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Abstract: The lightweight alloy sheet materials have been
widely used in industries such as automobiles, aviation,
and aerospace. However, there are huge challenges in the
structural joining process. Likewise, industries are probing
new technologies and are rapidly adapting to more complex
light alloy materials. The ultrasonic metal welding is a reli-
able solid-phase joining technology, which has incompar-
able development prospects in the high-strength joining of
lightweight alloy sheet materials. This article summarizes
the research progress of ultrasonic welding of aluminum
alloy, magnesium alloy, and titanium alloy thin plates in
recent years. The key features of this review article are
the ultrasonic welding process, advantages, applications,
and limitations. It introduces the welding process para-
meters to explore the breakthroughs for straightforward
direction. Furthermore, to strengthen the phenomena, the
current state of the ultrasonic welding of lightweight alloys
and their future perspectives are also reflected.

Keywords: ultrasonic metal welding, lightweight alloys,
welding process parameters, similar metals, dissimilar
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1 Introduction

Contemporary, with the increasing demand for lightweight
structures and light alloy sheet materials such as alu-
minum alloys, magnesium alloys [1,2], and titanium alloys
have begun to be widely used in manufacturing industries
[3]. The lightweight alloy sheet materials are increasingly
used in automobiles, aviation, aerospace, sports, and many

other applications as compared to conventional metals
[4–8]. This is due to lower weight, specific stiffness, corro-
sion resistance, and high fatigue life compared to metals
[9–12]. However, traditional spot welding has disadvan-
tages such as gaps, cracks, and brittle compounds in light
alloy connections which reduce the quality and reliability
of the welded joints [13–18]. Therefore, it is imperative to
develop new technologies for light alloy sheet material
connection [19–23].

So far, magnesium, aluminum, and titanium are con-
sidered the light metals of the commercial sector and play
a very strategic and important role in the development of
the economy [24]. Similarly, their densities of 1.7, 2.7, and
4.5 g·cm−3 range from 19 to 56% of the densities of older
structural metals such as iron (7.9) and copper (8.9) [25–29].
The aluminum has a low density which means it is light
and easy to move from one place to another. Therefore,
lightweight metals are the preferred choice when building
airplanes for this powerful reason [30–33]. The aluminum
material is also flexible and easy to use for lighter body
shapes due to its lightweight properties. Therefore, this prop-
erty makes it the perfect choice for manufacturing [4,34–36].
The aerospace industry relies heavily on alloy 7075 which is
one of the highest strength lightweight aluminum alloys
[37–42]. Likewise, alloy 2024 has a strength-to-weight ratio
that is its outstanding feature and is used in many manufac-
turing parts that will be subjected to high levels of stress
[43,44]. Additionally, alloy 7075 can be heat treated if needed
for additive manufacturing. Literally, 6061 aluminum alloy
sets the standard due to its specific properties such as light
weight, medium to high strength, and economical material
[30]. Likewise, some of the alloys were previously manufac-
tured from aluminum alloy 6061. These metals had the pro-
blem of stress corrosion cracking while being subjected to the
ultrasonic welding process [45]. However, the addition of
chromium to these alloys provides them with corrosion resis-
tance and increases manufacturing quality. The inherent
strength of titanium metal will require a smaller portion of
it, although titanium is about two-thirds times heavier than
aluminum. In fact, studies need a fraction of the amount of
titanium to get the same physical strength [6,46,47]. Wewould
take aluminum after it has been ultrasonically welded. The
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titanium alloy is a light but not super strong element when
the weight of low carbon steel is about 45%. Titanium alloy is
usually mixed with other metals to make it super stronger.
Themetallurgists had tried tomix titaniumwith free iron and
also together with vanadium and aluminum 50 years ago
[48,49]. Similarly, magnesium is the eighth most abundant
metallic element in this universe. It is well known that mag-
nesium is either extracted from the ocean or obtained from
minerals such as in the form of dolomite or magnetite
[35,50–52]. It is further considered lighter than titanium and
aluminum. This is due to its unique physical properties,
shape, and high cost [53,54]. It is used in the high-end frame
market for interior designers of many buildings [55]. Like-
wise, titanium is considered much lighter than copper metal.
In the market, titanium is much more expensive than copper
metal. However, copper metal is a better conductor of heat
than titanium [56–58].

The industrial sector is looking for the cheapest and
most cost-effective method of joining similar and dissim-
ilar metals. So, the ultrasonic welding process is a well-
known and straightforward method for joining different
materials to provide an effective and advantageous way
for various industries such as aerospace and automotive
[59–62]. This review article reports a detailed literature
study regarding metallic alloys and their welding perfor-
mance based on the ultrasonic welding process. It is stated
that the advantages of using ultrasonic welding over con-
ventional joining methods for automotive applications such
as the car industry are also thoughtful and cost-effective.
The important characteristics and physical parameters of
ultrasonic equipment considered useful for ultrasonic welding
machines are discussed in detail in this review study. More-
over, the different process parameters for different metal
alloys explained the weld quality, fatigue, and cracking beha-
viors of the materials. We present a detailed survey covering
ultrasonic metal-to-metal welding and also provide some lit-
erature on metals to other materials. New efforts to join dis-
similar metals are presented, which may be of considerable
interest to a scientific and industrial community to refer to for
new ideas in the future. The recommendation for future
research directions based on the research gap in the field of
ultrasonic welding technology is also discussed in the last part
of the article.

1.1 Joining techniques for lightweight alloys

The lightweight metals are used to manufacture high-
strength composite parts such as forming aircraft wings,
motor vehicles, or motor car bodies that require a large

and complex mould. Since, this means a significant increase
in the cost of automobiles. However, such a complex part
can be produced through the assembly of small parts using
various joining techniques. There are several joining tech-
niques used to join similar and dissimilar lightweight metal
materials as shown in Figure 1. For aluminum alloys, the
strength of the clinching joint is probably 2,000 N which
exposes its weak behavior [63]. The strength of the clinching
joint has many economic advantages compared to SPR
because it does not use rivets. This is a cost-effective method.
However, the disadvantage of the clinching joint is that it
has low strength and cannot be applied in many industrial
processes [64–66]. The results in the literature state that the
strength increase is more than 200% compared to the SPR
process but still not enough. So it shows that the welding
results are not useful for the manufacturing industry. The
bar extrusion needs high initial cost or setup for joining two
similar or dissimilar metals. Likewise, high compressive force
is required to initiate the process [67]. So, it is not easy to
implement bar extrusion at the commercial level. The cost of
hot and cold forging for heat treatment is very high and they
have a less precise dimensional tolerance including the risk of
distortion and residual stresses [32,67,68]. The main disadvan-
tage of friction stir welding is the creation of holes or voids
when welding similar or dissimilar specimens. At the
joints of the spikes, holes are created to make the speci-
mens weaker in the specific position. The stress concen-
tration also increases due to the positions of the voids in
the riveting joints. Likewise, hydroforming is capable of
producing complex joint shapes in the industrial sector
but must exert high pressure which makes industrial pro-
ducts very expensive [64].

The conventional methods used in the industry for
assembling a large number of light metals are mechanical
fastening using rivets and bolts, joint co-consolidation, and
chemicals [69–72]. Lightweight metals joining methods
namely riveting and rolling, gluing, friction stir welding,
and ultrasonic welding are the most common joining tech-
niques in the industry [73,74]. Ultrasonic welding has
emerged in recent years as a new type of solid-phase
welding technology which is suitable for high-strength
joints of light alloy sheet materials [75]. Similarly, the ultra-
sonic welding method is more efficient for joining metals
compared to conventional methods [76]. The benefits of
using the ultrasonic welding process are that it has a
wide range of applications in the automotive industry. It
can be applied to the welding of a variety of combined
materials and can further perform rapid spot welding
and continuous welding [77]. The ultrasonic welding has
incomparable advantages in welding the similar and dis-
similar metals compared to mechanical fastening methods.
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Ultrasonic welding itself can clean oxide films from the
surface of the workpiece. So the surface cleanliness of
the workpiece is not high and a small amount of oxide
film and oil stains are allowed [78,79]. Moreover, only
high local temperature is generated during welding and
there is no need to cool the weld. The welding deformation
is small and the welding process does not require the par-
ticipation of flux and external sources of heat. There are no
welding slag and gas residue during the operation [80]. In
addition to the above-mentioned pros of ultrasonic welding,
there are still some challenges in the design, process manu-
facturing, and quality inspection of the acoustic system [81].
Figure 2 illustrates the different perspectives of this review
study. The narrative regarding the wide range of applica-
tion, advantages, and some of the main challenges is dis-
cussed in the flow diagram. At present, ultrasonic metal

welding mainly includes four series: ultrasonic metal spot
welding, wire harness welding, metal sealing and cutting,
and metal roll welding [82–85]. It is widely used in automo-
tive interior parts, electronics, electrical appliances,
motors, refrigeration equipment, hardware products,
batteries, solar energy, transportation equipment, toys, and
other industries [51,54,86,87].

This review article summarizes the research progress
of ultrasonic welding of aluminum alloy, magnesium alloy,
and titanium alloy homogeneous and dissimilar thin plates
in recent years. The characteristics of each alloy and the
principles and equipment configuration of ultrasonic
welding are also briefly summarized. Furthermore, the
study will outline the process parameters of ultrasonic
metal welding and look forward to the future develop-
ment direction.

Figure 1: The comparison of different joining techniques for welding similar and dissimilar specimens [36].
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2 Ultrasonic welding process

2.1 Working principle

The oxide film from the surface of the material is removed
by applying ultrasonic vibration in the ultrasonic metal
welding process. The impurities from the surface layer
are dispersed and the attractive force betweenmetal atoms
is used to create a solid phase bonding state [88]. The sche-
matic for the principle of ultrasonic metal welding is

shown in Figure 3. The ultrasonic generator converts the
50Hz power frequency current into a high-frequency cur-
rent of 15–80 kHz. The high-frequency current flows through
the transducer coil to generate a high-frequency alternating
magnetic field [89–91]. The ferromagnetic material is alter-
nately stretched longitudinally due to magnetostriction
which is converted into elastic mechanical energy. Then, it
is amplified by the horn, and finally, the elastic vibration
energy is transferred from the upper sound level to the
workpiece [92]. The vibration direction of the welding

Figure 2: The detailed flow chart for applications, advantages, and challenges of the ultrasonic welding technique [16,38].
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head is parallel to the surface of the weldment when the
workpiece material is metal. Likewise, its vibration energy is
transmitted to the surface of the workpiece along the tangen-
tial direction [93]. So, it causes the relative friction between
the welding head, the workpiece, and the base of the system
as shown in Figure 3. The dynamic friction between the weld-
ments removes the oxide film and pollutants on the surface of
the workpiece [94,95]. Under the action of welding pressure,
the surface of the pure workpiece fits tightly. At the same
time, it is accompanied by the plastic deformation of the
workpiece. The plastic flow of the interface and the metallur-
gical reaction for the dynamic recrystallization eventually
achieves a solid-state weld [96,97].

2.2 Ultrasonic welding equipment

Ultrasonic generator: The ultrasonic generator is a key
device in ultrasonic welding and provides high-frequency
waves. It is used to generate electrical energy which is

further used by the transducer and converted into mechan-
ical energy [98].

Transducer: A transducer is an electronic device that
converts energy from one form to another. Different types
of transducers are used in different fields and common
examples include microphones, loudspeakers, thermometers,
pressure sensors, and antennas [99].

Horn/sonotrode: The horn or sonotrode is a key part of
the ultrasonic device [100,101]. The horn is attached directly
to the specimen. The electrical energy is converted into
mechanical energy and then transferred directly to the
sample with the help of the horn. Basically, the horn pro-
duces friction which transfers the mechanical vibrations to
the metals which will then be welded.

Luffing lever: A device is used to apply load and thrust the
horn and produce high impact for the mechanical energy
coming from the transducer. The luffing lever is used as an
amplification device between the transducer and the horn [102].

Upper and lower sound level: The upper and lower
parts are used to fix and adjust the specimens in the

Figure 3: The working principle of ultrasonic welding process [42].
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ultrasonic welding process. The parts work as intermediary
units for the welding process to tighten the metal mate-
rials [103].

Workpiece/specimens: The workpiece or specimens are
used to create a weld joint on a particular surface. The
workpiece is a distinctive material which can be a metal
or a plastic during ultrasonic welding. The workpiece can
be used in different shapes or patterns to adjust the
welding process and avoid fracture, fatigue, and high-tem-
perature effects. Figure 4a and b illustrates the schematic
diagram and experimental setup of the ultrasonic welding
equipment which elaborates the whole joining process for
similar and dissimilar metals [104,105].

2.3 Types of ultrasonic welding and process
parameters

The ultrasonic welding is used to join similar and dissimilar
metal combinations and plastic materials. It is familiar and
useful for metals to metals, thermoplastics to thermoplastics,
and the same for dissimilar materials such as metals with
thermoplastics to be joined for different application sectors
[106]. Principally, ultrasonic welding is categorized into two
types: ultrasonic plastic welding and ultrasonic metal welding.
The welding of metals during the ultrasonic process is dif-
ferent from the welding of plastics in terms of the working
principle. The vibration of the welding head in metal welding

Figure 4: The construction of ultrasonic welding equipment: (a) schematic diagram and (b) experimental setup photograph.

6  Zeshan Abbas et al.



is parallel. However, the head moves in the perpendicular
direction where the weld is focused on the plastic weld.
Figure 5 shows steps for ultrasonic welding mechanism along
with operational parameters of material and tool head.

Figure 6 explains the details of the types of ultrasonic
welding process. Figure 6(a) illustrates the schematic of
ultrasonic welding of plastics and metals. Likewise, Figure
6(b) shows the flow diagram of changes in ultrasonic plastic
and metal welding [107–109].

Themechanical properties andmacrostructure andmicro-
structure changes in ultrasonic-welded joints mainly depend
on the adopted process parameters including ultrasonic fre-
quency, amplitude, clamping force, power, and energy.

2.3.1 Frequency

The centre frequency for ultrasonic welding machines is
applied with a range of 20–40 kHz and its working fre-
quency is mainly determined by the mechanical resonance
frequency of the ultrasonic transducer, horn, and welding
head. The frequency of the ultrasonic generator is adjusted
according to themechanical resonance frequency to achieve
high stability and consistency. So the welding head works in
resonant mode and each part is designed as a half-wave-
length resonator during the process. The sonotrode and the
mechanical resonance frequency together have a working

resonance range in the whole working condition. It is gen-
erally set to ±0.5 kHz and the welding machine can basically
operate normally within this range. We adjust the resonant
frequency when the welding head is produced and the error
between the resonant frequency and the design frequency is
required to be less than 0.1 kHz [110,111].

2.3.2 Amplitude

Amplitude is a key parameter affecting joint quality which
can transfer mechanical energy to the welding interface
[112]. The amplitude is typically in the range of 10–100 μm.
The amplitude is a dependent variable in some welding
machines. It is related to the welding time or the energy
applied to the welding machine. In other machines, vibra-
tion amplitude is an independent variable. Thus, the impe-
dance is set and adjusted by supplying power due to the
added characteristics of a feedback control system. The
selection of the welding vibration amplitude depends on
the welding conditions determined by the material [113].

2.3.3 Clamping force

The clamping force is an important parameter in the ultra-
sonic welding process and its selection depends on the

Figure 5: Steps for ultrasonic welding mechanism along with operational parameters of material and tool head [15].
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material being welded. So, the optimal clamping force can
be achieved by adjusting welding parameters below which
the joint will be weak to non-existent. Therefore, if this
parameter is exceeding the thinning of a weld zone, then
sticking of the sonotrode will occur [114].

2.3.4 Power and energy

The ultrasonic welders can be set to operate in either time
or energy-controlled modes. So, the energy and time can
be interchanged. Figure 7 explains the complex relationship
between peak power and welding energy to the transducer.
The area under the power curve is the welding energy. It can
be seen that power, energy, and time are not independent.
Once the power is set and the welding process proceeds,
then a certain power level can be reached to develop transition
in the process [46]. Thewelding energy and timewill also reach
specific values under the specific power values. Similarly, the
setting time will continue the welding process until a certain

energy level is attained. In practice, the time for energized
curve can take various forms depending on the material
type, size, surface condition, amplitude, clamping force, tool,
and specific characteristics of the stationary welding machine

Figure 6: Types of ultrasonic welding process: (a) schematic of ultrasonic plastic and metal welding and (b) flowchart of differences in ultrasonic
plastic and metal welding [40].

Figure 7: The relation between peak powers, welding energy, and time
duration.
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[115]. Figure 7 illustrates the relationship between peak powers,
welding energy, and time duration curve.

3 Research progress of ultrasonic
welding for lightweight alloys

3.1 Research progress of aluminum alloy in
ultrasonic welding

He et al. introduced the vacuum diffusion welding process
to test the microstructure and properties of Cu/Al diffusion
welding joints. The research showed that an obvious diffu-
sion transition zone was formed at the interface during Cu/
Al diffusion welding. Moreover, the microscopic interface
is appeared. The hardness peak value was measured to
HV780. According to the analysis, intermetallic compounds
are generated in the transition region on the copper side.
The generation of intermetallic compounds at the interface
can be avoided or reduced by controlling the diffusion
concentration of Al [116]. Milewski et al. established a
three-dimensional ultrasonic welding heat-structure cou-
pling ANSYS finite element model. The study simulated
the ultrasonic metal welding process of 6061 aluminum
alloy. The results showed that the error between the simula-
tion value and the test value of the maximum temperature in
the welding area is within 5%. The highest temperature is
located in the centre of the welding area and the high-tem-
perature area increases with the increase of welding time
during the ultrasonicmetal welding process. The temperature
field is mainly affected by welding pressure and welding time
[117]. Lee et al. studied the microstructure of ultrasonic
welded joints between 6111-T4 aluminum alloy and galva-
nized high-strength low-alloy steel. The studies have revealed
that the rapid interdiffusion of Zn and Al during welding due
to rapid heating and high strain rates leads to the formation
of an Al–Zn eutectoid/eutectic interface layer [118]. At higher
welding energies, a portion of this diffusion layer is pushed
out of the nugget edge which created an additional brazing
effect. Haddadi et al. studied the grain structure, texture, and
mechanical property evolution of 6111-T4 aluminum plate
during high-power ultrasonic welding. The study has deter-
mined that a large amount of deformation is induced in the
weld zone where the temperature rises to 440°C. Thus, an
ultrafine-grained structure was observed in thin ribbons on
the flat welding interface during the short welding time of
0.1 s. As welding time increases, the interface displaces, and
“wrinkles” or “peaks” and shear bands appear. The welding
interface gradually changes from flat to sinusoidal when it

fully penetrates the workpiece. Finally, a spiral waveform
with a wavelength of about 1mm is generated after 0.4 s
[119–121]. Ni et al. studied the effect of interlayer of 2219
aluminum particles on the performance of ultrasonic welding
of Al–Ni dissimilar materials. It determined that the inter-
layer is beneficial to increase the temperature of the welding
interface and improve the solderability. Thus, it successfully
gained a good Al–Ni connection. Simultaneously, an interfa-
cial diffusion layer was generated in the welded interface and
a large number of welded areas were observed on the frac-
tured surface. So, the interlayers increase the maximum ten-
sile shear load while reducing the welding time [122].

Shin et al. studied the ultrasonic spot welding para-
meters of the A5052-H32 alloy plate. The mixed shear and
tensile failure mode exhibits higher lap shear failure loads
while separate shear and pull is the prominent failure
mode at lower lap shear failure loads. Therefore, shorter
welding times are required with higher vibration amplitudes
to generate sufficient temperature and prevent excessive
adhesion [123]. Peng et al. presented the microstructure and
mechanical properties of ultrasonic spot welding of alu-
minum alloy 6022-T43. The effect of welding energy is deter-
mined. It was found that due to the occurrence of dynamic
crystallization, an ultra-thin necklace-like equiaxed grain
structure (having approximately equal dimensions in all
directions, especially of a crystal grain in a metal) was
observed along the weld line. Smaller grain sizes at lower
welding energy levels are obtained. Tensile lap shear
strength, failure energy, and critical joint stress intensity
were initially increased. Then, the decrease with increasing
welding energy reached a maximum level [124]. Mirza et al.
studied the microstructure and fatigue properties of ultra-
sonically spot welded joints of aluminum alloy 5754. Tensile
fracture occurs at the Al/Al interface at lower energy inputs
and at the edge of the nugget zone at higher energy inputs.
The maximum cyclic stress at which the fatigue fracture
mode switches from transverse crack propagation through
the thickness to interface failure increases with increasing
energy input [125]. Hoehr et al. proposed a method for eval-
uating the shear strength distribution in the lap area of
ultrasonically welded single lap joints of aluminum and
fiber-reinforced thermoplastics. The force is not distributed
uniformly in the connection area and consists of connected
and cohesive parts under study. For evaluation, two proce-
dures were developed to divide the bonding area into parts
and study them separately. So, subsequent mathematical
operations have determined the local intensity distribution
in the junction region, which allowed the identification and
assignment of different binding mechanisms [12]. Dhara and
Das analyzed the macroscopic and microscopic structures of
various Al–Cu joint welds. The research showed that mixing
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of material at the interface, wavy material flow, and the
formation of interface micro-bonds are the main reasons
for the better effect of ultrasonic welding [126]. Liu et al.
systematically studied the bonding mechanism of Cu–Al
high-power ultrasonic welding interface and the formation
mechanism of interfacial metal compounds. It was investi-
gated that the grain size of pure copper along the welding
interface does not change much under the action of welding
pressure and ultrasonic vibration. However, aluminum alloy
microstructures are transformed from elongated grain sizes to
equidistant grain spacing (the structures have the properties
that each atom is intermediate from each of its nearest neigh-
bors). The grain structures with equal grains are obtained by
exploiting great technological and functional properties when
the time varies from 0.3 to 0.5 s. The time interval increases
rapidly and the grain size transforms from 1.54 to 5.89 µm. The
aluminum alloy forms a Gaussian {110} texture and a rota-
tional cubic {001} texture along the weld interface [127]. The
crystal lattice defect of copper diffuses significantly faster
through the aluminum matrix at the weld interface. It results
in the closure of copper atoms and the excess of aluminum
atomswhich is the reason for the formation of the singlemetal
compound CuAl2 in the ultrasonic welding process [47]. Figure
8a illustrates the real experimental photograph. The schematic
diagram of the infrared temperature measurement system in
the ultrasonic welding process is shown in Figure 8b. Figure 9

shows the relation between copper and aluminum cross-sec-
tions under optimized parameters (e.g., (a) associated with Al
cross-sections (b) associated with Al cross-sections under dif-
ferent locations and (c) associated with Al and Cu cross-
sections).

3.2 Research progress of magnesium alloy in
ultrasonic welding

Jasmin et al. studied the fatigue life evaluation of ultra-
sonic magnesium alloy AZ31B-H24 using spot-welded joints.
The study estimated that ultrasonic welding has a longer
fatigue life compared to other welding processes. The
fatigue damage mode varies from interface damage to
transverse crack expansion along the thickness direction
with reduced levels of cyclic loading depending on the
weld energy. A life prediction model for spot-welded lap
joints was developed by Newman and Dowling to estimate
the fatigue life of ultrasonic magnesium alloy joints [129].
Macwan and Chen used ultrasonic spot welding to join rare
earth containing ZEK100 Mg alloy at different welding
energy levels. The study noted that dynamic recrystalliza-
tion occurs in the molten core region. The grain size
increases with increasing interface temperature and strain

Figure 8: The (a) real experimental photograph and (b) schematic diagram of the infrared temperature measurement system in ultrasonic welding
process. Reproduced with permission from MDPI publisher [15].
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rate under study. Microhardness was decreased and welding
energy increased throughout the testing process. Similarly,
the relationship between grain size and Zener–Hollomon
parameters was established [130]. Additionally, the Petch-
type relationship between microhardness and grain size
was established by Arghavani et al. [131]. Meanwhile, Macwan
et al. investigated the feasibility of ultrasonic spot welding of
heterogeneous joints ZEK100–A15754 and evaluated the inter-
facemicrostructure, tensile lap shear strength, and fatigue life.
The study states that the tensile and shear strength of the joint
increases initially and reaches a peak and then decreases with
increasing welding energy. The best average joint strength is
close to 78% of the same joints for ZEK100–ZEK100 and 55% of
the same joints for A15754–A15754. The bilinear behavior of
the S–N curve fits well with the variation of damage charac-
teristics. Thus, the interfacial damage dominated while at
lower cyclic load levels through-thickness cracks formed at
the edge of the melt core [30].

Čiripová et al. evaluated the microstructure formation
mechanism and weldability of long periodically ordered
structural phase Mg–Zn–Y alloy. For the first time applied
the ultrasonic spot welding technique in welding. It was
found that the microstructural evolution of the joint depends
on the macroscopic shape of the weld nozzle in the flat and
inclined areas. A fine-grained band is created around the
weld interface. In the slope zone, new wave bands are gen-
erated and reveal that plastic flow occurs in all bands.
Likewise, Zn and Y deviate at the grain boundaries of the
Mg matrix out of band in the flat zone. Moreover, the max-
imum weld strength was obtained under the welding condi-
tions that produced a new strip. It was found that increased
plastic flow in the sloped zone contributed to increased weld
strength [132]. Ji et al. performed ultrasonic friction stir
welding (UaFSW) to improve the quality of Al–Mg joints. It
was shown that the ELW of Al–Mg FSLW alloy joints were
enhanced by the addition of Zn foil and external ultrasonic

Figure 9: The relation between copper and aluminum cross-sections under optimized parameters (a) associated with Al cross-sections (b) associated
with Al cross-sections under different locations and (c) associated with Al and Cu cross-sections. Reproduced with permission from IOP-MDPI
publisher [39,128].
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assistance. Discontinuous Mg–Zn IMCs replace continuous
Al–Mg IMCs due to the addition of Zn foil. Furthermore, the
Mg–Zn IMCs are uniformly distributed in the SZ due to the
external ultrasonic assistance which effectively improves
the tensile shear load of the joint. The load increases with
increasing ultrasonic power and the maximum tensile shear
load reaches 7.95 kN which is 52.6% greater than that of
conventional joints. Likewise, the hybrid process of Zn foil
and external ultrasonic assistance has significant advantages
for improving the quality of Al–Mg FSLW alloy joints. It pro-
motes ultrasonic power within a reasonable range and may
further improve joint quality [133]. Wang et al. performed the
ultrasonic welding process to improve the quality of various
alloy (Al/Mg) joints. The effects of laser texturing on the
microstructure and mechanism of the ultrasonically welded
AZ31B/5052 joint were also investigated. The quality of the
formation of welded joints was improved [134]. In the Vickers
hardness test, the weld hardness distribution pattern was
taken as dispersion diffusion from the central region. The
hardness in the central region was the highest during the

test. The microscopic morphology of the weld head under
different pressures from the increase in welding pressure
and the microscopic morphology of the weld interface have
different phase characteristics. Since, weak bonding phase
(0.2, 0.3MPa), corrugated phase (0.4MPa) and folding phase
(0.5MPa) are discussed by researchers. Therefore, corrugated
phase (0.4MPa) has the most reliable mechanical properties
and the best welding results [135,136]. Figure 10a and b shows
the fracture analysis of cross-sections in low energy Mg–Al-
welded joints. Figure 10c demonstrates the groove surfaces in
cross-sections of Mg welded joints with low applied energy

3.3 Research progress of titanium alloy in
ultrasonic welding

Dewang et al. studied the effect of welding parameters on
tensile and fatigue properties of ultrasonically welded
magnesium–titanium heterogeneous joints. The study

Figure 10: The fracture analysis of cross-sections in Mg–Al-welded joints at low energy: (a) fractures in Mg cross-section, (b) fractures in Al cross-
section, and (c) grooves surfaces. Reproduced with permission from Elsevier publisher [137].
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pointed out that tensile property and welding pressure is
the most important influencing factor. Welding time and
welding amplitude are also considered very important
parameters for joining metals. Furthermore, the interac-
tion between welding time and welding amplitude has a
significant effect on performance. The failure mode of the
joint is different at different numbers of cycles when the
joint reaches high bond strength. Thus, the thickness of
the magnesium plate will lead to a reduction side while
applying very high welding parameters. It will significantly
reduce the fatigue performance of welded parts where the
influence of welding pressure is most important [138,139].
Aubert and Duval studied through interactive orthogonal
test design that tensile load and joint signal-to-noise ratio
as an evaluation index for process optimization of alu-
minum/titanium dissimilar metal ultrasonic welding para-
meters are favorable for metals. The results showed that
the welding parameters in the main order energy > ampli-
tude > pressure follow the contribution of tensile load 86, 8,
and 4%, respectively. The process parameters are used to
obtain the maximum tensile load for the combination of
energy 950 J, amplitude 75 mm, and pressure 0.552 MPa
(A3B2C2). These are also used to obtain the most stable
tensile load for the combination of energy 900 J, amplitude
70mm and pressure 0.621 MPa (A1B1C3) [140]. Zhu et al.
analyzed the cross-sectional morphology and its mechanical
properties of Ti6Al4V titanium alloy joints under different
ultrasonic welding process parameters through scanning
electron microscope observation and tear tests. The results
showed that the reduction rate in the cross-section of the
joint increases with the increase in the welding time which
is a decisive factor in the quality of the welded parts. The
optimal welding time for Ti6Al4V titanium alloy with a static
pressure of 1144.53 N is 125ms which has the highest inter-
facial bond strength [141]. Zhou et al. studied the effect of
welding time on the organization andmechanical properties
of ultrasonic spot welding of AA6061 aluminum alloy and
pure titanium thin plates. The study revealed that no inter-
metallic compounds were found at the joint interface. Thus,
the maximum joint loads increase with the expansion of
the joint area with the increase of the welding time under
study [142]. Then, it decreases due to fatigue cracking on the
Al side. The peak temperature increases with increasing
welding time. In the weld zone, the aluminum alloy softened
through the welding energy while the hardness of pure tita-
nium did not change significantly [143–145]. Zhang et al. stu-
died the interfacial segregation of alloying elements during
ultrasonic heterogeneous welding of aluminum 6111 and tita-
nium Ti6Al4V. The study noted that enrichment of silicon,
magnesium, and oxygen was found at the Al/Ti interface. How-
ever, other alloying elements such as copper and vanadium

were not completely separated. Thus, 4% of Si was found at the
Al/Ti interface within a very short welding time of 1.4 s. The
distribution of unidirectional Si is inversely proportional to the
distribution of O and Mg [146]. So, the residual oxides and
segregated of Si at the Al/Ti interface can be an obstacle to
the nucleation and growth of Al3Ti. The strong chemical attrac-
tion between Ti and Si may be the driving force behind the
tilting of Si toward the Al/Ti interface. The presence of discon-
tinuous oxides at the Al/Ti weld interface can reduce the
mechanical properties of the weld [147–149]. Ma et al. used
UaFSW to join aluminum 6061-T6 and titanium alloy Ti6Al4V
(TC4). It was found that ultrasonic waves improved the diffu-
sion thickness and reduced the average grain size. The tita-
nium alloy fragments and the bottom interface of the UaFSW
joints formed a hook-like structure that improved the bond
length and mechanical interlocking [150]. The microhardness
of the stirring zone increases due to further refinement of the
grains by ultrasound. Themaximum tensile strength of UaFSW
joints was 236MPa, reaching 85% of 6061-T6-based joint and
54MPa higher than that of conventional joints [151–154]. Bou-
merzoug and Helal investigated the friction stir welding of
dissimilar materials such as aluminum (AL6061-T6) to ultra-
low carbon steel. The tool head of the fixed ultrasonic device
was placed on the back of the workpiece to apply ultrasonic
vibration for welding materials. Figure 11a and b indicates the
lap joints of aluminum alloy 6061-T6 and titanium alloy TC4
that were welded under ultrasound-assisted conditions by
applying ultrasound to the aluminum and titanium plates,
respectively. It was found that when ultrasound was applied
to the aluminum side, the pinhole defects appeared at the hook
of the aluminum/titanium interface. The hook height at the
interface is higher compared to the application of the ultra-
sonic tool head on the titanium side [155]. Furthermore, the
hook holes defect will become a crack source and generates
stress concentration. Therefore, the joint is subjected to a
greater load. The results explained that the effect of ultrasonic
vibration applied on the side of the titanium plate is better
than that applied on the side of the aluminum plate [156].
Figure 11 illustrates the schematic diagrams of the Xenophilic
and Xeno Al/Ti structure applied ultrasonically to the bottom
surface of the titanium alloy.

Lin et al. studied the interfacial phenomena during
ultrasonic welding of ultra-low carbon steel with pure tita-
nium. It was found that when the temperature of the joint
was increased above 600°C during USW, the bonding
strength increased drastically and resulted in base-metal
fracture. Thus, the analysis of interfacial scheme, fracture,
compositional phase and crystallographic indicated that the
phase transition of Ti from α (hexagonal close-packed) to β
(body-centered cubic) leads to the improvement of high-tem-
perature deformability. It further facilitated the elimination
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of voids near the bonding interface [157]. Wang et al. inves-
tigated the interplay of microstructures and mechanical
properties of WC-6Co cemented carbides by hot oscillating
pressing method. The investigation introduced the organiza-
tion, hardness, and tensile properties of dissimilar joints
using solid-state ultrasonic welding between Al5754-O and
Ti-6Al-4V alloys with or without pure Al layers. The signifi-
cant changes in microstructure were observed at the joint
interface, where adhesion was more pronounced on both
sides of joints with Al interlayer than in joints without inter-
layer [158]. Therefore, an asymmetric distribution of the
hardness of the heterogeneous joints was observed resulting
in a gradual increase of the hardness values from the Al side
to the Ti side [159]. Khan et al. introduced the review ana-
lyses of friction stir riveting processes. The analysis also
presented the ultrasonic welding of dissimilar alloys such
as magnesium and titanium metals. A study of the thermo-
mechanical analysis of the welding process with experi-
mental and finite element methods was carried out. The
magnesium alloy in the center of the welded joint partially
melts and generates a liquid phase in a welding time of 0.5 s.
Through finite element analysis, the friction coefficient of
the Mg–Ti ultrasonic welding interface can be considered an
average constant of 0.28 [160]. The maximum temperature
at the interface can exceed 600°C to reach the melting point

temperature of the magnesium alloy. The plastic deforma-
tion starts after 0.35 s and occurs on the magnesium side in
the center of the interface [161].

3.4 Limitations of ultrasonic welding

This study was conducted to review previous research
work and address future recommendations for ultrasonic
welding of similar and dissimilar light metals together with
light metals to other materials. Similarly, the objective of
this review article is to provide a brief understanding of
lightweight ultrasonic welding principle, current trends
and research gap for follow on study. Table 1 presents
the author’s introduction, materials, optimized welding
strength, and various process parameters studied for the
ultrasonic welding of lightweight metals to lightweight
metals. Moreover, Table 2 introduces the author’s introduc-
tion, materials, optimized welding strength, and various
process parameters studied for the ultrasonic welding of
lightweight metals to other materials. In recent years,
ultrasonic light alloy welding has developed rapidly due
to its unique advantages. It is widely used in the automo-
tive, electrical, battery, solar, and aerospace industries.

Figure 11: Schematic diagrams of the structure of Al/Ti Xenophilic and Xeno applied by ultrasound to the lower surface of titanium alloy: (a) Xenophilic
FSLW and (b) Xeno FSLW.
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However, due to the complexity of the ultrasonic metal
welding process, themechanism of ultrasonic metal welding
has not yet been unified with more understanding. There-
fore, it will hinder the further development of ultrasonic
welding applications of light alloys. Lately, the main limita-
tion of the ultrasonic welding process is that it only works
and joins with certain types of materials. In particular, it is
limited to thosematerials that have a lowmelting point such
as thermoplastics or thermosets. The ultrasonic welding pro-
cess is also limited due to size, material properties, and time
to complete the entire process [53,162–165]. Additionally,
many metals cannot be welded using the ultrasonic welding
method due to their high melting points. Similarly, hardness
is also another barrier to joining dissimilar metals. The pro-
cess parameters and setting time are currently considered
the main factors limiting to obtain good welding results
when joining dissimilar and dissimilar metals [166,167].

4 Conclusion

In this review article, we conducted a comprehensive lit-
erature survey, which identifies the potential of ultrasonic
light alloy sheet welding. It discussed the benefits, chal-
lenges, and strategies, limitations and application scenarios
for aluminum alloys, magnesium alloys and titanium alloys.
The investigations have indicated that ultrasonic welding
technology provides an ultra-fast and straightforward pro-
cedure for joining similar and dissimilar materials. This also
provides ways to strengthen welded joints. The quality of
ultrasonic welding has a significant impact on aluminum
alloys, magnesium alloys and titanium alloys. The metal-
to-metal joining review revealed that ultrasonic welding
technology is cost-effective for the aerospace, automotive
and aircraft industries. In addition, welding setup time is
often considered the main parameter that affects welding
quality and sometimes interrupts operations. Literature
research shows that ultrasonic welding technology is an
advantageous and significant method for joining light mate-
rials which produces soft, strong and crack-resistant joints.

4.1 Future research recommendations

Contemporary, a significant extent of research work has
been conducted in the field of ultrasonic metal welding and
the research is mainly limited to similar and dissimilar
joints. There have not been enough research projects on
building the integration of the static failure mechanism of

ultrasonic welding. Furthermore, the literature review
recommends the combination of ultrasonic metal welding
with self-piercing rivets.
(1) Based on the ultrasonic metal welding process, the

fatigue failure mechanism and crack failure mechan-
isms can be further investigated and industrialized.

(2) In order to promote the application of ultrasonic tech-
nology, future research in ultrasonicmetal welding should
be carried out in the following areas: Strengthening the
fatigue performance of ultrasonic light alloy sheet welding
and the failure of macro and micro studies, which is
favorable for discovering the fatigue failure mechanism
of the joint. For strength welding tests of alloy sheets with
ultrasonic lightweight can be combined with numerical
simulation that helps to reveal the principle of ultrasonic
metal welding.

(3) Likewise, to strengthen the sandwich structure, the
research of ultrasonic light alloy sheet welding is favor-
able for the expansion of ultrasonic metal welding in
industrial application.

(4) Ultrasonic welding in wire harness still has research
gap, and the stability of the welded joint can be further
developed and strengthened.
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