DE GRUYTER OLDENBOURG

i-com 2020; 19(3): 251-264

Research Article

Florian Lehmann* and Daniel Buschek

Examining Autocompletion as a Basic Concept for
Interaction with Generative Al

https://doi.org/10.1515/icom-2020-0025

Abstract: Autocompletion is an approach that extends and
continues partial user input. We propose to interpret auto-
completion as a basic interaction concept in human-Al in-
teraction. We first describe the concept of autocompletion
and dissect its user interface and interaction elements, us-
ing the well-established textual autocompletion in search
engines as an example. We then highlight how these ele-
ments reoccur in other application domains, such as code
completion, GUI sketching, and layouting. This compari-
son and transfer highlights an inherent role of such intel-
ligent systems to extend and complete user input, in par-
ticular useful for designing interactions with and for gen-
erative Al. We reflect on and discuss our conceptual analy-
sis of autocompletion to provide inspiration and a concep-
tual lens on current challenges in designing for human-AI
interaction.

Keywords: autocompletion, interaction patterns, human-
Al interaction, user-centred Al

1 Introduction

Autocompletion is a well established key feature in many
applications today. It is most commonly used in search
engines, such as Google, Bing, and Elasticsearch, by mil-
lions of users every day. For instance, when a user types a
request into a web search, the system creates certain ex-
tended variations of the input and serves these back to
the user. The autocompleted variations represent a list of
search term suggestions. Then the user is free to choose
from these autocompleted suggestions. The selection can
be confirmed or edited further. In the context of search en-
gines, such textual autocompletion is often called query
autocompletion (QAC). In the context of software engineer-
ing, it is commonly referred to as autocomplete.

*Corresponding author: Florian Lehmann, Research Group HCI + Al,
Department of Computer Science, University of Bayreuth, Bayreuth,
Germany, e-mail: florian.lehmann@uni-bayreuth.de

Daniel Buschek, Research Group HCI + Al, Department of Computer
Science, University of Bayreuth, Bayreuth, Germany, e-mail:
daniel.buschek@uni-bayreuth.de

This approach is used in search engines to assist a user
in formulating a proper input. Moreover, it is used in web
browsers when typing a domain name, in code editors or
IDEs when writing source code, and in other software tools
where it is important to support the user in finding a pre-
cise input. Autocompletion can be considered a supportive
technology to declare an input. As a side effect, autocom-
pletion helps to make input faster [21]. However, the un-
derlying key concept remains: Autocompletion continues
and extends (partial) user input.

In light of this vital concept, we interpret autocomple-
tion as a generative approach embedded in a user inter-
face. When speaking of generative in the context of ma-
chine learning within this paper, we refer to those ap-
proaches that can be used to generate things. Methods to
provide such generations can be found in the field of ma-
chine learning as well. Despite classifying input to make
predictions, machine learning can also be used to gener-
ate data. Such generative models typically learn an under-
lying data distribution from which to sample new outputs.
For example, generative machine learning approaches can
complete pictures [31, 41, 46] and gestures [7], or extend
texts [8, 35, 40]. Implementing generative machine learn-
ing into interactive software tools can open new possi-
bilities. For instance, it can be used to transform digital
sketches into mock-ups [32], create sketches from text de-
scriptions [20], or to create digital wireframes from paper
based sketches [9]. Another real world example is Kite,! a
coding assistant based on the GPT language model.” It can
generate complete methods from just a signature of meth-
ods, and a short, descriptive comment.

Although the latter examples rely on machine learn-
ing models, it is not mandatory to do so for an applica-
tion to provide a generative feature. For instance, in the
case of query autocompletion, it could be built on n-gram
frequency statistics [29], and layout generation could be
based on integer programming [14]. In particular, when
analysing generative approaches from a perspective of

1 Kite: https://www.kite.com
2 Better Language Models and Their Implications (OpenAl GPT2):
https://openai.com/blog/better-language-models

https://doi.org/10.1515/icom-2020-0025
mailto:florian.lehmann@uni-bayreuth.de
mailto:daniel.buschek@uni-bayreuth.de
https://www.kite.com
https://openai.com/blog/better-language-models

252 =—— F.Lehmann and D. Buschek, Autocompletion for Interaction with Generative Al

user interaction, it is hard to distinguish whether the appli-
cation has machine learning implemented or not. The user
interface functions as an abstract layer and hides the tech-
nology in the background. Accordingly, in this paper we
regard “intelligence” as the ability to generate extended
and ranked output based on partial user input, regardless
of how this is technically achieved.

We assume that in the future, more and more appli-
cations will incorporate intelligent features. However, re-
cent work by Yang et al. [44] pointed out challenges in de-
signing applications with human-Al interaction. These in-
clude, for instance, the challenge of envisioning interac-
tion with Al, in understanding Al capabilities, and in craft-
ing interactions for unpredictable output.

Such challenges motivate us to reflect on — and learn
from - existing interaction solutions as one approach
towards informing future designs: In particular, in this
paper, we revisit autocompletion as a reoccurring and
reusable interaction concept for designing interaction
with generative intelligent systems.

We contribute a conceptual analysis and transfer in
three steps: First, we systematically analyse the underly-
ing interaction and user interface of textual autocomple-
tion, and extract its key conceptual elements.

Second, we identify these elements of textual au-
tocompletion in other domains that use generative ap-
proaches, highlighting opportunities to transfer this con-
cept and reuse it. Third, we reflect on potential benefits
of this transfer in the light of the challenges of designing
for human-Al interaction, and point out opportunities and
challenges for future work.

2 Related Work

This research originated in the context of a broad litera-
ture review on topics combining HCI and Al. Within this
research process we discovered similarities between au-
tocompletion and the capabilities of generative machine
learning approaches. In the following paragraphs, we
summarise relevant work related to these topics.

2.1 Research on Autocompletion

Autocompletion is a broad topic with different research
directions. A survey by Cai and Rijke [11] helps to gain
a first overview of the most important topics: They indi-
cate that most papers concentrate on the technical issues
rather than on the user interface or interaction.

DE GRUYTER OLDENBOURG

2.1.1 Frontend: User Interaction

Early HCI research on user interactions on textual auto-
completion was done in 1986 by Jakobsson [21]. In Jakobs-
son’s work, autocompletion was investigated as part of a
library information system. The evaluation showed that
textual autocompletion is more efficient to find entries
in an information system in comparison to using short-
codes and a code catalogue. Besides research on efficiency,
other work concentrated on engagement with the com-
pleted suggestions, for instance, how the input technique
and suggestion ranking influences the selections by the
users: Work by Mitra et al. [30] observed that users are
more likely to engage with the autocompleted suggestions
if the fingers have to travel longer between keystrokes or at
word boundaries. Moreover, they showed that top ranked
suggestions were preferred. A strong position bias was also
found by Hofmann et al. [17]. They used eye-tracking to
investigate how ranking positions affect user interaction.
In their study participants focused on top-ranked sugges-
tions regardless of whether the list war randomised or not.
Others investigated how the organisation of suggestions
influences user interaction [2]. For this, they compared al-
phabetical ordering with categorical ordering and com-
posite. Their findings showed group and composite organ-
isation to improve efficiency. Additionally, they suggest
how to design for different organisation strategies.

2.1.2 Backend: Ranking, Personalisation, Modelling

Ranking and personalisation is a major theme in research
on autocompletion with search engines. Models for im-
proving ranking suggestions are also of importance. Thus,
the core of research on backend functionalities for au-
tocompletion concentrates on algorithms. As a part of
that, research introduced an indexing data structure to
improve the performance of query processing [5]. Focus-
ing on adding context-sensitivity to algorithms, work by
Bar-Yossef and Kraus [4] introduced and evaluated meth-
ods to incorporate users’ search queries for suggestions.
As well, they investigated how it affects ranking. Such
context-sensitivity can be interpreted as personalisation of
suggestion results. Adding personalisation to algorithms,
research involved user-specific and demographic features
[36]. Selective personalisation was investigated by Cai and
de Rijke [10]. They showed that the typed prefix can in-
dicate when it is appropriate to display personalised sug-
gestion rankings. In another work [12], they introduced an
approach to diversify the suggestion results. They aimed

DE GRUYTER OLDENBOURG

to rank the intended term as high as possible while re-
ducing redundancy in the list. For this, they evaluated a
model that relies not only on current search popularity but
also on within-session context. Including time-series in a
model showed to further improve suggestion quality [37].
A comparison of eleven ranking approaches can be found
in work by Di Santo et al. [15].

User interactions offer further possibilities to model
autocompletion. For example, Li et al. [25] introduced a
two-dimensional click model to better explain the verti-
cal position bias and horizontal skipping bias. Incorporat-
ing the skipping behaviour into existing models they were
able to improve efficiency. Predictions on the search intent
can be done based on keystrokes and clicks [24]. Further-
more, interactions with apps can be used to rank sugges-
tions in search on mobile devices [48]. Instead of such ac-
tive user feedback, also implicit negative feedback, for in-
stance skipping suggestions or dwell time can be involved
to model suggestions. In particular, Zhang et al. [47] used
dwell time and position of unselected suggestions as fea-
tures for implicit negative feedback to adapt the ranking of
query suggestions.

2.2 Autocompletion Is not Only for Text

Beyond text, autocompletion can be applied to an array of
other domains, for instance, sketching, image editing, ani-
mation, and many more. It was integrated into a GUI-based
tool to create XML [27]. Bennett et al. [7] presented ap-
proaches for gestural autocompletion. They showed that
autocompletion improves gestures: These were shorter,
more accurate, and faster to execute. Others focused on
sketches and reported on a system to autocomplete digi-
tally sketched symbols [13, 39]. Further work proposed a
framework to enable autocompletion on value cells in re-
lational tables such as spreadsheets [49]. In the context
of code, Pythia [38] offers code completion based on a
neural net to rank method and API suggestions. Work on
creative domains demonstrated that an RNN, trained on
physics-based simulations, can be used to autocomplete
keyframe animations [50]. Also, Hsu et al. [19] presented
autocompletion for aggregate elements that can be used
for 2D planes, 3D surfaces, and 3D volumes. Feedback on
their approach showed that workload can be reduced and
the system encouraged participants to explore more vari-
ations.

F. Lehmann and D. Buschek, Autocompletion for Interaction with Generative Al

— 253

2.3 Generative Machine Learning Has
Autocompletion Capabilities

Within our literature research, we observed opportunities
for connecting autocompletion as a concept with genera-
tive machine learning, and vice-versa. In this light we high-
light some generative machine learning approaches in the
following. In particular they share the capability to make
partial user input more complete. One example for that is
work by Park and Chiba [33], using neural networks for tex-
tual autocompletion.

In general, generative approaches in machine learn-
ing are used to generate data based on prior observations,
and are thus different, for example, from classification
tasks. Generation has gained increasing attention with the
rise of Deep Learning: For instance, generative approaches
can be used to model language for various NLP tasks. Work
by Vaswani et al. [40] introduced Transformer networks.
A Transformer relies solely on self-attention, this replaced
recurrent layers which were commonly used with encoder-
decoder architectures in the past. The language model
GPT-3is based on a Transformer architecture [8], which is a
further developed version of GPT-2 [35]. GPT-3is considered
a state-of-the-art model that can fulfill different functions:
For example, it can generate news articles, translations, or
correct English grammar.

Such machine learning models can also be integrated
into creative applications: For example, Huang and Canny
[20] introduced a system to generate sketches from text in-
put. Another paper introduced Al tools that can help to
support Ul designers [32]. One of their tools can detect
UI elements on low-fidelity sketches, which then can be
transformed into a medium fidelity mock-up. Other work
presented a tool to transform analog sketches into digital
wireframes [9].

However, it is not always a must for intelligent, inter-
active applications to rely on machine learning. In a com-
parison within this paper, we involved, for instance, a tool
that is not based on machine learning, however, it can be
used to automatically solve (and thus generate/complete)
layouts for user interfaces [14]. In this paper, we follow a
user-centred view [43, 44]: In particular, we aim to take
a conceptual yet concrete step on the path towards user-
centred, interactive Al by examining an existing interac-
tive concept — autocompletion — in the “new” light of gen-
erative computational capabilities.

254 = F.Lehmann and D. Buschek, Autocompletion for Interaction with Generative Al

3 The Concept of Autocompletion

Our analysis starts by describing autocompletion on a con-
ceptual level. Thereafter, we go more into detail until we
have formally understood what autocompletion is. For de-
scribing autocompletion, we refer to the case of textual au-
tocompletion since this is currently its most common ap-
plication.

3.1 Overview and Delineation

On a conceptual level, autocompletion has the role to
continue, extend or complete digital content. This could
be any input made by a user. More specifically, such in-
put is processed by a system in order to generate an ex-
tended version. For example, in probabilistic terms, the
model samples continuations conditioned on the user in-
put. These different variations of the extended input are
then presented to the user. The user is then able to select
one of the suggestions or ignore them. Either the comple-
tion was successful, or the user decides to further specify
the original intent. Autocompletion allows for close-loop
interaction where the system reacts to the user and vice
versa.

As a software feature, autocompletion (also: auto-
complete) is used in search engines to formalise a query,
in content management systems to complete category
names, and on smartphones to predict the next word.

Similar software features are auto fill and auto cor-
rect [3]. Auto correct is sometimes implemented together
with autocompletion. This supports the user to correct the
faulty input and then suggests an autocompletion based
on the corrected input. This might increase the overall con-
venience for the user when working with textual input.
Auto fill instead aims to complete form input. A common
technique is to detect the form field identifiers and recog-
nise past input. If there was past input on similarly named
input fields, then the software will suggest to complete
the form automatically. Compared to auto correct, auto fill
might less often appear together with autocomplete.

3.2 Technical Approaches

Here we outline some technical approaches that can be
used to enable a computational system for autocompletion
capabilities.

DE GRUYTER OLDENBOURG

3.2.1 Approaches in Industry and Commercial Products

In commercial products, transparency on how systems
manipulate the input to complete it, is typically not offered
to the end-user. Algorithms are kept secret and the user in-
terface works as an abstract layer for the user to keep in-
teraction simple and hide the technical functions.

Insights from a practical perspective on how textual
autocompletion works, however, can be found in the elas-
ticsearch documentation. Elasticsearch is an open source
system that provides autocompletion capabilities out of
the box. Its documentation describes how n-gram fre-
quency statistics enable autocompletion.’

3.2.2 N-gram Frequency (non Machine Learning)

In textual autocompletion n-gram frequency statistics are
commonly applied. N-grams are substrings of a string with
a length of n. For example: “Hello World” split in n-grams
of length three, with a sliding window, would result in
“Hel”, “ell”, “l1l0”, “l0”, and so on. Strategies might differ
here, e. g. whitespaces could be removed first. Frequency
statistics are obtained by counting the appearance of the
n-gram across all known n-grams of search terms in the
database. The frequency can be used to determine a like-
lihood to pick a certain search term from the database.
Only search terms with a high likelihood are going to be
returned as suggestions to the user. There is also already
existing work on this topic [29].

3.2.3 Machine Learning

Machine learning and neural networks, are a broad topic.
Here, we will only mention which architectures can be
used for generating data. Moreover, we highlight those ap-
proaches that can be utilised to extend partial text or im-
age input.

In the field of machine learning there can be found
various methods to generate text. In some cases, such ap-
proaches still need to generate n-grams first. Instead of
just relying on frequency statistics, the n-grams are used
to train neural networks. These neural networks are then
used to generate completed versions of the partial user in-
put. As well, there exist models that do not need to split

3 Elasticsearch Suggesters based on n-grams: https://www.
elastic.co/guide/en/elasticsearch/reference/current/search-
suggesters.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters.html

DE GRUYTER OLDENBOURG

words into n-grams at all, for instance the continuous bag
of words model (CBOW) and skip-gram [28]. Work by Park
and Chiba [33] utilised a neural net with along short-term
memory (LSTM) architecture to generate the next word of
a query. The performance of a neural net depends on in-
put data and architecture. LSTMs and recurrent neural net-
works (RNNs) in general, turned out to work well with
text data [16]. However, latest advances in the field found
Transformer networks to be superior for textbased tasks
[8, 35, 40]. Models vary across domains. For instance, im-
ages can be automatically inpainted by utilising convolu-
tional neural networks (CNNs) [31, 41, 46]. Moreover, re-
cent progress in image generation often uses Generative
Adversarial Networks (GANs) (e. g. [22]).

4 Comparing Textual
Autocompletion with Generative
Approaches

We have described autocompletion on a conceptual level
and gave an introduction to technical approaches. Next,
we dissect the user interface and interaction patterns of
a practical example, namely textual autocompletion for
search queries. This is followed by comparing and con-
necting textual autocompletion to generative approaches.
These generative approaches are part of applications from
related work or real world applications: In particular, we
examine code completion,4 sketch completion (e. g. [32]),
and layouting (e. g. [14]) to textual autocompletion.

More specifically, we first provide background infor-
mation about the examples. Then we compare the user in-

4 PyCharm code completion: https://www.jetbrains.com/help/
pycharm/auto-completing-code.html

artific Search artific

artificial artificial
artificial intelligence

artificial neural network
artificial intelligence definition

artificial intelligence companies
report entry

F. Lehmann and D. Buschek, Autocompletion for Interaction with Generative Al

— 255

terface and finally the interaction. Parts of this comparison
are similar to our prior work [23].

4.1 Textual Autocompletion in Search
Engines (Query Autocompletion)

User Interface: We created a wireframe of an example of a

textual autocompletion in current search engines as seen

in Figure 1 on the left. It is a composition of three input

elements. The visual design can be adapted in a way that

the elements are merged and look like a single, reactive

element, as seen in Figure 1 on the right. Yet, the basic ele-

ments remain the same. In summary, textual autocomple-

tion consists of interface elements as follows:

— Input field for text (input)

— List to display completed suggestions (suggestion
area)

— Button to confirm final input (button)

Those elements can be varied across implementations. For
example, the list can be displayed horizontally, instead of
vertically, and it must not be a list at all. The suggestion
area can be any other element as long as it is suitable to
display an array of suggestions. As well, the confirm button
could be hidden at the beginning and fades in after text
was typed.

Interaction: The Ul may be structured as seen in Fig-
ure 2, example one. We observed the following interac-
tions and put them into a flowchart as seen in Figure 3,
chart one: The interaction starts with selecting the in-
put field. Then a letter is typed with the keyboard. Next,
the user can choose to confirm the input or select one of
the suggestions. After selecting a suggestion, the user can
again choose to confirm the input or select another sugges-
tion. Alternatively, the text can be further edited with the
keyboard by typing another letter or correcting prior input.
The interaction finally ends with a confirmation.

Q

artificial intelligence
artificial neural network
artificial intelligence definition

artificial intelligence companies

report entry

Figure 1: The figure shows the wireframes of textual autocompletion in the special case of query autocompletion. Both versions offer the
same functionality. They make partial user input more complete. On the left: A user interface composed of three components, an input field,
a suggestion area, and a button for confirmation. With loose interface elements. On the right: A more compact version with adapted visual
composition. The search button was replaced by an icon of a magnifying glass. The search field and the suggestion area are combined into
one field. Both examples show an option in the bottom right of the suggestion area to report inappropriate entries.

https://www.jetbrains.com/help/pycharm/auto-completing-code.html
https://www.jetbrains.com/help/pycharm/auto-completing-code.html

256 —— F.Lehmann and D. Buschek, Autocompletion for Interaction with Generative Al

DE GRUYTER OLDENBOURG

artificial intelligence
artifact
artifactory

=
=

o

©

Figure 2: Comparison of the user interface of 1) search query autocompletion and three examples that share the same underlying interaction
concepts, namely 2) code completion, 3) mock-up generation from sketches, and 4) layout solving. Coloured areas highlight similarities

in the user interface. Blue areas with white symbols indicate fields for user input, orange areas with dark grey symbols indicate fields for
completed input by the Al. Example three is inspired by [32], Example four is inspired by [14]. All examples have the main function to make

something (partial user input) more complete.

:

©

type letter

generate generate

finished? finished?

kl

select?

place object

on input fields

generate edit vector generate

finished?

edit vector?

finished?

Figure 3: Visualisation of interaction patterns as flow charts. Presenting 1) search query autocompletion and generative approaches, such
as 2) code completion, 3) mock-up generation from sketches, and 4) layout solving. Blue elements indicate user interaction, orange areas
indicate system interaction. Chart three relates to [32], chart four relates to [14]. Even though details in the interaction loops differ slightly,
they all share the similarity to have a generative intelligent system in the loop. The generative process aims to make partial user input more
complete. The final decision to accept a generated object is made by the user.

If a user finds a suggested entry inappropriate it can
be reported through a link in the bottom right of the sug-
gestion area.

The interaction flow is quite simple. Yet, it offers func-
tionality that is widely accepted for instance in search en-
gines. Because of its simplicity we find it promising to
transfer this basic flow to applications that offer human-AI

interaction. As well, it holds important information: It al-
lows for continuous interaction between the system (back-
end) and the user (through the frontend). Moreover, the fi-
nal control is left to the user. For more complex tasks this
interaction flow might have to be extended. Here, sugges-
tions could involve all sorts of contextual data, for instance
location, intent, or emotion. Output by the systems could

DE GRUYTER OLDENBOURG

be communicated to the user differently, for instance by an
agent through conversational approaches.

4.2 Code Competion in Code Editors / IDEs

We consider code to be a formal and structured type of text.
It offers informal and structural benefits over plain text
since specific parts have special functions. For example,
a word could be a method, variable, or class. This is used
by modern IDEs to enable for more convenient work with
code. One of modern IDEs core features is code completion
which is close to well-known textual autocompletion. But
services like TabNine’ and Kite® offer more intelligent fea-
tures, since they rely on neural nets. This is also part of
current research [38] to improve the code suggestions.

User Interface: A generalised user interface for auto-
completion in a code editor can be seen in Figure 2, exam-
ple two. The user enters code into a text area (blue). Sug-
gestions appear in a pop-up widget (orange). The widget
is placed below the cursor. The widget’s left edge aligns
with the input cursor. The widget displays an ordered list
of suggestions, e. g. method signatures. It is only visible af-
ter typing. A selected suggestion appears at the position of
the input cursor.

Interaction: The interaction for autocompletion in
code editors or IDEs is similar to textual autocompletion in
search engines. The interaction flow for autocompletion is
depicted in Figure 3, chart two. The interaction starts after
the cursor is set in the textarea. The users enters input via
the keyboard. This input is used to generate suggestions.
If the input is not finished, the user can decide to select a
suggestion, or ignore it. On selection, the suggested code
is placed at the position of the cursor. Now, the loop starts
over again.

4.3 Intelligent Ul Sketching Tools

Contrary to code completion, image generation systems
are not part of nowadays workflows in image and GUI edit-
ing tools. The latest efforts in research, however, show
progress in this area. For instance, completion of par-
tially drawn sketches [39] and transforming paper drawn
sketches to digital wireframes [9]. Similar to the latter, an-
other tool can generate medium fidelity mock-ups from
low fidelity sketches [32].

5 TabNine: https://www.tabnine.com
6 Kite: https://www.kite.com

F. Lehmann and D. Buschek, Autocompletion for Interaction with Generative Al

— 257

User Interface: For the description of the user inter-
face, we orient on already existing work [32], and depicted
the Ul in Figure 2, example three. The user sketches on a
canvas element (blue). In fixed intervals, a medium fidelity
mock-up appears on another canvas element on the right
hand-side (orange). Between the two canvas elements, a
button is displayed to manually trigger the generation of
the medium fidelity mock-up.

Interaction: The user starts sketching with a digital
brush or pen tool on a canvas element. That is when the in-
teraction starts, see Figure 3, chart three. The system gen-
erates in fixed intervals a medium fidelity mock-up consist-
ing of vector graphics. The user can then accept the mock-
up by saving it. Alternatively, the user can edit the vector
elements and save the mock-up afterwards. The user could
also modify the sketch to modify the mock-up.

4.4 Layout Generators

Similar to code completion for textual autocompletion,
solving layouts can be considered a specific problem
within the domain of graphical user interfaces. To ar-
range a user interface, layout possibilities increase with
the number of interface elements. There are logical con-
straints, however, that limit the variations. For final re-
sults, some variants are to be preferred over others. Lay-
outing itself is a time consuming manual task. Recently, an
interactive layout solving tool was introduced, on which
we orient for dissecting the user interface and interaction
[14].

User Interface: A generalised wireframe of the user
interface can be seen in Figure 2, example four. Pre-defined
interface elements are presented in a toolbar. These ele-
ments can be dragged and placed into a workspace area
(the blue area on the right-hand side). Here, the elements
are placed without depending contextually on each other.
On the left is another workspace area (the more narrow,
blue area). However, in that area, elements are arranged
to constrain the layout. A toolbar on the right (orange) dis-
plays all suggested layout solutions.

Interaction: The interaction starts when the user
places objects on the workspaces. Compare Figure 3, chart
four. After all objects have been placed, the generation is
triggered by the user manually, or in fixed intervals. Sub-
sequently, the layout solver combines the inputs and gen-
erates layout variations. The user is free to save layout sug-
gestions and finish interaction. If the layouts are not suf-
ficient, the user can decide to edit the objects to generate
new layouts. Alternatively, the user can place new objects
to start over with the interaction process.

https://www.tabnine.com
https://www.kite.com

258 = F.Lehmann and D. Buschek, Autocompletion for Interaction with Generative Al

4.5 Comparing the Ul of Generative
Approaches with Query Autocompletion

For the comparison of the user interface, we have visu-
alised simplified wireframes, as seen in Figure 2. These
wireframes help us to highlight the important parts of the
user interface. The blue regions indicate fields for user in-
put. The orange fields indicate the area for system gener-
ated suggestions. We observed similarities between all in-
terfaces. Even though layouts differ from example to exam-
ple, the function remains the same. All applications pro-
vide a field for input. Here, only partial and incomplete
input is done by the user. Then the system generates an
extended version of it. Where possible, the system gener-
ates a set of distinct suggestions for output. The only ex-
ception is example three in Figure 2, since the system out-
puts only one suggestion. All examples, however, share an
area where the generated output is presented to the user.
These areas are aligned near the input to allow the user
to parse the generated output easily. Moreover, all appli-
cations use the input and output fields as the primary ele-
ments for user interaction.

4.6 Comparing the Interaction of Generative
Approaches with Query Autocompletion

Similar to the comparison of the user interface, we have
also dissected the user interactions for each example and
visualised this in Figure 3. We relied on flow charts to vi-
sualise the interaction in a formal style. Blue elements in-
dicate user interaction, orange elements indicate system
operation. For our interaction flow charts, we oriented on
practical examples such as Google Search, Jetbrains Py-
Charm IDE, and examples from related work [14, 32]. As
seen in Figure 3, the interaction flows are all similar. How-
ever, they differ slightly between examples, chart one and
chart two in Figure 3 are good examples for these minimal
differences in interaction: After selecting a suggestion in
chart one, the system instantly generates another sugges-
tion. This is different to chart two where the user needs to
provide manual input before the next suggestion is gener-
ated. These are slight differences, however, they can influ-
ence the workflow crucially since both flows are very repet-
itive and happen very often when a user executes input.
We want to note, that our flow charts are abstract and gen-
eralised - specificimplementations use altered interaction
flows. Our visualisation however, highlights that all ap-
proaches have a generative intelligent system in the loop.
The user interaction starts with the operation found at the
top of each flow chart. Followed by the generative process

DE GRUYTER OLDENBOURG

operated by the intelligent system in the backend. After-
wards, the user has to decide to accept the result. If not,
the user can select a suggestion, further refine it, or ignore
it and feed new partial input to the generative process. The
“finish” switch is symbolic and indicates an end of the user
interaction. This could be finalising the input, e. g. by run-
ning a search query, starting a new line in a code editor,
saving a wireframe, or saving a layout. All examples are
user-centred since the user is always in control and can
decide whether to accept a generated object or not. In gen-
eral, the role of the intelligent system is to make the user
input more complete.

4.7 Aspects of Query Autocompletion

Based on our analysis of user interfaces and interaction
flows across different domains, as seen in Figure 2 and Fig-
ure 3, we derived five aspects that define autocompletion
from a user-centred perspective. These aspects can help
to inform and design novel applications which allow for
human-AI interaction. We summarise and highlight these
aspects additionally in Table 1. In the following, we de-
scribe them in more detail:

User Interface — The user interface serves as an ab-
stract visual layer that reveals the functions to the user
at the frontend. This way it is rather less important for
the user to understand the underlying technology in the
backend. A minimalistic user interface suitable for auto-
completion should hold a field for input and a suggestion
area. Generated objects should be placed near, but sepa-
rate from the input.

Workflow — The user interfaces allow for continuous
interaction between the system and the user. The system
generates suggestions interactively and can become also a
part of the workflow. The interaction between the system
and the user is continuous until the input is finally con-
firmed.

User Decision — The user can freely decide to accept
a suggestion or not. The suggestions can be ignored which
underlines the supportive and rather passive role of the
system. In case that the user ignores the suggestions, the
system keeps on generating new versions.

Editing — The user can freely edit a taken suggestion
until it fits the intent. The user can extend the suggestions,
or delete them. The system should be tolerant of errors, by
automatically suggesting corrections or informing the user
about an error.

Information — The user input is never considered
complete, always partial input is served to the system. The
underlying AI (backend) is conditioned to predict a more

DE GRUYTER OLDENBOURG

F. Lehmann and D. Buschek, Autocompletion for Interaction with Generative Al

— 259

Table 1: We identified five inherent aspects of autocompletion in interactive applications. Applications offering autocompletion help to make
partial user input more complete. We propose that these five aspects could be transferred to other interactive Al applications that offer

features to extend partial user input.

Aspect Description

User Interface

The interface holds a field for input. Generated objects are placed near the input.

Workflow One or more suggestions are generated interactively and are part of the workflow.
User Decision The user can decide to accept a suggestion or not.

Editing The user can further edit the suggestion object.

Information

Partial user input serves as input for the system. The Al’s prediction is conditioned on the input to extend it.

complete version of this partial user input. Information
can not only be retrieved from the explicit input, but also
from other implicit variables, such as dwell time.

5 Discussion

Here, we reflect on the described conceptual connections,
drawn between autocompletion and Al with generative ca-
pabilities, for integration of intelligent features in today’s
applications.

5.1 Understanding the Concept of
Autocompletion

With our analysis, we examined autocompletion on a con-
ceptual level. In more detail, we looked at the user inter-
face and the interaction but gave also brief descriptions
of the underlying technology. Because it is well-known
from search engines, we used text query autocompletion
as an example for autocompletion. Yet, our analysis goes
beyond textual autocompletion by considering other do-
mains and different approaches, such as systems that rely
on machine learning methods to generate wireframes from
digital sketches.

We found autocompletion to share similarities in the
user interfaces across domains, as well as a basic interac-
tion flow. We identified five aspects inherent to autocom-
pletion applications. With our comparison of query auto-
completion with other generative approaches, we demon-
strated that one role of intelligent generative systems is to
extend and continue partial user input.

Our research here is conceptual: We did not run a user
study or analyse empirical data. We rather analysed the
state-of-the-art of today’s applications which integrate au-
tocompletion. We outlined five aspects that are common
to applications completing user input: The user interface,
the workflow, the user decision, editing, and information.

A summary can be found in Table 1. These aspects can pro-
vide a high level starting point for interaction with appli-
cations capable of generating things. We particularly ex-
pect these to prove useful for designing computational (AI)
tools since they keep the focus on designing interactions,
not interfaces [6].

As a key aspect of this work, we revealed analogies
in graphical user interfaces and interaction flows between
query (textual) autocompletion and other intelligent, gen-
erative approaches. In terms of the user interface, we
looked for the function of an interface element and com-
pared it between applications, as seen in Figure 2. For this,
we disregarded the visual design. For real world deploy-
ments, this means that such interface elements may look
completely different but still serve the same function. Dif-
ferent factors could influence the visual design, such as
the type of data, alignment of the interface elements, input
modalities, device constraints, and so on. We suggest in-
terpreting the user interface as a rather abstract layer that
simplifies working with the underlying technology. If we
can understand the function of interface elements, then
we can transfer them to different domains, as recognised
for autocompletion here.

For the user interaction, we explicated them using
flow charts, as seen in Figure 3. The interaction between
the user and intelligent systems then can be understood as
a sequence of actions over time. By visually coding the op-
erations in the flow chart, we identified an interaction loop
in all examples. However, the flow charts capture only one
generalised interaction flow in each example. More vari-
ants might exist, depending on the use case and imple-
mentation. Still, we suppose the user-centred interaction
flow to be persistent.

In general, the detailed inspection of autocompletion
here demonstrates potential benefits and insights gained
from analysing and dissecting patterns in already existing
interfaces, interactions, and technologies.

260 —— F.Lehmann and D. Buschek, Autocompletion for Interaction with Generative Al

5.2 Generative Systems Can Be Used to
Extend and Complete User Input

We revealed an inherent role in intelligent generative sys-
tems by analysing autocompletion on a conceptual level
and underlining its function in different application do-
mains. This role is “to extend and complete user input”.
In the context of our work, we summarised different ap-
proaches as “intelligent” as long as they showed the capa-
bility to extend partial user input, and provide more com-
pleted suggestions to the user. For example, this could be
statistical methods from NLP, integer programming, or ma-
chine learning. Similar to the examples for autocomple-
tion we have examined in our analysis, such generative ap-
proaches from machine learning work with partial input
and generate extended data. Thus, one role of generative
machine learning is “to extend and complete user input”,
and it is not only limited to text data.

Looking ahead, for example, a neural net might gen-
erate a complete text document from only a few keywords.
In a scenario like this, we could assign at least one more
role to generative machine learning. For instance, the role
“to inspire the user”. This would make the role of the sys-
tem more active. At the same time, we would have to as-
sume a role change in the user. The user would rather be-
come an editor, instead of being an author. Besides text,
this might also be anticipated for other domains, for ex-
ample user interface design. Generative systems are able
to generate functional wireframes from paper sketches [9].
Taking this idea to a scenario where the user provides only
sketches and the system returns complete visual designs,
we assume the roles would change similarly to text gener-
ation.

Systems that merely provide autocompletion, how-
ever, are less active, more passive. We consider them to be
user-centred, since the user is in control of the system. The
system output depends on the partial user input. Further-
more, the user is free to decide to accept a suggestion or to
ignore it.

Considering the progress of machine learning over the
last years it might be possible that future machine learn-
ing models will increase in performance. Their capabilities
will improve, as well, tasks will be more complex. Given
the techniques and computational power is evolving as in
the recent past. This might open new possibilities and thus
it is likely that intelligent features will be implemented in
applications. We suggest to rethink the role of such sys-
tems in general, and how we want to integrate them into
our workflows in the future.

DE GRUYTER OLDENBOURG

5.3 Addressing Challenges in Human-Al
Interaction

As alluded to in the intro, it is a recognised challenge to
design for interactive applications of Al and recent work
[44] has summarised these design challenges. Here we ex-
amine three of them to reflect on and discuss in the light
of our work in this paper.

5.3.1 The Challenge of Envisioning Interaction with Al

Similar to our investigation of autocompletion in this pa-
per, we suggest to analyse already existing intelligent
tools for inspiration. Ideally, these can be dissected into
reusable interface and interaction patterns, as shown in
our example here. Developing such a set of interface and
interaction patterns over time might then facilitate com-
posing new interactions with intelligent systems.

5.3.2 The Challenge of Understanding Al Capabilities

The autocompletion pattern might also facilitate under-
standing of Al, concretely, by putting input-output map-
pings at the core of the interaction, thus making them ex-
plorable. First, the Al is fed with partial user input, which
the user can quickly vary and iterate on to explore “Al reac-
tions” and thus potentially develop a (tacit) understand-
ing of it, possibly similar to experiences with rule-based
systems. Second, autocompletion typically generates mul-
tiple variants as output. This might help the user to judge
Al capabilities, since it gives a glimpse at the AI’s potential
output space, especially also across repeated input varia-
tion/iteration. Third, autocompletion typically ranks out-
put, for example by probability, which might facilitate user
understanding of Al capabilities as it gives a simple way
of directly indicating the AI’s (relative) uncertainty in the
GUL

5.3.3 The Challenge of Crafting Interactions for
Unpredictable Output

The output of intelligent systems can be unpredictable
from time to time. For instance, intelligent systems might
generate text or images that are inappropriate to the user.
Autocompletion provides an example UI for addressing
this challenge in three ways: First, by design, it leaves the
final decision about the accepted content to the user. Sec-
ond, it shows multiple options, thus possibly including

DE GRUYTER OLDENBOURG

not only an “outlier” but also more appropriate alterna-
tives (or at least supporting the discovery of an “outlier”
as such). Third, as depicted in Figure 1, the autocomplete
UI easily affords to give explicit feedback on inappropri-
ate output. This way, a personalised filter could be created
over time or the signals could be used for the next training
iteration of a machine learning model to keep out inappro-
priate output in the future.

In summary, our suggestions on the design challenges
illustrate how a well-known Ul/interaction concept such
as autocompletion can be used as a conceptual lens and
starting points to design for interactive intelligent systems.

For realising this potential in practice we see the key
in collaborations between domain experts: This could help
to integrate intelligent features in future workflows within
applications. Moreover, this might simplify practical work
with machine learning as a design material. This is impor-
tant since machine learning is supposed to add complex-
ity to software architecture and interfaces at the same time
(e.g. Yang et al. [42]). This trade-off between functional
complexity and a simplistic user interface should be ad-
dressed when designing for intelligent systems. The com-
plexity should be reduced at least for the user of a human-
Al application.

5.4 Mixed-Initiative User Interfaces for
Human-Al Interaction

Beyond these design challenges, intelligent applications
offer great potential, for example, to support finding ideas
[1, 26, 45]. In general, we see the opportunity to connect
the ideas of this work. For instance, to sense of agency.
Especially for user-centred approaches, it is important to
measure how much the user feels in control over a tool.
Another aspect that deserves more attention is timing of
Al capabilities in interactive use. For example, timing of
updates in autocompletion are driven by the user (e. g. typ-
ing another character triggers updated completions). How-
ever, one might study when to offer autocompletion at all
(e. g. for text completion), since it also requires attention
(cf. [34]). This could be combined with research on nega-
tive feedback and error-tolerance. Negative feedback could
be used to infer actions to adapt the Al involvement at the
interface level accordingly.

Both timing and sense of agency could be examined
in particular in light of the concept of mixed initiative in-
terfaces [18]. Our analysis of autocompletion also already
connects to this — both user and Al system contribute to
the emerging digital content (e. g. query, text, image) via a
specific input-generation-selection loop (Figure 3).

F. Lehmann and D. Buschek, Autocompletion for Interaction with Generative Al

—_ 261

6 Conclusion

With this paper, we examined autocompletion on a con-
ceptual level and analysed its interface, interaction, and
technical elements. We identified reoccurring interface
and interaction patterns in autocompletion across sev-
eral domains, in particular going beyond the “traditional”
text query completion. For example, we recognised analo-
gies to autocompletion in Al-support for digital sketches
and layouting. Based on our conceptual analysis, we sug-
gested and discussed autocompletion as an inspiration
and conceptual lens on current challenges in designing for
human-Al interaction. With this work, we hope to provide
a pragmatic, concrete conceptual starting point to help en-
vision interaction designs with and for Al that can gener-
ate new things.

As future work, we plan to conduct experimental stud-
ies to empirically investigate the transfer and use of auto-
complete Uls for interaction with generative Al as concep-
tually extracted here. More broadly, the highlighted inher-
ent aspects of the autocomplete pattern further motivate
investigations in combination with topics from mixed ini-
tiative interaction, sense of agency, and timing.

Funding: This project is funded by the Bavarian State Min-
istry of Science and the Arts and coordinated by the Bavar-
ian Research Institute for Digital Transformation (bidt).

References

[1] Alberto Alvarez, Steve Dahlskog, Jose Font, Johan Holmberg,
Chelsi Nolasco, and Axel Osterman. Fostering creativity
in the mixed-initiative evolutionary dungeon designer.

In Proceedings of the 13th International Conference on

the Foundations of Digital Games, pages 1-8, Malmo
Sweden, August 2018. ACM. ISBN 978-1-4503-6571-0.
10.1145/3235765.3235815. URL https://dl.acm.org/doi/10.
1145/3235765.3235815.

[2] Alia Amin, Michiel Hildebrand, Jacco van Ossenbruggen,
Vanessa Evers, and Lynda Hardman. Organizing Suggestions
in Autocompletion Interfaces. In Mohand Boughanem,
Catherine Berrut, Josiane Mothe, and Chantal Soule-Dupuy,
editors, Advances in Information Retrieval, volume
5478, pages 521-529. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2009. ISBN 978-3-642-00957-0
978-3-642-00958-7. 10.1007/978-3-642-00958-7_46. URL
http://link.springer.com/10.1007/978-3-642-00958-7_46.
Series Title: Lecture Notes in Computer Science.

[3] Nikola Banovic, Ticha Sethapakdi, Yasasvi Hari, Anind K.
Dey, and Jennifer Mankoff. The Limits of Expert Text Entry
Speed on Mobile Keyboards with Autocorrect. In Proceedings
of the 21st International Conference on Human-Computer
Interaction with Mobile Devices and Services, pages 1-12,

https://doi.org/10.1145/3235765.3235815
https://dl.acm.org/doi/10.1145/3235765.3235815
https://dl.acm.org/doi/10.1145/3235765.3235815
https://doi.org/10.1007/978-3-642-00958-7_46
http://link.springer.com/10.1007/978-3-642-00958-7_46

262 —— F.Lehmann and D. Buschek, Autocompletion for Interaction with Generative Al

[4]

5]

(7]

(8]

191

[10]

[11]

Taipei Taiwan, October 2019. ACM. ISBN 978-1-4503-6825-4.
10.1145/3338286.3340126. URL https://dl.acm.org/doi/10.
1145/3338286.3340126.

Ziv Bar-Yossef and Naama Kraus. Context-sensitive

query auto-completion. In Proceedings of the 20th
international conference on World wide web, WWW ’11,
pages 107-116, New York, NY, USA, March 2011. ACM Press.
ISBN 978-1-4503-0632-4. 10.1145/1963405.1963424. URL
https://doi.org/10.1145/1963405.1963424.

Holger Bast and Ingmar Weber. Type less, find more: fast
autocompletion search with a succinct index. In Proceedings
of the 29th annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR
’06, pages 364—-371, New York, NY, USA, August 2006. ACM
Press. ISBN 978-1-59593-369-0. 10.1145/1148170.1148234.
URL https://doi.org/10.1145/1148170.1148234.

Michel Beaudouin-Lafon. Designing interaction, not interfaces.
In Proceedings of the working conference on Advanced visual
interfaces — AVI ’04, page 15, New York, NY, USA, 2004. ACM
Press. ISBN 978-1-58113-867-2. 10.1145/989863.989865. URL
http://portal.acm.org/citation.cfm?doid=989863.989865.
Mike Bennett, Kevin McCarthy, Sile 0’Modhrain, and Barry
Smyth. SimpleFlow: Enhancing Gestural Interaction with
Gesture Prediction, Abbreviation and Autocompletion. In
Pedro Campos, Nicholas Graham, Joaquim Jorge, Nuno
Nunes, Philippe Palanque, and Marco Winckler, editors,
Human-Computer Interaction — INTERACT 2011, Lecture

Notes in Computer Science, pages 591-608, Berlin,
Heidelberg, 2011. Springer. ISBN 978-3-642-23774-4.
10.1007/978-3-642-23774-4_47.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey

Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language Models are
Few-Shot Learners. arXiv:2005.14165 [cs], July 2020. URL
http://arxiv.org/abs/2005.14165. arXiv:2005.14165.

Daniel Buschek, Charlotte Anlauff, and Florian Lachner.
Paper2Wire: a case study of user-centred development of
machine learning tools for UX designers. In Proceedings of
the Conference on Mensch und Computer, MuC ’20, pages
33-41, New York, NY, USA, September 2020. Association

for Computing Machinery. ISBN 978-1-4503-7540-5.
10.1145/3404983.3405506. URL https://doi.org/10.1145/
3404983.3405506.

Fei Cai and Maarten de Rijke. Selectively Personalizing Query
Auto-Completion. In Proceedings of the 39th International
ACM SIGIR conference on Research and Development in
Information Retrieval, SIGIR ’16, pages 993-996, New York,
NY, USA, July 2016. ACM Press. ISBN 978-1-4503-4069-4.
10.1145/2911451.2914686. URL https://doi.org/10.1145/
2911451.2914686.

Fei Cai and Maarten de Rijke. A Survey of Query Auto
Completion in Information Retrieval. Foundations and Trends®
in Information Retrieval, 10(4):273-363, September 2016.
ISSN 1554-0669, 1554-0677. 10.1561/1500000055. URL

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

DE GRUYTER OLDENBOURG

https://www.nowpublishers.com/article/Details/INR-055.
Publisher: Now Publishers, Inc.

Fei Cai, Ridho Reinanda, and Maarten De Rijke. Diversifying
Query Auto-Completion. ACM Transactions on Information
Systems, 34(4):25:1-25:33, June 2016. ISSN 1046-8188.
10.1145/2910579. URL https://doi.org/10.1145/2910579.
Gennaro Costagliola, Mattia De Rosa, and Vittorio Fuccella.
Investigating Human Performance in Hand-Drawn Symbol
Autocompletion. In 2013 IEEE International Conference on
Systems, Man, and Cybernetics, pages 279-284, October
2013. 10.1109/SMC.2013.54. ISSN: 1062-922X.

Niraj Ramesh Dayama, Kashyap Todi, Taru Saarelainen,

and Antti Oulasvirta. GRIDS: Interactive Layout Design

with Integer Programming. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, CHI
’20, pages 1-13, New York, NY, USA, April 2020. ACM Press.
ISBN 978-1-4503-6708-0. 10.1145/3313831.3376553. URL
https://doi.org/10.1145/3313831.3376553.

Giovanni Di Santo, Richard McCreadie, Craig Macdonald, and
ladh Ounis. Comparing Approaches for Query Autocompletion.
In Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR
’15, pages 775-778, New York, NY, USA, August 2015. ACM
Press. ISBN 978-1-4503-3621-5. 10.1145/2766462.2767829.
URL https://doi.org/10.1145/2766462.2767829.

Sepp Hochreiter and)iirgen Schmidhuber. Long

Short-Term Memory. Neural Computation, 9(8):1735-1780,
November 1997. ISSN 0899-7667, 1530-888X.
10.1162/n€c0.1997.9.8.1735. URL http://www.
mitpressjournals.org/doi/10.1162/nec0.1997.9.8.1735.
Kajta Hofmann, Bhaskar Mitra, Filip Radlinski, and Milad
Shokouhi. An Eye-tracking Study of User Interactions with
Query Auto Completion. In Proceedings of the 23rd ACM
International Conference on Conference on Information and
Knowledge Management, CIKM 14, pages 549-558, New York,
NY, USA, November 2014. ACM Press. ISBN 978-1-4503-2598-1.
10.1145/2661829.2661922. URL https://doi.org/10.1145/
2661829.2661922.

Eric Horvitz. Principles of mixed-initiative user interfaces.

In Proceedings of the SIGCHI conference on Human Factors
in Computing Systems, CHI ’99, pages 159-166, New York,
NY, USA, May 1999. ACM Press. ISBN 978-0-201-48559-2.
10.1145/302979.303030. URL https://doi.org/10.1145/
302979.303030.

Chen-Yuan Hsu, Li-Yi Wei, Lihua You, and Jian Jun Zhang.
Autocomplete Element Fields. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems,
pages 1-13, New York, NY, USA, April 2020. ACM Press.

ISBN 978-1-4503-6708-0. 10.1145/3313831.3376248. URL
https://dl.acm.org/doi/10.1145/3313831.3376248.

Forrest Huang and John F. Canny. Sketchforme: Composing
Sketched Scenes from Text Descriptions for Interactive
Applications. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology,
pages 209-220, New York, NY, USA, 2019. ACM. ISBN
978-1-4503-6816-2. 10.1145/3332165.3347878. URL http:
//dl.acm.org/doi/10.1145/3332165.3347878.

M. Jakobsson. Autocompletion in full text transaction

entry: a method for humanized input. ACM SIGCHI

Bulletin, 17(4):327-332, April 1986. ISSN 0736-6906.

https://doi.org/10.1145/3338286.3340126
https://dl.acm.org/doi/10.1145/3338286.3340126
https://dl.acm.org/doi/10.1145/3338286.3340126
https://doi.org/10.1145/1963405.1963424
https://doi.org/10.1145/1963405.1963424
https://doi.org/10.1145/1148170.1148234
https://doi.org/10.1145/1148170.1148234
https://doi.org/10.1145/989863.989865
http://portal.acm.org/citation.cfm?doid=989863.989865
https://doi.org/10.1007/978-3-642-23774-4_47
http://arxiv.org/abs/arXiv:2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/arXiv:2005.14165
https://doi.org/10.1145/3404983.3405506
https://doi.org/10.1145/3404983.3405506
https://doi.org/10.1145/3404983.3405506
https://doi.org/10.1145/2911451.2914686
https://doi.org/10.1145/2911451.2914686
https://doi.org/10.1145/2911451.2914686
https://doi.org/10.1561/1500000055
https://www.nowpublishers.com/article/Details/INR-055
https://doi.org/10.1145/2910579
https://doi.org/10.1145/2910579
https://doi.org/10.1109/SMC.2013.54
https://doi.org/10.1145/3313831.3376553
https://doi.org/10.1145/3313831.3376553
https://doi.org/10.1145/2766462.2767829
https://doi.org/10.1145/2766462.2767829
https://doi.org/10.1162/neco.1997.9.8.1735
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/2661829.2661922
https://doi.org/10.1145/2661829.2661922
https://doi.org/10.1145/2661829.2661922
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/3313831.3376248
https://dl.acm.org/doi/10.1145/3313831.3376248
https://doi.org/10.1145/3332165.3347878
http://dl.acm.org/doi/10.1145/3332165.3347878
http://dl.acm.org/doi/10.1145/3332165.3347878

DE GRUYTER OLDENBOURG

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

31

10.1145/22339.22391. URL https://doi.org/10.1145/22339.
22391.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and Improving the
Image Quality of StyleGAN. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8107-8116, Seattle, WA, USA, June 2020. IEEE.
ISBN 978-1-72817-168-5. 10.1109/CVPR42600.2020.00813.
URL https://ieeexplore.ieee.org/document/9156570/.
Florian Lehmann and Daniel Buschek. Autocompletion as

a Basic Interaction Concept for User-Centered Al. 2020.
10.18420/MUC2020-WS111-328. URL http://dl.gi.de/handle/
20.500.12116/33507. Publisher: Gesellschaft fiir Informatik
e.V.

Liangda Li, Hongbo Deng, Anlei Dong, Yi Chang, Hongyuan
Zha, and Ricardo Baeza-Yates. Analyzing User’s Sequential
Behavior in Query Auto-Completion via Markov Processes. In
Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR
’15, pages 123-132, New York, NY, USA, August 2015. ACM
Press. ISBN 978-1-4503-3621-5. 10.1145/2766462.2767723.
URL https://doi.org/10.1145/2766462.2767723.

Yanen Li, Anlei Dong, Hongning Wang, Hongbo Deng, Yi
Chang, and ChengXiang Zhai. A two-dimensional click

model for query auto-completion. In Proceedings of the

37th international ACM SIGIR conference on Research &
development in information retrieval, SIGIR *14, pages
455-464, New York, NY, USA, July 2014. ACM Press. ISBN
978-1-4503-2257-7. 10.1145/2600428.2609571. URL https:
//doi.org/10.1145/2600428.2609571.

Antonios Liapis. Can computers foster human users’ creativity?
theory and praxis of mixed-initiative co-creativity. Digital
Culture & Education, 8(2):136-153, 2016. URL https://www.
um.edu.mt/library/oar/handle/123456789/29476.

Chunbin Lin, Jiaheng Lu, Tok Wang Ling, and Bogdan Cautis.
LotusX: A Position-Aware XML Graphical Search System with
Auto-Completion. In 2012 |EEE 28th International Conference
on Data Engineering, pages 1265-1268, Washington, DC, USA,
April 2012. |EEE. 10.1109/1CDE.2012.123. ISSN: 2375-026X.
Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient Estimation of Word Representations in Vector Space.
arXiv:1301.3781 [cs], September 2013. URL http://arxiv.org/
abs/1301.3781. arXiv:1301.3781.

Bhaskar Mitra and Nick Craswell. Query Auto-Completion for
Rare Prefixes. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management, CIKM
’15, pages 1755-1758, New York, NY, USA, October 2015. ACM
Press. ISBN 978-1-4503-3794-6. 10.1145/2806416.2806599.
URL https://doi.org/10.1145/2806416.2806599.

Bhaskar Mitra, Milad Shokoubhi, Filip Radlinski, and Katja
Hofmann. On user interactions with query auto-completion.
In Proceedings of the 37th international ACM SIGIR conference
on Research & development in information retrieval, SIGIR *14,
pages 1055-1058, New York, NY, USA, July 2014. ACM Press.
ISBN 978-1-4503-2257-7. 10.1145/2600428.2609508. URL
https://doi.org/10.1145/2600428.2609508.

Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi,

and Mehran Ebrahimi. EdgeConnect: Structure Guided

Image Inpainting using Edge Prediction. In 2019

IEEE/CVF International Conference on Computer Vision

F. Lehmann and D. Buschek, Autocompletion for Interaction with Generative Al

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[391]

[40]

[41]

—_ 263

Workshop (ICCVW), pages 3265-3274, Seoul, Korea

(South), October 2019. IEEE. ISBN 978-1-72815-023-9.
10.1109/1CCVW.2019.00408. URL https://ieeexplore.ieee.
org/document/9022543/.

Vinoth Pandian and Sarah Suleri. BlackBox Toolkit: Intelligent
Assistance to Ul Design. In CHI’20, Workshop on Artificial
Intelligence for HCI: A Modern Approach, April 2020.

Dae Hoon Park and Rikio Chiba. A Neural Language Model

for Query Auto-Completion. In Proceedings of the 40th
International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’17, pages
1189-1192, New York, NY, USA, August 2017. ACM Press.

ISBN 978-1-4503-5022-8. 10.1145/3077136.3080758. URL
https://doi.org/10.1145/3077136.3080758.

Philip Quinn and Shumin Zhai. A Cost-Benefit Study of Text
Entry Suggestion Interaction. In Proceedings of the 2016

CHI Conference on Human Factors in Computing Systems,
pages 83-88, New York, NY, USA, May 2016. ACM Press.

ISBN 978-1-4503-3362-7. 10.1145/2858036.2858305. URL
https://dl.acm.org/doi/10.1145/2858036.2858305.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,

Dario Amodei, and Ilya Sutskever. Language Models are
Unsupervised Multitask Learners. page 24, 2019. URL
https://cdn.openai.com/better-language-models/language_
models_are_unsupervised_multitask_learners.pdf.

Milad Shokouhi. Learning to personalize query
auto-completion. In Proceedings of the 36th international
ACM SIGIR conference on Research and development in
information retrieval, SIGIR *13, pages 103-112, New York,

NY, USA, July 2013. ACM Press. ISBN 978-1-4503-2034-4.
10.1145/2484028.2484076. URL https://doi.org/10.1145/
2484028.2484076.

Milad Shokouhi and Kira Radinsky. Time-sensitive query
auto-completion. In Proceedings of the 35th international
ACM SIGIR conference on Research and development in
information retrieval, SIGIR *12, pages 601-610, New York,
NY, USA, August 2012. ACM Press. ISBN 978-1-4503-1472-5.
10.1145/2348283.2348364. URL https://doi.org/10.1145/
2348283.2348364.

Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel
Sundaresan. Pythia: Al-assisted Code Completion System.

In KDD ’19: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’19,
pages 2727-2735, New York, NY, USA, July 2019. ACM Press.
ISBN 978-1-4503-6201-6. 10.1145/3292500.3330699. URL
https://doi.org/10.1145/3292500.3330699.

Caglar Tirkaz, Berrin Yanikoglu, and T. Metin Sezgin. Sketched
symbol recognition with auto-completion. Pattern Recognition,
45(11):3926-3937, November 2012. ISSN 0031-3203.
10.1016/j.patcog.2012.04.026. URL http://www.sciencedirect.
com/science/article/pii/S0031320312002063.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, tukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Proceedings of

the 31st International Conference on Neural Information
Processing Systems, NIPS’17, pages 6000-6010, Long Beach,
California, USA, December 2017. Curran Associates Inc. ISBN
978-1-5108-6096-4.

Yi Wang, Xin Tao, Xiaojuan Qi, Xiaoyong Shen, and Jiaya Jia.
Image Inpainting via Generative Multi-column Convolutional

https://doi.org/10.1145/22339.22391
https://doi.org/10.1145/22339.22391
https://doi.org/10.1145/22339.22391
https://doi.org/10.1109/CVPR42600.2020.00813
https://ieeexplore.ieee.org/document/9156570/
https://doi.org/10.18420/MUC2020-WS111-328
http://dl.gi.de/handle/20.500.12116/33507
http://dl.gi.de/handle/20.500.12116/33507
https://doi.org/10.1145/2766462.2767723
https://doi.org/10.1145/2766462.2767723
https://doi.org/10.1145/2600428.2609571
https://doi.org/10.1145/2600428.2609571
https://doi.org/10.1145/2600428.2609571
https://www.um.edu.mt/library/oar/handle/123456789/29476
https://www.um.edu.mt/library/oar/handle/123456789/29476
https://doi.org/10.1109/ICDE.2012.123
http://arxiv.org/abs/arXiv:1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/arXiv:1301.3781
https://doi.org/10.1145/2806416.2806599
https://doi.org/10.1145/2806416.2806599
https://doi.org/10.1145/2600428.2609508
https://doi.org/10.1145/2600428.2609508
https://doi.org/10.1109/ICCVW.2019.00408
https://ieeexplore.ieee.org/document/9022543/
https://ieeexplore.ieee.org/document/9022543/
https://doi.org/10.1145/3077136.3080758
https://doi.org/10.1145/3077136.3080758
https://doi.org/10.1145/2858036.2858305
https://dl.acm.org/doi/10.1145/2858036.2858305
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.1145/2484028.2484076
https://doi.org/10.1145/2484028.2484076
https://doi.org/10.1145/2484028.2484076
https://doi.org/10.1145/2348283.2348364
https://doi.org/10.1145/2348283.2348364
https://doi.org/10.1145/2348283.2348364
https://doi.org/10.1145/3292500.3330699
https://doi.org/10.1145/3292500.3330699
https://doi.org/10.1016/j.patcog.2012.04.026
http://www.sciencedirect.com/science/article/pii/S0031320312002063
http://www.sciencedirect.com/science/article/pii/S0031320312002063

264 =—— F.Lehmann and D. Buschek, Autocompletion for Interaction with Generative Al

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Neural Networks. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018. Curran Associates Inc.,
2018. 10.5555/3326943.3326974. URL http://arxiv.org/abs/
1810.08771. arXiv: 1810.08771.

Qian Yang, John Zimmerman, Aaron Steinfeld, and Anthony
Tomasic. Planning Adaptive Mobile Experiences When
Wireframing. In Proceedings of the 2016 ACM Conference on
Designing Interactive Systems — DIS ’16, pages 565-576, New
York, NY, USA, 2016. ACM Press. ISBN 978-1-4503-4031-1.
10.1145/2901790.2901858. URL http://dl.acm.org/citation.
cfm?doid=2901790.2901858.

Qian Yang, Nikola Banovic, and John Zimmerman. Mapping
Machine Learning Advances from HCI Research to Reveal
Starting Places for Design Innovation. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems
— CHI ’18, pages 1-11, New York, NY, USA, 2018. ACM Press.
ISBN 978-1-4503-5620-6. 10.1145/3173574.3173704. URL
http://dl.acm.org/citation.cfm?doid=3173574.3173704.

Qian Yang, Aaron Steinfeld, Carolyn Rosé, and John
Zimmerman. Re-examining Whether, Why, and How

Human-Al Interaction Is Uniquely Difficult to Design. In
Proceedings of the 2020 CHI Conference on Human Factors

in Computing Systems, CHI ’20, pages 1-13, New York, NY,
USA, April 2020. ACM Press. ISBN 978-1-4503-6708-0.
10.1145/3313831.3376301. URL https://doi.org/10.1145/
3313831.3376301.

Georgios N Yannakakis, Antonios Liapis, and Constantine
Alexopoulos. Mixed-initiative co-creativity. In 9th International
Conference on the Foundations of Digital Games, page 8,
2014. URL https://www.um.edu.mt/library/oar//handle/
123456789/29459.

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Generative Image Inpainting with Contextual
Attention. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5505-5514, Salt Lake City,

UT, USA, 2018. 10.1109/CVPR.2018.00577. URL https:
//ieeexplore.ieee.org/document/8578675.

Aston Zhang, Amit Goyal, Weize Kong, Hongbo Deng,

Anlei Dong, Yi Chang, Carl A. Gunter, and Jiawei Han.
adaQAC: Adaptive Query Auto-Completion via Implicit
Negative Feedback. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR *15, pages 143-152, New York,
NY, USA, August 2015. ACM Press. ISBN 978-1-4503-3621-5.
10.1145/2766462.2767697. URL https://doi.org/10.1145/
2766462.2767697.

Aston Zhang, Amit Goyal, Ricardo Baeza-Yates, Yi Chang,
Jiawei Han, Carl A. Gunter, and Hongbo Deng. Towards Mobile
Query Auto-Completion: An Efficient Mobile Application-Aware
Approach. In Proceedings of the 25th International Conference
on World Wide Web, WWW ’16, pages 579-590, Montréal,
Québec, Canada, April 2016. International World Wide Web
Conferences Steering Committee. ISBN 978-1-4503-4143-1.
10.1145/2872427.2882977. URL https://doi.org/10.1145/
2872427.2882977.

Shuo Zhang and Krisztian Balog. Auto-completion for Data
Cells in Relational Tables. In Proceedings of the 28th ACM
International Conference on Information and Knowledge
Management, CIKM *19, pages 761-770, New York, NY,

DE GRUYTER OLDENBOURG

USA, November 2019. ACM Press. ISBN 978-1-4503-6976-3.
10.1145/3357384.3357932. URL https://doi.org/10.1145/
3357384.3357932.

Xinyi Zhang and Michiel van de Panne. Data-driven
autocompletion for keyframe animation. In Proceedings

of the 11th Annual International Conference on Motion,
Interaction, and Games, MIG ’18, pages 1-11, New York, NY,
USA, November 2018. ACM Press. ISBN 978-1-4503-6015-9.
10.1145/3274247.3274502. URL https://doi.org/10.1145/
3274247.3274502.

[50]

Bionotes

Florian Lehmann

Research Group HCl + Al, Department of
Computer Science, University of Bayreuth,
Bayreuth, Germany
florian.lehmann@uni-bayreuth.de

Florian Lehmann is a doctoral researcher focusing on research com-
bining Human-Computer Interaction (HCI) and Artificial Intelligence
(Al). He is working in a junior research group led by Daniel Buschek
at the University of Bayreuth, Germany. He received his master’s de-
gree in Human-Computer Interaction from LMU Munich. He has also
a background in interactive media and electronics. In his research,
he investigates the interaction between humans and intelligent sys-
tems such as computational generative systems.

Bibliography e. g. see Google Scholar: https://scholar.google.com/
citations?user=akHOQhoAAAA|&sortby=pubdate

Daniel Buschek
Research Group HCl + Al, Department of
- Computer Science, University of Bayreuth,

Bayreuth, Germany
daniel.buschek@uni-bayreuth.de
/
Daniel Buschek leads a junior research group at the intersection
of Human-Computer Interaction and Machine Learning / Artificial
Intelligence at the University of Bayreuth, Germany. Previously, he
worked at the Media Informatics group at LMU Munich, where he
had also completed his doctoral studies, including research stays
at the University of Glasgow and Aalto University, Helsinki. In his re-
search, he combines HCl and Al to create novel user interfaces that
enable people to use digital technology in more effective, efficient,
expressive, explainable, and secure ways. In short, he is interested
in both “Al for better Uls” and “better Uls for Al”.
Bibliography e. g. see Google Scholar: https://scholar.google.de/
citations?user=TsVkUBWAAAA)

https://doi.org/10.5555/3326943.3326974
http://arxiv.org/abs/1810.08771
http://arxiv.org/abs/1810.08771
http://arxiv.org/abs/1810.08771
https://doi.org/10.1145/2901790.2901858
http://dl.acm.org/citation.cfm?doid=2901790.2901858
http://dl.acm.org/citation.cfm?doid=2901790.2901858
https://doi.org/10.1145/3173574.3173704
http://dl.acm.org/citation.cfm?doid=3173574.3173704
https://doi.org/10.1145/3313831.3376301
https://doi.org/10.1145/3313831.3376301
https://doi.org/10.1145/3313831.3376301
https://www.um.edu.mt/library/oar//handle/123456789/29459
https://www.um.edu.mt/library/oar//handle/123456789/29459
https://doi.org/10.1109/CVPR.2018.00577
https://ieeexplore.ieee.org/document/8578675
https://ieeexplore.ieee.org/document/8578675
https://doi.org/10.1145/2766462.2767697
https://doi.org/10.1145/2766462.2767697
https://doi.org/10.1145/2766462.2767697
https://doi.org/10.1145/2872427.2882977
https://doi.org/10.1145/2872427.2882977
https://doi.org/10.1145/2872427.2882977
https://doi.org/10.1145/3357384.3357932
https://doi.org/10.1145/3357384.3357932
https://doi.org/10.1145/3357384.3357932
https://doi.org/10.1145/3274247.3274502
https://doi.org/10.1145/3274247.3274502
https://doi.org/10.1145/3274247.3274502
https://scholar.google.com/citations?user=akHOQhoAAAAJ&sortby=pubdate
https://scholar.google.com/citations?user=akHOQhoAAAAJ&sortby=pubdate
https://scholar.google.de/citations?user=TsVkUBwAAAAJ
https://scholar.google.de/citations?user=TsVkUBwAAAAJ

	Examining Autocompletion as a Basic Concept for Interaction with Generative AI
	1 Introduction
	2 Related Work
	2.1 Research on Autocompletion
	2.1.1 Frontend: User Interaction
	2.1.2 Backend: Ranking, Personalisation, Modelling

	2.2 Autocompletion Is not Only for Text
	2.3 Generative Machine Learning Has Autocompletion Capabilities

	3 The Concept of Autocompletion
	3.1 Overview and Delineation
	3.2 Technical Approaches
	3.2.1 Approaches in Industry and Commercial Products
	3.2.2 N-gram Frequency (non Machine Learning)
	3.2.3 Machine Learning

	4 Comparing Textual Autocompletion with Generative Approaches
	4.1 Textual Autocompletion in Search Engines (Query Autocompletion)
	4.2 Code Competion in Code Editors / IDEs
	4.3 Intelligent UI Sketching Tools
	4.4 Layout Generators
	4.5 Comparing the UI of Generative Approaches with Query Autocompletion
	4.6 Comparing the Interaction of Generative Approaches with Query Autocompletion
	4.7 Aspects of Query Autocompletion

	5 Discussion
	5.1 Understanding the Concept of Autocompletion
	5.2 Generative Systems Can Be Used to Extend and Complete User Input
	5.3 Addressing Challenges in Human-AI Interaction
	5.3.1 The Challenge of Envisioning Interaction with AI
	5.3.2 The Challenge of Understanding AI Capabilities
	5.3.3 The Challenge of Crafting Interactions for Unpredictable Output

	5.4 Mixed-Initiative User Interfaces for Human-AI Interaction

	6 Conclusion
	References

