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Abstract: Novel shape-changing interfaces promise to pro-
vide a rich haptic experience for human-computer inter-
action. As a specific instance of shape-changing inter-
faces, Elastic Displays provide large interaction surfaces
that can be temporally deformed using force-touch. The
unique property of these displays is that they automati-
cally return to their initial flat state. Recently, several re-
view and position papers have stimulated a discussion to-
wards consolidating the knowledge about shape-changing
interfaces. The knowledge about Elastic Displays is sim-
ilarly scattered across multiple publications from recent
years. This paper contributes a task taxonomy based on
productive uses of Elastic Displays found in literature, on
the web, and in our interaction lab. This taxonomy empha-
sizes tasks, but also encompasses general aspects regard-
ing content types, visualization technology, and interac-
tion styles. All aspects of the taxonomy are illustrated us-
ing case studies from literature.

Keywords: Human-computer Interaction, Interaction De-
sign, Tangible Interaction, Organic User Interfaces, Shape-
changing Interfaces, Elastic Displays, Physics-based Inter-
action, Task Taxonomy

1 Introduction

Although human hands are universal tools, current
human-computer interaction (HCI) does not address their
power to a full extent. An important step towards lever-
aging the full potential of hands in HCI is the increased
research in the domains of tangible interaction [35] and
organic user interfaces [34]. The direct manipulation
paradigm and interaction metaphors found in everyday
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life explain the success of these approaches [2, 11]. The
goal is to provide rich sensory or force feedback and focus
less on visual perception. Users can perceive the impact
of their interaction in an adequate and haptic way. For in-
stance, shape-changing interfaces afford another spatial
dimension by deforming the interaction surface (cp. [33]).
This technology promises a both fascinating and sophis-
ticated user experience. However, this additional dimen-
sion introduces additional challenges for interaction with
data »in depth« [6]. While current systems only offer »sur-
face interactions«, future immersive data spaces will allow
users to grasp into them and shape them according to their
needs. A recent trend in the literature regarding shape-
changing interfaces is to consolidate knowledge and pro-
vide thorough overviews about open research questions
[1, 33]. This paper focuses on a specific instance of shape-
changing interfaces: Elastic Displays. These displays al-
low temporary deformations while returning to their ini-
tial flat state without the need of intricate mechanical se-
tups. Moreover, they can offer a large visualization and
interaction area in order to display vast amounts of data
contained in modern information visualizations. We con-
tribute a task taxonomy in order to give designers and de-
velopers insights into promising future applications. Our
task taxonomy consists of a task level, an interaction level,
a technology level, and a content level. A review of exist-
ing prototypes from literature shows how these levels are
combined.

2 Related Work

Rasmussen et al. [33] describe shape-changing interfaces
as using physical change as input or output, encom-
passing organic user interfaces [34] and tangible user in-
terfaces [35]. The available research concerning shape-
changing interfaces usually only contains the description
of the prototypes and few coherent implications for in-
teraction design. In addition, researchers rarely address
the perception and usability of such systems. Elastic Dis-
plays are a specific manifestation of shape-changing in-
terfaces. Elastic Displays return to their initial flat state
but are still passive in the sense that this behavior is not
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programmable. According to the taxonomy of Rasmussen
etal. [33], Elastic Displays change shape while maintain-
ing topology, only changing their form and not orienta-
tion, volume, texture, viscosity, or spatiality. Both input
and output are combined in a direct interaction. In order to
consolidate knowledge about interaction design for Elas-
tic Displays, Troiano et al. propose interaction models and
gestures [27] and Griinder et al. address a preliminary de-
sign space [9]. However, a holistic and practical taxonomic
approach is still missing.

Recently, Alexander etal. have contributed several
grand-challenges for shape-changing interfaces in gen-
eral, which also relate to Elastic Displays [1]. In this con-
tribution, we focus on theory building and application
and content design for Elastic Displays by proposing our
task taxonomy and reviewing existing applications. This
is just a first step in order to answer more of these grand-
challenges in the future, such as user behavior or design
challenges. Sturdee and Alexander have contributed a re-
cent broad attempt at classifying shape-changing inter-
faces, including liquid and hybrid prototypes [32]. In or-
der to avoid confusion between the technologies that sur-
round Elastic Displays, we propose a more coarse-grained
classification of only three different classes with their as-
sociated deformation property: Displays with a persistent
deformation, Actuated Displays with active deformation,
and Elastic Displays with temporary deformation (cp. [9]).
This classification provides a different view in compari-
son to the categorization of Organic User Interfaces into
deformable, shaped, and kinetic displays by Vertegaal and
Poupyrev [34]. Instead of the deformation properties, they
focus on how the user perceives and interacts with the dis-
play and its shape.

2.1 Persistent Deformation

The first category comprises systems that typically allow
deformation via sand, gels, or modelling clay and main-
tain shape-change. This includes flexible displays and also
systems projecting information on the surface. Transpar-
ent gels or modelling clay can also augment conventional
displays, making the visualization of data visible through
the gel. Examples for these systems are Xpaaand [15],
FoldMe [14], PhotoElastic Touch [23], or Softness Control
[24]. While such displays can be used in various scenar-
ios, there are no boundaries that restrict the interaction
in a meaningful way. Since infinite possibilities are con-
ceivable to interact, it is hard to define an intuitive and
general way of interaction and restrict the user from un-
intended manipulations. Moreover, the haptic sensation
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is limited to the properties of the substance that stays un-
changed during interaction. For instance, there is no active
feedback from gels relating to the actions performed by the
user.

2.2 Actuated Deformation

Secondly, actuated displays exist in a great variety in re-
search. They range from commercial Braille displays for
visually impaired people [10] to research prototypes such
as inFORM [5], Relief [8], Lumen [20], Actuated TUI [21],
and TableHop [22]. One of the main issues with actuated
displays is the mechanical complexity, which the high re-
alization costs reflect. Hence, this approach is appealing
but rather far away from wide adoption.

2.3 Temporary Deformation

Finally, Elastic Displays are situated between the two for-
mer groups. The elastic surface introduces a number of
constraints such as stretchability and tenseness. Com-
pared to actuated displays, Elastic Displays can be real-
ized with less effort. In the following, we focus on pro-
ductive applications found in literature using medium to
large-scale systems. Hence, we omit smaller screens such
as MudPad [12] or GelForce [28]. These displays are mostly
built with gels that provide less responsiveness compared
to the systems that we focus in our review. There are also
hybrid approaches that we do not consider in this paper
such as Obake [4], TouchMover [25], and the Hemispher-
ical Display [26] , combining actuated and temporary de-
formation.

Cassinelli und Ishikawa introduce a movie viewer with
their Khronos Projector [3] that allows manipulation of the
temporal dimension by deforming the surface. With the
FlexiWall system [18], different applications have been in-
troduced [30]: a map viewer showing different semantic
layers on geographical maps, a painting explorer that al-
lows analyzing the painting process through different ra-
diological scans made of an art piece, and a photo browser
that allows local application of different image effects.
Moreover, FlexiWall shows two approaches to investigate
big data clustering algorithms using either layers or a se-
mantic zoom [13]. The DepthTouch system [19] was used to
realize a product browser to search products by similarity
[31]. The Deformable Workspace [29] exhibits a 3D work-
ing environment, similar to the impress installation [7]
and the eTable demonstration [16]. ElaScreen [17] demon-
strates three distinct applications: a time domain viewer
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Figure 1: Zoom interaction illustrated by network graphs on FlexiWall [18] (left) and an example of Planar 2D data illustrated by a point
cloud [31] (right).

for graphs, a 3D scene navigation, and a viewer for force
directed graphs. For specific details, we refer to the cited
research. In the next section, we describe our task taxon-
omy that systematically addresses the main concerns for
designers and developers using Elastic Displays, which we
illustrate using the applications described above.

3 Task Taxonomy

This section describes our task taxonomy, which is in-
spired by Shneiderman’s Task by Data Type Taxonomy

TASK 1
Discover Relationships

TASK 3
Search Items

TASK 5

TASK 2
Understand Structures

TASK 4
Manipulate Data

TASK 6

I Increasing complexity

Make Decisions

Collaborative Work

for Information Visualization [36]. Our task taxonomy is
based on practical experiences with existing prototypes
and reviews of literature. Although the focus of the tax-
onomy is on user tasks that can be achieved with Elas-
tic Displays, a large part is concerned with the fundamen-
tal choices regarding the displayed content, the technol-
ogy for presenting this content, and finally the interac-
tion styles used to achieve the tasks (see Figure 2, left).
Hence, our task taxonomy consists of four different levels.
The vertical stacking indicates interdependencies for suit-
able combinations of content, technology, and interaction
levels. Tasks are independent from the choices made on
these lower levels. We indicate an increasing complexity

Application Review

INTERACTION

Hybrid

INTERACTION A INTERACTION B INTERACTION C
Layer Zoom Physics-based

CONTENT 2D
Planar

CONTENT 2.5D
Volumetric

CONTENT 3D

Spatial

INTERACTION D

Spatial

Khronos Movie Viewer [3] 1 A m 25D
impress 3D-Modeling [8] 5 D 1) 3D
> ElaScreen 3D Scene Navigation [18] 2 A i 2.5D
Deformable Workspace [31] 4 D ™ 3D
Flexiwall Image Effects [32] 5 A L 2.5D
ElaScreen Graph Visualization [18] 12 [ L1 2D
Flexiwall Painting Explorer [32] 12 A L) 2.5D
ElaScreen Time Domain [18] 1 3 A [ ] 2.5D
eTable 3D-Viewer [17] 35 A v 3p
Flexiwall Map Viewer [32] 1 2 5 A L 2.5D
DepthTouch Product Browser [33] 1 3 5 B c M 2D
FlexiWall Data Exploration [20] il BB B lc M 20
Flexiwall Big Data Layers [14] 1.2 5 6 A H 2.5D
Flexiwall Big Data Zoom [14] a2 B EE [\ 2.5D

Figure 2: Task taxonomy including different levels: task, interaction, technology, and data (left) and review of existing applications catego-

rized using the task taxonomy (right).
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of tasks and the interaction, technology, and content lev-
els on the horizontal axis of the diagram. For quick refer-
ence, we summarize how the reviewed application relate
to the taxonomy in Figure 2 on the right.

3.1 Content

Elastic Displays are appropriate for different kinds of con-
tent. This level is most fundamental to address when eval-
uating whether an Elastic Display is suitable for specific
data. We follow the data taxonomy that we first introduced
in [6].

3.1.1 Planar 2D

The Planar 2D category encompasses two-dimensional
data structures with different levels of detail or two-
dimensional structures that are dynamically rearranged
using different parameters. Typical use cases are graphs
such as ElaScreen’s Graph Visualization [17] or zoomable
data like FlexiWall’s Data Exploration [18] or Depth
Touch’s Product Browser [31] (see Figure 1).

3.1.2 Volumetric 2.5D

With this category we refer to 2D images (slices) that come
in different variations so that they can be stacked or lay-
ered (cp. [30], Figure 3), forming a semantic space regard-
ing a specific domain, usually time or semantic layers. A

p
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Semantic Depth Dimension (Exposure, Focus, Time, ... )
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concrete use case in the time domain is the haptic explo-
ration of paintings, revealing the evolutionary history of
the painting process (FlexiWall Painting Explorer [30]).
Hence, different stages of work and drafts can be explored
and compared. Similarly, ElaScreen’s Time Domain appli-
cation [17] is used to display the development of graph
data over time using specific parameters. Moreover, the
movie viewer using the Khronos Projector helps to under-
stand structures in movies concerning temporal and spa-
tial changes between scenes [3]. An example for semantic
layers is the FlexiWall Map Viewer [30], which is used to ex-
plore political or historical maps including satellite or traf-
fic data (see Figure 3). In the FlexiWall Image Effects appli-
cation [30], each slice contains a different manifestation of
an image effect such as position of the focal plane, expo-
sure, or recording technique (e. g. macro, infra-red, or x-
ray). The Big Data Exploration approaches presented with
FlexiWall [13] use different results of cluster algorithms for
the layered images.

To our understanding, this also includes content in
form of slices of three-dimensional structures, e. g. MRT,
CT, or range images. Natural zooming by using the depth
interaction is an intuitive interaction with volumetric data.
ElaScreens 3D scene navigation [17] is an example for this
type of volumetric data.

3.1.3 Spatial 3D

Finally, the last category comprises three-dimensional
scenes that are not structured in layers or slices, i. e. mod-
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Figure 3: Volumetric 2.5D content illustrated by image variations that form a semantic space (left) and an example for layer interaction with

stacked thematic maps in FlexiWall Map Viewer [30] (right).
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els of 3D space. By deforming the surface, true spatial data
can be explored and manipulated continuously. The De-
formable Workspace is a prime example for this content
[29]. Similarly, impress [7] and eTable [16] use spatial con-
tent.

3.2 Technology

On this level, we distinguish five different technological
concepts for making the content types described above ac-
cessible on an Elastic Display. As our review shows, usu-
ally only a single technology is used, except for eTable’s
3D-viewer that combines pixel-based blending with multi-
touch.

3.2.1 Image Sequences

The most basic concept is using image sequences that are
subsequently displayed according to different depth val-
ues. Only the depth value of the global maximum is com-
puted, ignoring the lateral position. Using this approach,
a large number of images can be used, and a smooth, sta-
ble interaction is achieved. The disadvantages consist of a
very limited user interface and a low expressiveness of the
interaction. Both the Time Domain Viewer from ElaScreen
[17] and the FlexiWall Big Data Layers application [13] use
this basic technology.

3.2.2 Pixel-Based Blending

As shown in previous work [18], this approach is based on
blending several images based on the depth image. This
approach is suitable for rapid prototyping using either pla-
nar or volumetric data. Disadvantages are the limited num-
ber of images and real user interface elements cannot be
used. However, the effect is appealing and is used most
frequently in the reviewed applications: Khronos Movie
Viewer, impress 3D-modelling, ElaScreen 3D Scene Nav-
igation, eTable 3D-viewer as well as FlexiWall Image Ef-
fects, Map Viewer, and Painting Explorer.

3.2.3 Vector Field

As exhibited by the DepthTouch system [19], a force sim-
ulation is achieved based on per pixel derivatives. This al-
lows true and natural flexible interaction metaphors. How-
ever, this approach suffers from an incomplete depth im-
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age analysis and a user interface that is difficult to adapt
to requirements that exceed the physical metaphors. Ad-
ditionally, manipulation of content is achieved mostly by
indirect interaction. The only productive application from
our review using this technology is ElaScreen’s Graph Vi-
sualization.

3.2.4 Single-Touch 3D

The basic interaction with a touch display — a single
touch - can easily be translated to Elastic Displays: The
finger specifies a point on the surface (touch) respec-
tively in space (Elastic Display). Single-touch interaction
is achieved by evaluating the global extremum of the sur-
face. This approach allows more sophisticated user inter-
faces and even mouse emulation to make traditional user
interfaces available. However, it only allows a single touch
and hence, there is a low expressiveness of the interac-
tion. The Big Data Zoom application using FlexiWall is the
only application in our review relying solely on Single-
Touch.

3.2.5 Multi-Touch 3D

The computation of local extremums of the depth image
analysis achieves multi-touch interaction on an Elastic
Display and interprets them as »multi-touch with an ad-
ditional dimension« (cp. [6]). Hence, existing multi-touch
gestures can be extended by evaluating the depth position
of the interaction (cp. [6, 27]). As a result, full-fledged user
interfaces are achieved. For instance, two fingers define a
line or distance, either in 2D on a multi-touch screen or in
3D in an Elastic Display. With three fingers, the user de-
scribes an area on the surface of a multi-touch screen or
a plane in case of an Elastic Display. With four or more
fingers (or a moving touch), the differences between both
technologies are more obvious: In the case of a static sur-
face, users describe an (irregular) line or area, on an Elas-
tic Display a complex relief is created. However, this ap-
proach requires a complex calibration procedure and due
to the involved depth sensors, it is commonly not very sta-
ble and positional accuracy is rather low. Current tech-
nology requires smoothing procedures, which in return
introduce considerable latency. However, several produc-
tive applications rely on Multi-Touch on the Elastic Dis-
play such as Deformable Workspace, eTable 3D-viewer,
DepthTouch Product Browser, and FlexiWall Data Explo-
ration.
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3.3 Interaction

On the interaction level, we distinguish different styles of
interaction that are closely related to the technological ap-
proaches described previously. Different interaction styles
can be combined as shown by FlexiWall Data Exploration
and DepthTouch Product Browser.

3.3.1 Layer

With this interaction style, insights about different struc-
tural levels of an information space and relationships be-
tween them can be gained. This is primarily based on pla-
nar content that is organized in image sequences. Due to
the simplicity of this approach, most of the reviewed ap-
plications use layer interaction: Khronos Movie Viewer,
ElaScreen 3D scene navigation, ElaScreen Time Domain,
eTable 3D-viewer as well as FlexiWall Big Data Layers, Im-
age Effects, Painting Explorer, and Map Viewer.

3.3.2 Zoom

With this interaction style, overview and detail techniques
can be realized. This includes geometric zoom using gi-
gapixel images and rich semantic zooms for abstract data,
e. g. with magic lenses. FlexiWall Data Exploration and Big
Data Zoom as well as the DepthTouch Product Browser use
zoom as primary interaction style.

3.3.3 Physics-Based

Exploration of physical phenomena such as gravity or
magnetism are realized with particle simulations and yield
an intuitive physics-based interaction. Usage of physic-
based metaphors is possible such as attraction and re-
pulsion forces, gravity, movement, collision, or mass
of objects. Examples for physics-based interaction are
ElaScreen’s Graph Visualization, FlexiWall Data Explo-
ration and the DepthTouch Product Browser.

3.3.4 Spatial

Three-dimensional data can be cut with intersection
planes, investigated by using perspective distortions, or
sculpted according to the display deformation. True spa-
tial interaction can be achieved using impress 3D model-
ing and the Deformable Workspace.
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3.3.5 Hybrid

Finally, hybrid approaches combine more than one inter-
action style, possibly also different technologies. For ex-
ample, the combination of zoom and physics-based inter-
action allows using forces to filter and semantic zoom to
visualize details. Layers and physics-based interaction can
exploit force-touch for navigation and layers to control an-
imations on specific items.

3.4 Task Types

The most important level in the taxonomy is the actual task
level. Our list consists of common tasks in HCI that have
been realized successfully on Elastic Displays. For each of
the task types, we mention general application domains.

3.4.1 Discover Relationships

The most basic task that can be achieved in an applica-
tion using an Elastic Display is to discover relationships in
the available data. Intricate structures can be visualized,
and relationships can be explored. Data visualizations all
too often contain innumerable items with manifold dimen-
sions and relationships. The resulting scatter plots or point
clouds can be displayed as spatial networks using Elastic
Displays (see Figure 1). In museums or during exhibitions,
Elastic Displays can be used to convey relationships very
effectively in an appealing way. Our review shows that nine
out of the 14 applications support this task.

3.4.2 Understand Structures

Closely related to discovering relationships is the under-
standing of more complex structures in a data set. Us-
ing the haptic user interface of Elastic Displays for edu-
cation is another usage scenario. Medicine or Geology are
suitable knowledge domains where interaction with volu-
metric data is particularly interesting. By creating cutting
planes, the location of objects, e. g. raw material deposits
or abnormal tissues can be identified. The advantage of us-
ing Elastic Displays is the ability to experience the spatial
location and distances more naturally. In general, the han-
dling of volumetric data is more intelligible because the
visual representation is facilitated by the haptic depth in-
teraction using the Elastic Display. An application in other
disciplines is also conceivable. Understanding structures
is supported by seven of the 14 reviewed applications.
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3.4.3 Search Items

With the different types of content, also search tasks
become relevant. Both exploratory searches with vague
search goals are possible as well as concrete searches with
clear properties in mind [37]. Deforming the surface is ben-
eficial for filtering or selecting subsets in the data, or gain
an individual perspective on the data, e. g. by defining a
cutting plane inside a 3D scatterplot. The product browser
using the DepthTouch system [31] is the prime example
showing how search tasks can be realized with an Elas-
tic Display. Four of the 14 reviewed applications are con-
cerned with search tasks.

3.4.4 Manipulate Data

Due to the ephemeral nature of the haptic interaction with
Elastic Displays, the actual permanent manipulation of
data items is a demanding task. To this end, actual multi-
touch needs to be implemented in a stable way. However,
this task is essential in domains such as product design.
In our review, we determined that only the Deformable
Workspace affords true manipulation of data.

3.4.5 Make Decisions

Data visualization on Elastic Displays can facilitate
decision-making processes. In urban development and ar-
chitectural visualization, numerous maps and views ex-
ist that depict aspects relevant for construction planning
(plans, ground plots, profiles, supply units, waste man-
agement, escape routes, energy plans, wiring diagrams,
etc.). Relating this information to maps often results in
massive visual clutter. Using semi-transparent plans is a
common solution to this problem. Elastic Displays can be
used to control the transparency of such information lay-
ers in the desired areas of the map. Hence, conflicts of the
different plans (e. g. building and civil engineering draw-
ing) can be identified without losing the overall view of the
plan. Another promising application is informing the pub-
lic about construction projects (civic participation), which
contains all relevant and important information resulting
in specific architectural decisions that would otherwise be
difficult to explain. Eight of our reviewed applications can
support decision-making.

3.4.6 Collaborative Work

Large Elastic Displays are suitable for teams to work on
problems. This kind of collaborative work can encompass
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several of the previous tasks, which are carried out indi-
vidually. For instance, in mechanical engineering, the vi-
sualization of schemata such as component diagrams, cir-
cuit diagrams, or flow diagrams can explain the setup of
complex systems, which is often challenging. In particu-
lar, when highly detailed information about the system is
necessary, users are often overwhelmed. Elastic Displays
can provide zoomable user interfaces that allow natural
adjustment of level of details. In the initial state, a clear
and well-structured overview of the system and its com-
ponent is provided. Further details of subsystems can be
viewed using the deformation of the surface. The depth of
the interaction determines the level of detail. In this way,
system details can be explored without losing the context
of the entire system. Since collaboration on specific prob-
lems is a very complex task, we only assessed that the
FlexiWall Big Data Zoom realizes a collaborative approach
to discuss clustering problems.

4 Conclusions and Future Work

The goal of this contribution is the consolidation of the
available knowledge on Elastic Displays in order to facil-
itate the creation of new applications that leverage all the
potentials of this new display format. To this end, we es-
tablished a task taxonomy and described the feasibility of
Elastic Displays for several application domains. The tax-
onomy can be extended by adding more general user tasks.
Further additions and modifications to Elastic Displays in-
clude the use of tangibles, more diverse surface structures
as well as the overall design and form factors.

However, there are several aspects impeding broad
use of these new displays. Most prominently, the preci-
sion in interaction is severely limited due to tracking is-
sues. Time-critical tasks are hard to realize since the ap-
plications need to be fault-tolerant. Both software and
hardware need to be consolidated and optimized for pro-
ductive use. Hence, we will work on a modular software
framework that will considerably accelerate the applica-
tion development for Elastic Displays. Moreover, making
the necessary hardware available in suitable construction
kits consisting of frame modules and exchangeable cloths
is another crucial task. However, we also envision novel
hardware developments that will lead to smaller form fac-
tors and a broad adoption of the technology.
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