learnt

information often collided with existing information and

degraded in the process.32 Thus, at least when it comes to

forgetting during learning, my artificial colleague seems to

have become more similar to my own way of learning over

the last 50 years.

Which brings us to another special effect of our species:

Reactions to external influences. The daily food intake or

its macronutrient composition already influences the sensi-

tivity and tolerance of the human decision-maker and thus

the intensity for or against cooperation.33 If, for example,

a previously supporting cooperative strategy is interrupted

due to a nutrient-related drop in tyrosine levels, an inter-

play between the decision-making parties of accommoda-

tion and rejection begins. In the context of the prisoner’s

dilemma, a withdrawal from mutual cooperation may be

more lucrative,34 but in the long term a cooperative strategy

that is aligned with the behaviour of the other party is

more successful.35 This distortion of human thinking can

also be registered by an artificial agent using sensors and

communicated by means of a warning.

However, these special characteristics of humans and

their imponderables do not mean that artificial agents are

always the better decision-makers compared to humans.

On the one hand, natural thinking or natural systems have

the ability to develop a shared intelligence that exceeds the

intelligence of an individual. At the same time, natural sys-

tems are challenging due to their size, as they are dependent

on communication and cooperation. If, on the other hand,

cooperation is not possible, coordination must be used in
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order to utilise collective intelligence. At the same time,

coordination itself is a complex process, as numerous psy-

chological and sociological parameters, which are both con-

sciously and unconsciously incorporated into communities,

must be taken into account. Research into HCI is and will

therefore remain a science in which cooperation between

computer science, psychology and sociology is absolutely

essential.

1.2 Special effects of decision-making with
artificial agents

It is not only humans or entire natural systems that present

special challenges that need to be overcome in the context

of HCI. Artificial agents also present numerous hurdles that

need to be overcome. In the following, we will look at these

in the context of HCI and joint decision-making.

My artificial colleague, consisting of software and addi-

tional hardware such as effectors, sensors and processors,

can thus act perfectly in a clear, sterile test environment like

a simulation. In order to enable decision-making and thus a

certain degree of autonomy, artificial agents are equipped

with decision-making methods like decision trees, markov

decision processes or reinforcement learning. If this ability

to make decisions within an artificial agent did not exist,

the desired autonomous state could not be achieved either.

I would have missed the sight of the flock of birds passing

overhead.

At the same time, my artificial colleague acts with algo-

rithms, which is why decision-making situations must be

expressed using formal rules of mathematics or physics

in order to be calculable. This requirement is particularly

fulfilled in complicated decision-making situations. Compli-

cated challenges can be defined in machine-readable form,

have a clear goal, static processes and stable framework

conditions as well as an inherent logic so that decisions can

bemade quickly and optimally by artificial agents. If, on the

other hand, a dynamic environment, arational behaviour

or an unclear objective is given, no statistical probabilities

can be calculated in these complex scenarios.36 And it is

precisely in these situations that my artificial colleague and

I find it a little slower to reach a consensus.

In the old paradigm of symbolic methods of artificial

intelligence, logic and reasoning found a way to make deci-

sions. The later approach of machine learning found its way

to decision-making through the use of data. From the use

of deep learning systems and neural networks onwards,

artificial intelligence had set things in motion with numer-

ous findings in the field of computer vision. Today, human

and machine can act as a whole, similar to this seemingly

harmonious flock of birds, to make optimal decisions.

However, all approaches to overcoming existing chal-

lenges using artificial agents are still characterised by the

fact that they draw on enormous amounts of data that

describe similar situations and provide orientation on deci-

sions that have already been made. At the end of the

decision-making process, used data is pushed into the feed-

back loop of the learning artificial decision-maker in order

to measure the effectiveness of the decision made and to

generate further data material at the same time. This pro-

cedure illustrates the strength of artificial agents to date as

well as their greatest weakness: the dependence on data

quantity and quality aswell as the restriction to complicated

and therefore predictable issues. As well as the burden of

training a new artificial colleague on its own thought and

behaviour patterns.

Nevertheless, the risk of false evidence due to inappro-

priate data input is lower, as the connection is partly gener-

ated by the human-machine team. This has also minimised

other problem areas such as the accuracy of the relevance

of the data and the selected framework to the use case.

Likewise, the challenge that algorithms are already subjec-

tive due to theirmodel-like construction.37 Nevertheless, the

processing of data by algorithms is normative, which is why

a normative bias can still be assumed.38

We could have learnt back in 2008 just how much

extrapolations from the past can lead to wrong decisions.

In the largest insolvency case in U.S. history to date, the

investment bank Lehman Brothers and its subsidiary were

given an A+ rating by the rating agency Standard & Poors

(S&P) three days before their demise – with the weekend in

between.39 The technical background to this was probably

that, despite a wide range of options for controlling the

training process of a machine learning model, for example

using free parameters such as weights, it was not pos-

sible to ensure an optimal decision or decision proposal

even with careful preparation. For example, the future does

not repeat itself. However, people believe they can read

patterns from the past. We know from experiments that

even minimal changes can produce fundamentally differ-

ent results. Moreover, these minimal changes cannot be

anticipated and more. But these environments, which are

unfriendly to machines and constantly change the status

quo, are usually the dynamic systems in which complex

decision-making situations arise.40 At this point in history,

there could already have been a rethink towards a human-

machine organism. Thewaywe live now – almost half a cen-

tury later – inwhichwe balance our opposing strengths and

weaknesses.

To summarise, we can now assume that the artifi-

cial decision-maker also has its strengths and weaknesses.
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On the one hand, for example, decision-making meth-

ods can be implemented to create a certain autonomy

through decision-making ability. On the other hand, artifi-

cial decision-makers are dependent on data and the math-

ematical or physical describability of the decision situa-

tion. At the same time, processing is limited to complicated

and predictable situations in favour of optimal results. In

this environment, however,machines can produce excellent

results that humans are unable to achieve. Nevertheless,

in environments that are unfriendly to artificial systems

because they are dynamic, humans or entire natural sys-

tems can create added value based on their potential for

collective intelligence. For the HCI community, this means

creating optimal links between two different systems: nat-

ural and artificial, with all their strengths and weaknesses,

in favour of the best possible collaboration in the form of

human-computer teaming (HCT). One example of this is the

HCT concept of dual-mode cognitive automation,41 which

transfers cognitive tasks to both humans and artificial cog-

nitive units (ACUs). The focus here is on the human actor

in order to give them more awareness of the situation and

at the same time minimize their workload. The actual col-

laboration between humans and ACUs can be realized in

two ways (dual mode): By means of hierarchical delegation

from the human to the ACU or in the context of coopera-

tive teaming, such as between a human and an assistance

system.41 However, there is always a center within the team

that coordinates and/or makes decisions.

2 Necessity of cooperation

Based on the assumption that the joint accomplishment of

set tasks is themost effective, cooperationwill be considered

as a structuring component in the following.

Game theory has already crystallised that psycholog-

ical influences and social factors, in particular norms or

moral concepts, play an important role in humans.42 Since

people often behave cooperatively for strategic reasons,

institutionalised processes can create incentives in favour

of cooperation through artificial agents and their feedback

or reputation systems.43 Even the regulation of artificial

decision-makers, as envisaged in the Artificial Intelligence

Act (AI Act)44 of the European Union (EU) is a regulation of

humans. For example, those involved in the development of

artificial agents are to be encouraged to act within the set

guidelines by means of targeted incentives or penalties.45,46

However, as the decentralised and hybrid structures

in HCT meant that cooperation was no longer the basis

for a joint decision-making process, it had to be replaced

by coordination. This was already predicted by consensus

theory, which is based on constitutive principles to which

the actors in a system are subject and which drive them to

make a joint decision. Thus, the structure of communication

within a system already creates a pull that drives the actors

to make decisions and is necessary for a community.47 For

our current joint decision-making process in a system of

human and artificial actors, this communication structure

had to be created specifically to generate this pull.48

If we look at the decision-making processes of natu-

ral persons or communities and compare them with the

approach of artificial agents, such asmachine learning (ML)

algorithms, the fundamental differences become apparent.

An artificial agent calculates a decision based on mathe-

matical rules. A set of variables is used as input, which is

compared with a target as a calculated prediction. Natu-

ral agents, on the other hand, rely on a mix of variants.

Various heuristics are combined with static procedures and

implicit knowledge. At the same time, the diversity and

abundance of information has increased exorbitantly in

recent decades. This is why an artificial colleague has been

added to the human mix of variants as a data collector,

processor and visualiser and has become indispensable for

successful decision-making.

However, the artificial agent still has difficulties in

assessing situations that the human decision-maker has not

yet experienced. Although it is possible to exchange experi-

ence reports as a kind of verbal simulation within a joint

decision-making process, this represents the phenomenal

values of the communicating person, which does not allow

any conclusions to be drawn about the epistemic experience

of others.30 As a result, visualisation and simulation still

have their limits as decision support for both human and

artificial decision-makers.

On the other hand, an artificial agent offers support by

means of simulations in the cooperation between human

actors. By means of sociometric representations such as

diagrams, which visualise the course of the decision-making

process and its dimensions, or by means of sociomatri-

ces,27,49 which illustrate the relationship structure within a

group. This helps to deal with differences in interpersonal

relationships in order to develop an awareness of the opin-

ion patterns and group-specific trends.

Artificial co-decision-makers are predestined for the

creation of visualisations from a meta-perspective despite

their involvement in the process. The background to this is

their internal and, in some cases, external autonomy and

the associated ability to be objective, provided they draw

on data that is not evaluated by humans, such as pure

sensor data. This makes artificial agents social due to their

cooperation-promoting behaviour.
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Reasons for assuming that an HCT could deliver viable

results became apparent early on. The reason for this is the

different decision-making tactics, which in turn result in

different strengths and weaknesses.50 For example, human

decision-making tactics have a weakness in the assessment

of risks,51 while algorithms in turn have aweakness in terms

of robustness, which can be recognised in particular with

increasing dynamics in the initial or data situation. At the

same time, artificial agents benefit from the feedback of

natural experts, as demonstrated by decision making in a

clinical context using reinforcement learning as early as

2022.52 The interactive machine learning (IML) approach

already started with the integration of feedback during the

modification of an ML model.53,54

The stringent approach of an artificial agent and the

emergence and creativity potential of natural systems is

another reason for the human-machine connection that

exists today. This allows a decision-making process to be

optimised even under complex conditions. Of course, this is

only possible if there is a symbiosis of human groups and

artificial agents using intelligent tactics. For example, the

human ability to recognise and understand simple causal-

ities must be revealed to the artificial decision-maker. How-

ever, if the correlation used as a basis cannot correctly

depict the causal relationship, this inevitably leads to incor-

rect decisions. This insight was gained through the Gener-

ative Pre-trained Transformer 3 (GPT-3) language model,55

which reacted as a trained neural network to speech input

from human users. Compared to humans, GPT-3 was almost

as good at making rational decisions. However, there were

glaring deficiencies in abilities such as causal reasoning.

These were due, for example, to the way in which the

trainingwas conducted, inwhich informationwas passively

extracted from data without actively interacting with the

environment or its context, which would have been nec-

essary for the development of fully complex human cogni-

tion.56

If, on the other hand, the interaction increases in sev-

eral dimensions due to the complexity of the situation to

be decided, the human decision-maker quickly reaches its

limits. Due to the multiplying interlocking of humans and

machines and the associated joint decision-making, the opti-

mal cooperation between the two actors was used as a

kind of social anthropology 4.0. The aim was to interweave

causal awareness and creativity at the human micro level

and collective intelligence at the macro level, while at the

same time efficiently processing huge amounts of data from

a linear process using an effective structure of evolution-

arily proven and self-organised principles. This approach

came a big step closer to the flock of birds permeated by

cooperation as a prime example of decision-making as one

organism than a mere consideration of the diverse forms of

HCT.

Although natural and artificial actors differ in the way

they make decisions at the micro level, they do not differ so

much in theway they interrelate in favour of a joint decision

at the macro level. Thus, communication and cooperation

are essential for both actors to negotiate goals and develop

the associated process. A hybrid collaboration is conducted

through a sensory input and output of data in favour

of communication and cooperation via behaviour as a

dialogue.57

By drawing on nature’s strategies as a kind of bionic

concept, a principled joint hybrid decision-making process

could be generated. In addition to mere coordination, this

process also offered protection against the mere adoption

of calculated opinions from artificial colleagues, as was the

case with ChatGPT or in clinical decision support systems

(CDSS), for example.58,59 In addition, the necessary pull to

reach a consensus could be generated by the adapted pro-

cesses,60 thus creating a system that could be described as

a human-computer organism (HCO). Moreover, this concept

of joint decision-making had already been tested for thou-

sands of years in evolutionary terms: described as so-called

self-organisation.

A self-organised socio-technical culture was already

being promoted in 1994. At that time, themodel was already

living beings that act autonomously as a whole without a

centre andalso use the phenomenonof emergence for them-

selves.61 This idea was already modelled on a swarm. Not a

flock of birds, however, like the one that has just inspired

me, but the superorganism of a swarm of bees.

Such a swarm of bees is an excellent analogy for dis-

tributed systems in which both the potential of the indi-

vidual at the micro level and that of the community at the

macro level can be optimally utilized.62

If we summarise all the aspects mentioned in this

chapter, the tasks of pioneers become apparent for HCI sci-

ence. Effective HCT is only possible if cooperation is prac-

tised between the entities. In turn, cooperation is only fea-

sible if there is communication between the entities. The

essential task is therefore to create structures inwhich com-

munication can be cultivated and from which cooperation

can simultaneously emerge. Possible tools for accomplish-

ing these tasks are usually located at the macro level, as

this is where most of the overlaps between the decision-

makers occur. This is the way to reach a joint decision:

using the tactics of communication and cooperation. The

HCI community is supported by the bionic concept of self-

organisation, which can be analysed in practice using the
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example of swarms. If this task of building structures for

communication and cooperation in favour of HCT succeeds,

in an optimal case a swarm-inspired HCO can emerge from

an HCT and social anthropology 4.0 can emerge from the

scientific field of HCI, which goes beyond the consideration

of interaction.

3 The paradigm of self-organisation

The concept of self-organisation introduced in the previous

chapter will now be examined in more detail.

Research into collective intelligence was successful at

an early stage in computer science. For example, in the

leader-follower problem, packet forwarding and variants of

Arthur’s El Farol bar problem. Since numerous other sci-

ences also make use of collective intelligence, such as soci-

ology,63 or research areas such as behavioural economics,

the advancement of research findingswas and is essential.64

However, it is challenging that the bundle of shared expe-

riences, intuitions and knowledge does not correspond to

an addition of the contributed intelligence, but can exceed

the actual sum many times over due to emergence.65,66 This

emergence in social systems becomes apparent through the

reductive description as a social change due to the decision-

making action of an individual, but without wilfully bring-

ing about this change.67,68 This process is also described

as a single “invisible hand”48 that achieves a result in a

social system completely unintentionally. In this way, some-

thing like objective reason can assert itself in the secrecy

of a joint decision-making process, which the actors them-

selves were not even striving for at the time. The phe-

nomenon of emergence in turn stems from the concept of

self-organisation.

When it comes to researching the theory behind self-

organisation, the classical models of physics such as deter-

ministic or stochastic methods are not expedient. Even the

terminology used in physics does not seem appropriate,

which is why almost two hundred years after FriedrichWil-

helm Joseph Schelling’s (1775–1854) theories – which for the

first time ran counter to themechanical view of theworld at

the time – the search was on again for suitable terminology

andhis natural philosophywasused. Schelling’s theseswere

thus the impetus for numerous other hypotheses, research

questions and cognitive interests, including those relating to

process-based self-organisation.69

In the sky, I am now presented with the spectacle

of a swarm that seems to dance as a whole. The swarm

doesn’t seemmechanical to me, more like a perfectly chore-

ographed sequence of changing directions, widening dis-

tances and then immediately narrowing them again. No one

is left behind, no one falls off, no collisions, no runaways:

everything seems perfectly harmonised.

The findings relating to such a concept of self-

organisation can be traced back to Erwin Schrödinger

(1887–1961).70 The development of a resulting theory of

self-organisation, on the other hand, arose from Hermann

Haken’s (∗1927) so-called synergetics.71,72 This theory should

make it possible to analyse the conditions and processes of

self-organisation as well as the resulting states.73 The fact

that this endeavour was not unproblematic was shown by

the existing different concepts of self-organisation, each of

which also had a different definition. This led to a situa-

tion in which no universally accepted, comprehensive and

generally valid theory for self-organising systems could be

assumed.74–78

The fact that the phenomenon of collective intelli-

gence has already found its way into numerous scien-

tific disciplines has thus been sufficiently demonstrated.

Likewise, the situation of a non-existent definition of self-

organisation, to which the development of an HCO could

refer. Both the conceptual culture and the process itself,

as well as the possibilities for shaping this process, will be

presented in the following chapters in order to create an

opportunity to clarify the concept of self-organisation and

the resulting tasks for the HCI community.

3.1 Conceptual culture of self-organisational
processes

The transition from the mechanistic view of the world to

the later so-called modern physics was based on numerous

discoveries and insights. For example, the tunnelling effect

showed that elementary particles can also be found beyond

the potential barrier. At the same time, overall atomic sys-

tems are not sets of individual particles, but each individual

electron already changes the overall wave function of the

entire system.79 A common denominator in the definition

of complex systems was provided by the self-organising

dynamics at work.80

In this way, self-organising phenomena can overcome

the challenges of forming complex structures due to ther-

modynamic conditions in living organisms with the devel-

opment of non-linear physics or non-equilibrium thermo-

dynamics. Together with models of kinetics, this provides

a way to analyse and explain cooperative processes in a

physico-chemical or mathematically quantifiable way. Both

the dynamics and the genesis of such synergetic structures

as well as macromolecular biochemical evolutionary mech-

anisms are comprehensible in their approaches. The back-

ground is dissipative and fluctuation-induced instabilities
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and non-linear phase transitions: self-organisation.81 This

concept of synergetics gained ground because it defines

cooperation within a system by mathematically modelling

the transitions of non-equilibrium phases.72 Numerous

examples from biology, chemistry, physics or ecology fol-

low this approach to cooperation, such as cooperation in

markets, patterns in liquids, spiral arms of galaxies or con-

sensus building in superorganisms and neural networks.82

Cloud formations also follow this approach. Unfortunately,

no example that I could reproduce in the grey winter sky.

However, as proof, the flock of black starlings continues to

dance in front of the grey sky backdrop.

Last summer, I drove a superorganism out of the house,

which could also serve as proof: Ants. For example, the use

of ant colony optimisation (ACO) helped to find the short-

est route for transport robots and to meet the challenges

of designing supply chains in logistics.83 However, other

swarms have also provided inspiration, such as the princi-

ple of synchronising a school of fish to optimally use the flow

field of wind turbines in wind farms or autonomous NASA

exploration swarms,84,85 which are based on the behaviour

of bee colonies as shown in Figure 1; Similarly, autonomous

drone swarms in use as a fire-fighting unit in disaster con-

trol based on nature-analogue particle swarm optimisation

(PSO) as well as medical interventions using nanorobots,86

which as a group can provide minimally invasive and pre-

cise treatment.87,88

In addition, upheavals occurring in nature, culture

or human society, such as new orders or structures, can

also be seen as the result of self-organising processes.89 In

physics, such equilibrium phase transitions were consid-

ered early on as a form of self-organisation.14 The fact that

self-organisation is not a linear development of different

entities side by side is shown by the property of form-

ing cooperative links that generate a homogeneous struc-

ture that enables harmonious integration of all system ele-

ments.90 If this were not the case, the acrobatics presented

to me in the sky would resemble an air show with starlings

flying in parallel.

In the context of research into self-organising pro-

cesses, the focus was mostly on understanding the emer-

gence and maintenance of order.70,75,91 This led to the ques-

tion: How must a complex system be organised so that it

is able to organise itself?92 Without being able to answer

this question, it is obvious to want to coordinate systems

by means of hierarchies or a centre. However, a dynamic

nature with cooperating entities in complex structures,

which organises itself and constantly reinvents itself via

feedback and its synergy effects, is a complete contrast

to a deterministic, completely predictable nature.93 Thus,

a complex system is not an isomorphic, static structure,

whichmeans that it does not achieve thermal equilibrium.94

On the contrary, phase transitions generate interconnec-

tions and thus create new structures in favour of self-

organisation. For example, the perception of a complex sys-

tem can be understood as a learning process on a macro-

scopic level, which links to existing structures through

input, restructures them or forms them entirely as new pat-

terns.95,96 Just like the billowing black cloud in front of my

eyes.

Figure 1: Swarm of honey bees (Apis mellifera) during a joint decision-making process (1.1) and during the joint implementation of such a

democratically reached decision (1.2).
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If atomic systems do not form a mere aggregation of

particles, it can be assumed that other systems also have this

property. In the section above, self-organising dynamics in

complex systems were demonstrated, which can provide an

explanation for the formation of cooperative processes. For

example, as mathematical models of cooperation through

the concept of synergetics. Numerous disciplines follow this

approach and have been able to implement cooperation in

their dynamic systems without control via a centre using

examples from nature. From this it can be concluded that

an HCO could also be realised.

3.2 The process of self-organisation

But how exactly the process of self-organisation works will

be explained below. Systems, like swarms,merge their ongo-

ing processes, information and stimuli from both outside

and inside into a common database. On this basis, process-

ing such as the evaluation of input and existing information

is driven forward. The resulting output in the form of a

decision is made by the overall system at macro level.

This process of combining information and stimuli on

an internally distributed micro-level and the interweav-

ing of all opinions into a common consensus as well as

the resulting consensus behaviour as a single organism is

referred to as self-organisation. Self-organisation simulta-

neously contains both forms of chaos and order, which

makes the dynamic processes almost impossible to predict.

However, the various feedback loops between cause and

effect can be an indicator.97 Self-organisation takes place

in various successive phases, which can be observed in

natural systems, such as superorganisms,60 as well as in

human social systems. In a first phase, a system grows out

of a state of equilibrium in which it exchanges information

with its environment. Depending on the type of system, this

can be an exchange of energy, information or matter, for

example. The exchange between the environment and the

system increases continuously until the system reaches its

maximum capacity. A new phase of self-organisation then

begins, in which the system starts to become unstable. In

order to counteract this instability, the existing fluctuations

in the system are mitigated. In order not to miss the point at

which a new phase is triggered, the stability of the system is

continuously determined. Fluctuations that trigger positive

resonances in the system are further amplified by means of

positive feedback. This continues until a new formation of

the existing structure of the system becomes unavoidable

by means of bifurcation. The necessary new structure of

a system can neither be influenced nor predicted. In the

subsequent phase, in which the system has a new structure,

a greater capacity for exchange between the environment

and the system is created. However, this state will also only

be a phase, which will slip back into an imbalance towards

the end, as the capacity will also become too small. At this

point, the phases of self-organisation are repeated.98 The

transitions between the individual phases thus represent a

type of symmetry breaking inwhich a state of equilibrium is

to be restored in the system. Decisive for the new structure

at the macro level of the system is the grown-up consen-

sus of all entities.93 A frequently used example to illustrate

phase transitions is the laser. A laser beam is created due

to the coordination of its individual parts: the photons, as

soon as an externally supplied energy has increased to a

maximum in the system.99

Many successive bifurcations ensure continuous opti-

misation of the system’s organisation and increasing com-

plexity by means of constantly emerging new structures.

Thus, a continuous development takes place within a self-

organised system, which is kept going by the driving

phases.98 Due to this constant change in structures, individ-

ual structural elements, so-called organisation parameters,

are put to the test. If they prove to be conducive to the

formation of a new optimised structure, they continue to be

used and are thus retained. However, if individual elements

are no longer useful for the system, they are discarded,

similar to a selection. At the same time, it is possible that

different order parameters cooperate with each other and

are thus able to jointly optimise the system by achieving

greater structural complexity.100

The constant influx from outside onto a system creates

a process loop of reception, processing, transfer, cooper-

ation and integration, which is continuously run through

within the system. The resulting recursiveness is inherent

to all systems that behave in a self-organised manner, such

as autopoietic systems.101 This can be seen in self-organised

superorganisms, such as honey bee colonies, which reach

the limit of their absorption capacity at a maximum energy

input and therefore look for a new, larger home together as

a swarm. This decision-making process (see Figure 1) starts

all over again every time a limit is reached. In the same

way, once a decision has beenmade, a new decision-making

process begins again and again in humans. The implica-

tions, which occur both as a consequence and as a trigger

for new decisions, guide the decision-making process. As a

result, there is no end to a self-organising decision-making

process during the lifetime of natural systems. The interac-

tion between the processes inside the system and the cause

acting on the system allow the exchange process to run in

a continuous loop and at the same time drive the system

forward.97
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It can be stated that natural systems are always self-

organising systems, which therefore take care of their own

inherent functions and structures. They therefore offer a

concept for systemic autonomy, which is desirable in both

hybrid socio-technical and artificial systems. At the same

time, self-organised natural systems obtain their necessary

resources from outside and are thus in a constant connec-

tion,whichdrives the systems forward and enables develop-

ment, which is also desired as a systemproperty.90 However,

as the system structure appears to be neither influenceable

nor predictable, the question arises as to whether and how

a self-organised HCO can be influenced at all. And what can

be contributed to this in the context of a social anthropol-

ogy 4.0. We will address these questions in the following

chapters.

3.3 Interventions in a running system

Interventions in the existing process of a self-organising sys-

tem can, for example, inhibit the development of the entire

system. The affected system switches to a kind of emer-

gency mode, in which only the most necessary things are

done. However, the system no longer achieves any further

development under inhibition. The processes of a system

running in emergency mode then only serve to maintain

what already exists. In particular, the inhibition of fluctu-

ations stops the development of a system. At the same time,

the system then tries to achieve an equilibrium on its own,

which can exist despite the inhibition. In order to avoid

restructuring, it is necessary to intervene in the systemwith

the aim of reducing the critical mass required for a bifurca-

tion in the system. This is done, for example, by establishing

a flow as a substitute. This substitute flow is unavoidable in

order to force a system to remainwithin a certain structure.

This applies not only to the macro level of a social system,

but also to the micro level and thus to each individual actor

in a system.98

If interventions are made and result in a higher flow

between the system and its environment, these are consid-

ered positive. If, on the other hand, the flow or exchange

between the system and its environment or the flow within

the system itself is lowered or inhibited, the interven-

tions are labelled as negative. Successful intervention in

the system therefore supports development and thus self-

organisation, thereby ensuring the autonomy of the system.

Autonomy also includes the possibility of a system dissolv-

ing itself as soon as its purpose has been fulfilled. Thus, there

must be moderation in the intervention so that a system

can continue to organise itself despite an intervention.98 For

successful intervention, it is necessary to recognise which

conditions and relationships exist at all system levels and

in the exchange with the system environment and how

potential measures can have an effect.

In principle, it is not possible to determine the

behaviour of a self-organised system. However, it is possible

to steer the system in a desired direction. This is practised,

for example, by so-called travelling with bee colonies. Nei-

ther an individual bee nor the entire colony can be told

whichflower to collect nectar from. But it is possible tomake

offers to the system that are lucrative, as they promise a

higher flow or nectar yield. Nevertheless, this is no guar-

antee that the offer made will be accepted by the system,

i.e. the bee colony. If, for example, there is a more promis-

ing orchard in the neighbouring area of the offered rape-

seed field, the bee organism will reject the attempted influ-

ence. Self-organised systems thus always choose their future

structure themselveswithin the framework of a bifurcation.

In the same way, I will not be able to stop the flock of birds

in the sky or induce them to perform other dance figures.

However, it would be worth trying to distribute food in the

meadow to make the flock of birds an offer that might be

more useful than dancing energy in the sky.

For the coordination of HCO, this means that it is pos-

sible to influence it. Fluctuations in the system must not,

however, be prevented without creating a replacement. The

aim must always be to maintain a balance in the HCO. In

addition, an HCOmust not exist without a task or a purpose

so as not to run the risk of it abolishing itself and thus

not being available at a desired point in time. In the con-

text of social anthropology 4.0, an awareness of HCO must

therefore be created. This requires an understanding of the

organism, its structures and interrelationships as well as its

environment in order to be able to make suitable offers in

favour of a new structure and assess possible effects.

4 Human-computer organism

However, in order to create an awareness of the research

subject of HCO and thus also for the theory of social anthro-

pology 4.0, the hurdles of self-organization must also be

known. We now want to address these and outline them

using the natural example of swarms.

The validation of models for self-organisation was sim-

plified ormade possible in the first place by computer-aided

simulation, for example. However, this was only possible

at a time when the Brussels School102 was endeavouring

to justify self-organisation on the basis of examples.69,103

The necessarymachines ormeasuring devices for analysing

self-organising processes were either not yet available or

not yet in common use. The first descriptive models for
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demonstrating emergent capabilities offered precise con-

cepts of non-linear non-equilibrium thermodynamics. This

enabled a uniform description of organisational structures

in systems for different disciplines. Despite the fact that

these mathematical models were initially used in physical

chemistry and physics, which led to accusations of physical-

ism, the models can be said to be universally valid in terms

of their applicability. However, this assumes that both their

semantics and syntax are projected for the application and

can be assumed to be appropriate from an empirical point

of view.101,104–106

So what stopped science from projecting

self-organisation as a principle onto the human-machine

system for so long? Why did it cling for decades to its view

of HCI, which focuses on the human-computer pair and not

the entire system?

Due to the multi-layered nature as well as the pre-

vailing complexity, self-organisation only became a much

sought-after model at a late stage in order to make navi-

gating systems comprehensible and to be able to analyse

the existing dynamics and their tendencies.73 However, the

fact that even understanding the inherent processes of a

self-organising system is a challenge becomes clear to me

when I look at the flock of birds. I can hardly stop watching

the harmonious structure and yet neither I nor my artificial

colleague can predict which turn the birds will take next.

When it comes to analysing flocks or complex systems in

order to subsequently make use of the knowledge gained,

for example by making predictions, modelling and simu-

lation is helpful, but this is no trivial undertaking due to

themultidimensionality of the spatially and time-dependent

objects.107,108 This enormous challenge is immediately obvi-

ous to me and perhaps this is also part of the answer as to

why the interest in HCI research has focussed on one detail

of the human-machine system.

The simulation of an HCO should enable the coordi-

nation of dynamics by means of self-organising processes

as well as the resulting development of emergent capabili-

ties. To achieve this, however, a space must first be created

within the model in which the variable micro-state of each

actor is taken into account. In the subsequent calculation of

the model in favour of a successful simulation, this means a

permanent dynamic, which also constantly correlates anew.

But it is precisely this undertaking that enables the self-

organising symbiosis of human and machine, which I can

lead with my artificial colleague as a kind of HCO.

However, with regard to the challenges of modelling

self-organising processes, a look at the modelling of the

behaviour of swarms could have been informative. Swarms,

for example, are not defined as independent objects, but

by their self-organised behaviour. They are always asso-

ciations or systems that develop through communication,

swarmbehaviour and the resulting emergence. Examples of

this possible emergence include joint decision-making pro-

cesses, but also coordinated exploration, self-organization

or autopoiesis.109,110 This definition of swarms via their

behaviour and the associated exploration of collaborative

processes forms the basis for an understanding of the

communication flows and the resulting emergent capabil-

ities of social self-organising systems. Colonies of honey

bees (Apis mellifera) are social organism-forming insects,111

which together form a superorganism.112 Observing the

behaviour of a single honeybee outside the hive while

collecting pollen and nectar can give the impression of a

rule-based process that is continuously repeated. On closer

inspection, however, this potentially deterministic system

of thousands of foraging honeybees reveals numerous ran-

dom deviations and fluctuations. Nevertheless, a honey bee

colony exists as a whole with a complex organisational

structure. The entire system becomes physically visible as a

cluster of bees outside the hive (see Figure 1). Just as a flock

of birds appears in the sky as a large cloud of birds.113

Amodelling of consensus building in a swarmwas only

realised a few years ago in the form of a self-organising

network. This made it possible to highlight aspects and

mechanisms of self-organisation, which is essential in social

systems for a joint decision-making process and thus for

autonomous action and the solution of complexproblems.114

Numerous other capabilities, such as cooling or energy

and building material supply, show that superorganisms

only need minimal changes in the environment to create

a new process on a microscopic level. At the same time,

cooperative processes are also set in motion at the commu-

nity macro level, in which individual honey bees distribute,

position themselves and whirl their wings at the micro

level in the beehive in such a way that a jointly organised

flow is created, which draws fresh air from outside to the

organism in the beehive. This creates solutions to complex

problems bymeans of fluctuations at the micro level, which

become emergent skills, structures and tools at the macro

level. The ability to find solutions through emergence arises

from the tension between the complex system, the thermal

equilibriumand themathematical non-linearity of the time-

dependent evolution equation.93 The condition of a centre,

such as a decisive and thus controlling unit in the system, is

therefore no longer necessary. This results in the property

of autonomy for a self-organising system.

I realise that I am gradually getting cold and at the

same timemy artificial colleague starts to close the skylight.
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Thanks to the understanding of the principles of decision-

making in both humans and artificial systems, as well as

the findings relating to the natural phenomenon of self-

organisation, the focus of research has shifted from HCI

to HCO. This means that I can rely on a unique hybrid

community of humans and machines that has emerged as

a result of technological developments, particularly in the

field of artificial intelligence. The concept of the human

is no longer at the centre of interest as a placeholder for

all people, but rather the organism consisting of humans

and machines as a whole and its bidirectionally influenced

environment. The artificial actor can be customised to the

respective individual, which corresponds to the perception

of the individual human being with all its special effects.

At the same time, the human actor adapts to the strengths

and weaknesses of his artificial counterpart in a mutu-

ally enriching way. Thus, autonomous action is optimized

through self-organising processes in which strengths and

weaknesses are now balanced out in joint decision-making.

This chapter aims to provide a brief description of the

field of self-organisation with the hurdles that need to be

known in order to prepare a path that can be followed

by means of skilful manoeuvring to form self-organised

HCOs.

5 Structure of a human-computer

organism

Building on the previous chapters on the nature of self-

organisation, its processes and influenceability, and the

challenges arising from self-organising systems, the struc-

ture of an HCO will now also be addressed.

Based on the collective intelligence already mentioned

at the beginning of this paper, but also due to the scientific

disciplines involved and their respective intersections,63

one can already guess the complexity thatmust bemastered

in order to bring human and machine together as an intel-

ligent, self-organised organism.

As an autonomously acting HCO, it is essential to be

able to decide and act together. Complexity science itself,

which has developed various models for decision-making

processes, has in turn been developed from the scientific

strands since the 1940s: Mathematics of complexity, systems

theory, theory of complex systems, cybernetics and artificial

intelligence.115 These strands are already interwovenwithin

themselves through numerous ramifications. The theoreti-

cal foundations from the logic of joint decision-making are

the building blocks onwhich a sustainable joint decision can

grow.

Philosophy and sociology form the gap between ori-

entational and disposable knowledge in order to connect

the various building blocks of a collective intelligence. At

the same time, the integration of these scientific disciplines

expands the instrumental rationality112,116,117 of mere nat-

ural sciences, which is perceived as truncated. Although

an ends-means relationship118 remains assignable within a

collective intelligence as a predetermined pattern of action

at the micro level, the associated goal achievement at the

macro level fails to materialise due to the manifold links

within the HCO. The background to this is, on the one hand,

the complexity of an HCO and, on the other, the rules and

processes extracted from decision theory, psychology and

sociology.

Anthropology itself poses the question of the nature of

human, but as an overarching discipline it draws its results

from the interlinked findings of other, already mentioned

sciences of collective intelligence. The existing knowledge

and experience of the various disciplines can provide a

viable structure as a kind of “fabric”119 of the common

decision-making culture.

All of the scientific disciplines that are relevant to

anthropology are those that are closely related to humans.

In the scientific disciplines of collective intelligence, these

are biology, philosophy, psychology and sociology, and thus

four out of six sciences (see the gray paths in Figure 2).63

None of these disciplines alone is able to define the human

being or collective intelligence, although thematerial object

in all of them is the human being. Anthropology, on the

other hand, draws on all those sciences that use the human

being as amaterial object in order to track down knowledge

about the human being on a broad scientific basis through

a variety of formal objects, i.e. from multiple perspectives.

This is why anthropology includes the general perspective

of philosophy, which asks what is human, the social cogni-

tive interest of social science, the scientific attempt to fully

understand humans bymeans of the structures of their bod-

ies and the desire of psychology to understand humans on

the basis of their actions and thought processes. While the

termanthropology refers to the sciences relating to humans,

the sub-concept of social anthropology focuses on the study

of humans specifically as social beings and is therefore

of particular interest to HCO. Social anthropology 4.0 now

combines all these scientific findings of anthropology as

well as the more focused social anthropology of the human

actor.

However, in order to analyse an HCO in which the

opposing strengths and weaknesses of natural and artificial

actors come into play, knowledge of the artificial agent is

also essential. This can be achieved through the two other
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Figure 2: Roadmap of scientific disciplines in favor of social anthropology 4.0.

scientific disciplines of collective intelligence: computer sci-

ence and mathematics (see the black paths in Figure 2). At

the same time, this is similar to the claim of cybernetics

to create a system of self-organisation which, as a hybrid,

balances the opposing strengths and weaknesses of human

and machine in a joint process.

Here, too, a purely anthropocentricmode is not desired,

but rather the embedding of equally entitled actors in a

common hybrid system that interacts as a whole and is thus

jointly subject to the principles of its environment. Based on

digital anthropology,120 a research discipline that emerged

from social anthropology and analyses human-machine sys-

tems in digital space using a cybernetic approach, digital

anthropology can be expanded to social anthropology 4.0 in

the context of HCO. Anthropology 2.0 was already conceived

at the beginning of the 21st century as a further development

of the human body in the context of technological devel-

opments and as an upgrade of the human being through

technical innovations that characterise the human envi-

ronment.121,122 Research into HCI would therefore represent

a type of anthropology 1.0. Transhumanism, on the other

hand, could be defined as a dualistic approach to anthropol-

ogy 2.0with its connection to the humanbody. The approach

of anthropology 2.0 represents an optimisation of humans

through artificial intelligence, whereas social anthropology

4.0 represents research into the joint action of human and
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artificial actors as a unit in the form of the HCO. Behind

the term extension 4.0 lies the concept of web 3.0 with its

focus on the aspect of decentralisation on the one hand and

the processual logic of industry 4.0 on the other. Thus, the

foundations of industry 4.0 are: networking of actors aswell

as intelligence in the form of communication and the result-

ing autonomous self-control.123 An HCO thus combines all

these concepts as a decentrally networked intelligent system

that is self-organised and therefore autonomous. As social

anthropology 4.0, in which multi-optionality and transdisci-

plinarity characterise the environment and the framework

conditions of joint hybrid decision-making actions, the prin-

ciples of swarm intelligence can combine the tactical ratio-

nality of artificial intelligence with the strategic manoeu-

vres of intuition, creativity and the recognition of causality

in human groups and thus form excellent self-organised

and thus emergent systems that also act autonomously.

For the research field of HCI, the turn towards HCO and

thus towards social anthropology 4.0 means an expansion

of disciplines towards transdisciplinarity and its multiple

perspectives. In addition to the various scientific disci-

plines (connections in Figure 2), it is the factors (boxes in

Figure 2) that influence or enable joint decision-making as

the basis for an HCO. The flow from top right to bottom

left via cooperation, communication and coordination as

well as the paradigm of self-organization also points to the

essential factors that must be present for a self-organized

HCO.

With this realisation, I turnmy thoughts away from the

observed flock of birds for good and am grateful for my

ownflock-like connection, whichmy artificial colleague and

I maintain as HCO.

6 On the shoulders of the HCI

giants – process-driven

human-computer connection

Based on the attribution that the future is not what will

definitely come, but what we believe will come, this article

was written on the future of the human-machine connec-

tion. This assumption of how such a future can be shaped is

based on numerous transdisciplinary findings from scien-

tific research and practice.

Based on numerous findings from HCI, in which the

machine served as a tool, it was possible to develop an

HCT that assigns cognitive tasks to humans and/ormachines

and thus switches from a user-tool connection to a human-

machine hierarchy. From this hierarchy, the connection

between human andmachine can be further developed into

a self-organized cooperation and thus from a user-centered

to a process-oriented approach.

For research into the human-machine cosmos, this

means a change in paradigms from the symbolic user as

a shepherd over a herd of machines to a beekeeper of a

self-organized human-machine swarm. The aim is to cre-

ate a symbiosis of human and machine that can act self-

organized and thus autonomously in the form of an HCO.

The natural model for such a symbiosis is the swarm, which

acts as a whole by means of its collective intelligence and

its self-organized effects and processes. The fact that the

concept of swarms works is shown in practice, where social

insects have been making decisions and living together for

millions of years. However, mathematical models can also



M. Balthasar: Social anthropology — 287

prove that colonies of social insects can reach statistically

optimal decisions as a unit,124 which are then implemented

together (see Figure 1).

Similar to synchronization in the kuramoto model, the

individual actors cooperate dynamically to form a coherent

whole. Due to successful communication and cooperation,

a coordinating center is just as unnecessary as interven-

tions from outside the system. Similar to the primate brain,

feedback processes are responsible for creating a coherent

state.125,126

In order to help ensure that humans and machines

cooperate optimally with each other as a swarm and bal-

ance their opposing strengths and weaknesses, numerous

transdisciplinary findings are required, which must be dis-

covered, collected, brought together and made available in

the research field of HCI (Figure 3). The focus must be on

the processes between the individual players. To this end,

humans as social beings in a social context with machines

must be researched further in order to be able to utilize

the processes and structures that occur for the benefit of

HCOs. The underlying theory of social anthropology 4.0 can

thus be built up and supplemented piece by piece, providing

a viable framework of knowledge for the further develop-

ment of HCOs. For the scientific community in the research

field of the human-machine connection, this means that it

is both a producer of the product of social anthropology

4.0 theory and an HCO keeper for the functions and pro-

cesses betweenhumans andmachines at themicro level and

between HCOs and the environment at the macro level. It is

essential to analyze and understand the individual actor of

an HCO as well as the HCO itself as an actor (see Figure 4).

For academics, dealing with an HCO involves both

empirical and theoretical research. Thus, the interest in

knowledge revolves around the perception and behavior

Figure 4: HCO as a whole system at macro level as well as the individual

players at micro level.

of the individual actors, as well as their development over

time. At the same time, the social behavior of an HCO as

a whole need to be researched. For both research inter-

ests, internal and external conditions and factors, sequences

and consequences of processes and their changes must be

recorded and investigated. To this end, the processes of

HCOs can be captured as hybrid human-machine systems

using the means and methods of systems engineering. Both

actors, natural and artificial,must be consistently integrated

with all their strengths and weaknesses. In this way, mod-

els can be created that truly reflect the necessary aspects

of communication and cooperation as well as any neces-

sary coordination and the processes of self-organization

(see the factors at the flow in Figure 2). By means of such

system designs, for example, dependencies, relationships,

possibilities of influence or connections can be explored.

In favor of self-organization, the focus should not be on

the actors, but on the effects between them. At the same

time, a theory should be developed based on these hybrid

systems, which can be updated as social anthropology 4.0.

This social anthropology 4.0 should also focus on the rela-

tionships between the actors, the processes taking place and

the characteristics of the system as well as the influences

from outside the system.

Numerous problem areas outlined in this article can

help to understandhumanandmachine as a system in order

to develop innovative approaches that drive the system

forward. For example, the inclusion of afferent signals or

efferent reactions in feedback loops, the creation of trans-

parency about the uncertainty of subjective factors such as

phenomenal values or the creation of intransparency in the

case of information that is relevant for decisions but nev-

ertheless influences them, such as age or gender. Similarly,

indications of cooperation blockages can be visualized, for

example, as well as errors and consumption in calculations

or thinking. At the same time, unfavourable dynamics both

inside and outside the system can be made aware of and

thus neutralized by means of visualizations such as socio-

metric representations.

As a result, many of the tasks and questions raised will

probably have to wait a while for adequate answers, such

as the nature of the communication processes between the

hybrid actors. However, it remains important that an exist-

ing hybrid system, such as an HCO, should not be interfered

with from the outside. Only by creating offers or surrogates

can changes be made possible, but not guaranteed. This in

turn requires science, which creates an understanding of

the system, its structures and interrelationships aswell as its

environment in order to develop optimal offers and assess

potential effects.
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