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Abstract: In this article, an attempt was made to improve
the efficiency of coated solar panels by using artificial
neural networks (ANNs) and response surface metho-
dology (RSM). Using the spray coating technique, the glass
surface of the photovoltaic solar panel was coated with
silicon dioxide nanoparticles incorporated with polytetra-
fluoroethylene-modified silica sols. Multilayer perceptron
with feed-forward back-propagation algorithm was used
to develop ANN models for improving the efficiency of the
coated solar panels. Out of the 200 sets of data collected,
75% were used for training and 25% were used for testing.
On evaluating the models using performance indicators, a
four-input technological parameter model (silicon dioxide
nanoparticle quantity, coating thickness, surface tempera-
ture and solar insolation) with eight neurons in a single
hidden layer combination was observed to be the best. The
prediction accuracy indicator values of the ANN model
were 0.9612 for the coefficient of determination, 0.1971
for the mean absolute percentage error, 0.2317 for the rela-
tive root mean square error and 0.00741 for the mean bias
error. Using a central composite design model, empirical
relationships were developed between input and output
responses. The significance of the developed model was
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ascertained by using analysis of variance, up to a 95%
confidence level. For optimization, the RSM was used,
and a high efficiency of 17.1% was predicted for the coated
solar panel with optimized factors; it was validated to a
very high level of predictability. Using interaction and per-
turbation plots, a ranking of the parameters was done.

Keywords: polytetrafluoroethylene-modified silica hydro-
sols, anti-reflective coat, solar panel, artificial neural net-
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1 Introduction

In recent times, the energy sector has begun to shift
toward solar energy for reducing carbon dioxide emis-
sions [1]. Solar energy is always a clean source of energy
and it is available in abundance [2]. Using solar panels,
energy from the sun is converted to useful electricity.
Solar panels are cost-efficient and are easy to install [3].
Electric power generation using solar panels helps to
reduce carbon footprint. Apart from capital expenditure
incurred during installation, solar panels can be main-
tained with very minimal cost. The running cost for a
solar power plant is very less compared to other power
generation plants [4].

On the other hand, solar panel efficiency (SPE) fluc-
tuates to a large extent as they are installed in an external
atmosphere under direct sunlight. They are continuously
exposed to dynamic atmospheric conditions involving
smoke, dust, rain and snow [5]. The output of a photovol-
taic solar panel also depends upon other environmental
factors such as solar insolation, air density, rainfall, surface
temperature, wind direction and wind speed [6]. Apart from
these, shade, dust and dirt accumulation affects the effi-
ciency of solar panels [7].

Anti-reflective coatings (ARCs) on solar panel sur-
faces help in reducing the amount of light reflected and
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prevent the accumulation of dust with water agglomera-
tions. ARC on the glass surface of the solar panel increases
the transmission of solar rays and reduces the wastage of
incident sunlight [8]. Even a slight reduction in solar ray
reflection results in a 3-5% increase in SPE [9]. ARCs are
being prepared by using different materials such as poly-
electrolyte-treated SiO, [10], MgF, [11], Ta,Os [12] and
Al,05 [13].

On using SiO, nanoparticles as additives in ARCs,
a considerable improvement in optical transmittance
was observed [14]. Other Ag- and Ti-based nanoparticles
exhibit nonlinear optical properties, which are difficult
to be controlled during synthesis and the coating pro-
cess [15]. The nanosize and structure of SiO, nanoparti-
cles help in modifying the refractive index of the coated
surface, enabling better transmittance [16]. The siloxane
bonds of SiO, nanoparticles enable structural relaxa-
tion. This reduces the porosity of the coatings and
improves the coating hardness [17]. The presence of
SiO, nanoparticles in coatings improves the bonding
between the coating material and the glass substrate
[18]. SiO,-incorporated coatings exhibit reduced surface
roughness [19].

The preparation of ARCs is a complex and long pro-
cess [20]. A few of the widely used ARC preparation tech-
niques are plasma treatment [21], electro-spinning [22],
phase separation [23], polymer solution casting [24] and
the sol-gel method [25]. Out of different ARC preparation
techniques, the sol-gel method is an easy and econom-
ical process. It is more suitable for mass production, com-
pared to other methods [26]. ARCs prepared using the
sol-gel method were found to improve the transmittance
of light through glass surfaces [27]. As ARCs are intended
to strongly adhere to the surface of the substrate, the
differences in the material hardness [28], coefficient of
thermal expansion [29] and residual stresses between
ARC and the substrate should be considered [30]. The
sol-gel method offers better domination over the che-
mical reactions involved in the synthesis process [31].
On using the sol-gel method for preparing ARCs, the
structure and porosity of ARCs can be controlled [32]
for better adhesion over glass substrates.

Polytetrafluoroethylene (PTFE)-modified silica hydrosol
(PTFE-MSH) coatings exhibit better transmittance of visible
rays. They also possess anti-reflective and hydrophobic
properties [33]. When PTFE-MSH is coated over glass sur-
faces, the water contact angle of the substrate undergoes a
change. Unwanted clogging of water droplets is minimized,
and a considerable improvement in the absorption of solar
rays along the surface was observed [34]. PTFE-MSH coat-
ings help in reducing surface reflections and moisture
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penetration from the environment into the photovoltaic
panel [35]. Moreover, they increase the resistance of the
surface against abrasion wear and dirt-related surface
deterioration [36].

A proper procedure and steps should be followed for
applying ARCs on the glass panel surface. The ARC para-
meters should be controlled properly to obtain a proper
and uniform coating. The thickness [37], density and por-
osity [38] of ARCs directly affect the transmissibility of
visible light. Different techniques are being used for
depositing ARCs on a substrate. Thermal spraying [39],
plasma coating [40], dip coating [41] and spray coating
[42] are a few widely used methods for coating. At room
temperature, spray coating was found to be better than
other coating techniques. Spray coating covers more area
and achieves a uniform coating thickness (CT). It is easily
available and involves simple procedures [43]. For eval-
uating the efficiency of the coated solar panels, a number
of trial-and-error experiments have to be conducted. As
the number of experiments increases, the time, labor and
costs also increase [44].

Modern methods like artificial neural networks (ANNSs)
[45] help in the prediction and approximation to very high
accuracies, with a minimum number of experimental trials.
ANN prediction techniques have been used in solar systems
[46], air-conditioning [47], multi-layer systems for fluid
transport [48], photovoltaic solar panels [49] and hybrid
energy systems [50]. ANN techniques are used to solve com-
plex problems [51] and for predicting the accurate relation-
ship between non-linear systems [52]. There are different
neural networks such as multilayer perceptron (MLP) [53],
convolution neural networks (CNNs) [54], recurrent neural
networks (RNNs) [55], deep belief networks (DBNs) [56] and
restricted Boltzmann machines (RBMs) [57]. The RNN uses
data in a sequential manner [58], helping in recognizing
spellings and linguistic patterns [59]. Branching-in and
branching-out sequential predictions can be efficiently
done using RNNs [60]. On using RNNs for analyzing table
data, the forecasting accuracy was found to be low [61].
The prediction accuracy of RNNs in evaluating tabular
data was lower, compared to the prediction accuracy of
MLP [62].

CNNs were found to be very efficient in identifying
image patterns and positions [63]; however, they cannot
interpret temporal information [64]. On using CNN methods
for evaluating nonimage sequences, their prediction accu-
racy was found to be very low [65]. MLP performs well
during input-to-output mapping [66]. For classification-
based problems, the MLP method exhibits better accuracy
[67]. In MLP, the presence of hidden layers with nodes
improves the accuracy of predictions [68], and more layers
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with labels can be used for supervising the learning process
[69]. RBMs use two layers (input and hidden layers) and use
a stacking method of piling one layer over the other for
iteration [70]. Hence, it is difficult to improve the prediction
accuracy as labels are absent in RBMs [71]. The prediction
accuracy of the MLP network, on the other hand, can be
increased using labels for supervision [72]. DBNs recon-
struct their inputs by using probability and feature identifi-
cation [73] and are similar to RBM machines in which
sequential layer-by-layer training is possible [74]. Com-
pared to DBNs, MLP performs better on working with line-
arly inseparable data [75]. Generally, the number of hidden
layers in MLP is lesser compared to the number of hidden
layers in DBNs [76]. Hence, the training time required for
MLP models is significantly lower than that required for
DBN models [77].

Neural networks in artificial intelligence models improve
the ability to learn and establish complex and non-linear
relationships [78]. In systems where linear programming is
difficult to be implemented, neural networks can give accu-
rate solutions [79]. Even when certain data items get cor-
rupted, the entire system proceeds due to the parallel flow
of the sequences [80]. Reprogramming in neural networks is
not required as it can determine the process and can be
executed in any operating system [81].

Hidden layers in ANN models take inputs and pro-
duce a modified output according to the activation func-
tion and the weights assigned to the inputs [82]. From the
inputs, the obtained data are segregated and transformed
into a specific output, according to the user requirements
[83]. Hidden layers are used to perform multiple and
complex operations quickly, without compromise or loss
in the accuracy of the predictions [84]. Relationships
between the different independent input variables can be
identified by hidden layers as they can imbibe very small
details [85]. Hidden layers help in the generalization of the
system by increasing the non-linearity [86].

Response surface methodology (RSM) is a statistical
and mathematical tool, which is being used for multi-
criteria decision making [87]. RSM helps to identify the
optimized values of the input process parameters for pre-
dicting the desired outputs, with minimum experiments
and trials. It helps to optimize a model at a lesser cost.

In RSM, the total number of experiments required for
arriving at the optimal solution is lower, compared to
other classical techniques [88]. The information obtained
from the limited number of experiments is comparatively
more than the information obtained from other conven-
tional statistical evaluation techniques such as traveling
salesman [89], genetic algorithm [90] and hill climbing
algorithm [91]. Using RSM, the development of models
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and graphical plots can be done quickly and the effect
of the important variables on the output responses can be
identified [92]. In RSM, both dependent and independent
parameters can be fluctuated according to our require-
ments [93]. In many investigations and experiments, the
predictability of RSM was found to be appreciably high
[94-96]. In RSM optimization, the effectiveness of the
design of experiments, response surface equations and
adequacy of the models can be checked [97]. In RSM,
there is scope for isolating the interested region for
further evaluation [98].

The central composite design (CCD) model [99] and
the Box—Behnken design [100] model are the widely used
estimation models in real-time problems and applica-
tions. The number of design points in the Box—Behnken
model is lesser than that in the CCD model. The CCD
model uses estimation models with imbedded factorial
design or fractional factor designs for analyzing the input
variables and output responses. It consists of center
points augmented with star points with upper and lower
limits for the input parameters [101]. The range of the
limits of the process variables depends upon the magni-
tude of the process. The properties of the model deter-
mine the center points and the value of the factorial
point [102].

Analysis of variance (ANOVA) is a mathematical
technique used for the identification of the significance
of any developed model [103]. It signifies the prediction
accuracy of the developed empirical equations. The co-
relation between the predicted and actual output values
can be ascertained. With the use of these mathematical
techniques, the performance of solar panels can be increased
in an economic manner. Hence, in this investigation, an
attempt has been made to enhance the efficiency of photo-
voltaic solar panels by using ARCs, which were prepared
by incorporating SiO, nanopowder in PTFE-modified silica
hydrosols. Important technological parameters were iden-
tified by using ANNs and optimized using RSM.

2 Materials and methods

2.1 Solar panel test kit

An indigenously prepared solar panel test kit (Vinamra
Enterprises, Jhotwara, Jaipur) was used in the experi-
ments. The solar panel test kit was installed in the roof top
of the Department of Mechanical Engineering, University
College of Engineering, Tiruchirappalli, Tamil Nadu, India
(latitude, 10.6581°N; longitude, 78.7439°E, 88 m approx.
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above sea level). A digital temperature sensor (Evelta — 12C
— MRS-P1) was used for measuring the temperature near
the surface of the solar panel. The humidity measurement
equipment was used to measure the atmospheric humidity
near the solar panel. A digital anemometer (Model-WS-102,
Logics Power, Delhi, India) was used for recording the
wind speed and wind direction. A solar irradiation sensor
(Sims Instrumentation, Bengaluru) was used for mea-
suring the solar irradiation on the surface of the panel.
For measuring precipitation, a tipping rain gauge sensor
(Balaji Hydromet, Roorkee, Haridwar, India) was used.
Using indigenously fabricated module mounting struc-
tures, the solar panel was placed on the terrace away
from the shade. Dust cleaners and air blowers were used
for cleaning the solar panels before starting the experi-
ments and while taking readings. A digital multi-meter
(HTC BM) was used for measuring the open circuit voltage
(mV) and short circuit current (mA).

2.2 ARC preparation

The following chemicals were used for preparing antire-
flective PTFE-modified silica hydrosols. Soda lime heat-
resistant glass sheets (1.35 mm thick) were bought from
Akshar Exim Company Private Limited (West Bengal,
India; 99% pure). Ammonium hydroxide and PTFE were
purchased from Ecokem Technologies Private Limited
(Navi Mumbai, India; 99% pure). Tetraethyl orthosili-
cate was bought from Tritech Catalyst & Intermediate
(Pune; 99.9% pure). Silicon dioxide nanopowder and
98% pure hexamethyldisiloxane (HMDS) were bought
from Supreme Silicones (Maharashtra, India); and 99.9%
pure ethanol and de-ionized water were purchased from
Sigma Aldrich Chemicals (Bangalore, India).

By using the Stober method [104], the precursor solu-
tion for silica sol was prepared. Tetraethyl orthosilicate/
ethanol/ammonium hydroxide/de-ionized were mixed in
a molar ratio of 1:0.17:38:0.17. The mixture was stirred
using a magnetic stirrer at 25°C for 3 h. Then, the mixture
was transferred into a clean airtight glass container and
stored in a dark place for 1 week. After 1 week, PTFE was
added to it and stirred for 3 h using a magnetic stirrer
at 25°C. Again, the solution was sealed airtight and
stored in a cool and dark place for 1 week [105]. Then,
the SiO, nanopowder was mixed with the solution (at
750 mg to 1g per 1,000 ml solution). The mixture was
agitated using ultrasonication. SiO, nanoparticles were
added to improve water repellence and transmittance
[106].
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2.3 Glass surface preparation and spray
coating

The glass substrate placed on the solar panel surface was
cleaned with de-ionized water, acetone and hydrochloric
acid. This three-step cleaning process was to ensure
proper adhesion of the coating material to the substrate.
The glass sheets were immersed in ethanol and prior to
spray coating, they were heated to 80°C in an electrical
portable furnace. The PTFE-modified silica hydrosol solu-
tion with SiO, nanoparticles was applied on the glass
surface using the spraying equipment (Gautham Kit,
Haryana). The diameter of the spraying nozzle was
1.25mm, and spraying was done at 40 psi pressure.
The distance between the spraying equipment and the
substrate was maintained at 100 mm for all coatings.
After spraying, the glass substrate was allowed to dry
in a portable furnace at 80°C for 10 min. A 75-90 nm-
thick coating was obtained after a single spray coat. The
thickness of the coatings was measured by using a
nanocoat meter (Presice-UTMO09), with an accuracy of
+5nm. The coat meter was calibrated with standard
nanofilms prior to the actual measurement. This process
was repeated till the desired thickness of the coating
was attained on the glass. Before using the glass on
the solar panel, it was immersed in HMDS solution for
2 days and dried. This was done to enhance the hydro-
phobic characteristics of the coating [107]. The solar
panel test setup is shown in Figure 1.

The efficiency of the solar panel was calculated using
the following formula:

_ Output power  Bpayx M
Input power Py,
Prax = Vinax X Imax, 2

Pinp = Input solar irradiance x Area of the solar cell. (3)

In the aforementioned equations, 1 is the efficiency of
the solar panel, P,., is the maximum power of the solar
panel, Py, is the power generated in the solar panel, Vi«
is the maximum voltage of the solar panel and I,,,., is the
maximum current of the solar panel

2.4 Developing ANN models using MLP

In this investigation, ANN models were developed with
important coating parameters and photovoltaic solar
panel input parameters. The coating parameters consid-
ered in the experiments were the SiO, nanoparticle
quantity in mg-1™* (SNP), the spraying pressure in psi (SP),
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PTFE (Poly tetra fluoro ethylene)
modified silica hydrosols coated
Photovoltaic Solar Panel

"‘31 Wlnd direction sensor

Figure 1: Solar panel test kit used for conducting the experiments.

the CT in nm, the spraying distance in mm (SpD), the drying
duration in a furnace in min (DD), the furnace temperature
in °C (FT) and the nozzle spray diameter in mm (ND) [108].

The photovoltaic solar panel input parameters consid-
ered in the experiments were the mean relative humidity
in % (MRH), the square temperature in °C (ST), the daily
maximum temperature in °C (DTp,ax), the daily minimum
temperature in °C (DTn,), solar irradiation at the panel
surface in W-h-m 2 (SIS), wind velocity in m-s™* (WV), the
wind direction in degrees (°) (WD), the difference between
the daily maximum and minimum temperature in °C
(ATmax-min), daily precipitation in mm (DPp), daily max-
imum relative humidity in % (Dpy.xRH), daily minimum
relative humidity in % (D,;,RH) and solar altitude angle
in ° (SAA) [109]. During the selection of the input vari-
ables, the average performance for ten runs was taken
for the input variables. This was done to avoid random
measurement errors and to increase the reliability of the
developed ANN model [110].

Initially, the ANN model was developed based on the
coating and solar panel input technological parameters.
Then, the relevance of the individual and combined
technological parameters was studied. An incremental
method was used for identifying the feasible combination
of the input technological parameters. For the identifica-
tion of the best model, testing was done using different
numbers of neurons in a single hidden layer [111]. The
important technological parameters affecting the output
efficiency of the solar panel were identified. Data collec-
tion was done for 3 months, preferably in the afternoon
time in a clear sky. A total of 200 data sets were collected.
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Tipping rain gauge sensor

Out of the data sets collected, 75% were used for training
and 25% were used for testing. The values of the data sets
collected for the investigation are shown in Figure 2.

Out of different neural networks, such as MLPs, CNN,
RNN, DBN and RBM, in this investigation, the MLP net-
work was used. As the number of input parameters was
more, probability-based predictions were required. As
the MLP can be used to predict accurate solutions in
complex non-linear problems in a very short time after
training [112], it was used in this investigation. The data
were handled by a feed-forward neural network in two
stages. The training process was the first stage. In this
process, ANN weights were adjusted to match the input
group. In the second stage, the generalization of the net-
work was done to match the training data [113]. With this,
the prediction was done. The learning process was con-
tinued by training the data and updating the weights of
the data till the desired goal was achieved. The Leven-
berg—Marquardt feed-forward back-propagation training
algorithm with a single hidden layer was used for devel-
oping the ANN models [114]. The MLP with one input, one
output and one hidden layer is shown in Figure 3.

The input to the hidden layer was sent through the
input layer. The output of the first layer was the summation
of inputs multiplied by their corresponding weights. The
output of the first layer is shown in the following equation:

1= [ (Zw). (4)

where x; is the input signal, w; is the weight of the input and
Y; is the output of the first layer. The Levenberg—Marquard
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Figure 2: Values of the data collected for this investigation.

backpropagation algorithm with a gradient descent
method was used for updating the weights during the
learning algorithm [115]. Learning rule training algo-
rithms with supervised learning were used for the ANN
models [116]. Out of 200 datasets collected, 75% (150
data sets) were used for training and 25% (50 datasets)
were used for testing.

Using a single hidden layer, several runs for each
combination of input and hidden neurons were con-
ducted. In the hidden and output layers, hyperbolic
tangent and linear functions were used as activation
functions [117].

First hidden layer

Input Layer

Data samples

The hyperbolic activation function equation is as
follows:
-eX) 2 B
+eX) l+eX

£00) = tanh(x) = &
(e*

(5)
The linear activation function equation is as follows:
f(x) = wix + b. (6)

In the above equations, x is the input, w is the weight
and b is the bias [118].

Four prediction accuracy indices were used for iden-
tifying the prediction of the ANN model [119]. They were

Output layer

hl
—».‘7
Six1 i

S2xS1

(a2

S2x1

Output layer ol =2 x (W2 x f1 (W1 xP + bl) + b2)

Figure 3: The MLP with one input, one output, and one hidden layer.
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the mean absolute percentage error (MAPE) [120], the
relative root mean square error (RRMSE) [121], the coeffi-
cient of determination (R?) [122] and the mean bias error
(MBE) [123].

For the evaluation of forecasting accuracy, MAPE is
used. MAPE indicates the percentage of deviation from
the actual output [124]:

ADV, - FDV;

1 n
MAPE = — ) y

n t=1

(7)

where ADV, denotes the actual data value, FDV; denotes the
forecasted data value and n is the number of true values.

The coefficient of determination (R?) is used for the
prediction of future outcomes. For independent variables,
R? is ascertained by using variance proportion [125]:

! 1 c
y' = ;Zy,-, (8)
i=1

where y’ is the mean of the dataset y; and n is the number
of values in the dataset y;. The total sum of squares (SST)
is defined as follows [126]:

SST = Yy (v - ¥')". ©)
i=1

The error sum of squares (SSE) is defined as fol-
lows [127]:

SSE = i@i -2

i=1

(10)

where f; is the predicted data value
The SSE and SST are used to determine the R? value
as follows [128]:

_ SSE
SST

2 _

= (11)

R?is used for identifying the proximity of the predicted
data to the regression line, and its value varies from O to
100%. 0% indicates that not even a single predicted data
was close to the regression line of fit, and 100% indicates
that all the predicted data were close to the mean.

The RRMSE is used for measuring the average value
of the errors, and is defined as follows [129]:

n
RRMSE = |+ Y'(¥; - X2,
nia

where Y; and X; are the n numbers of predicted and true
data. Low values of RRMSE indicate that the deviation
between the regression fitted data line and the predicted
data is less, and high values of RRMSE indicate that the
deviation from the mean is higher.

(12)
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MBE is the average of the prediction error [130]. It is
a systematic error, which indicates underprediction or over-
prediction of a developed model, and is defined as follows:

1 n
MBE = ;Z(Yi - Xp). (13)
i=1

Using these performance indicators, the relevance of
each technological input parameter was assessed. Using
the incremental method [131], the relevant input techno-
logical parameters were progressively added and their
effect on the prediction model was studied [132].

As the MLP incorporates the universal approximation
theorem, the approximation of the obtained values close
to the desired output can be achieved with one hidden
layer [133]. As the number of input parameters was large
and a progressive method was adopted to add and sub-
stitute the technological parameters, MLP with one hidden
layer was chosen for this investigation.

Different incremental combinations were studied, and
the best combination of technological parameters was iden-
tified. The identified combination was tested using different
neurons within a single hidden layer. The number of neu-
rons in a single hidden layer, which exhibited the best pre-
diction accuracy indices, was identified.

2.5 Developing empirical relationships and
optimization using RSM

The feasible limits of important input technological para-
meters were identified by using trial experiments. The
CCD model with six stars, six central and eight design
points was selected. The number of input factors consid-
ered was 3, and the range of the parameters was 5. Even
though the number of design points in the Box-Behnken
design model was low, the CCD model was chosen to reduce
errors and improve estimation accuracy. Using the CCD
model, 20 different combinations of technological parameters
were developed [134]. With each combination of the input
technological parameter values, experiments were conducted
and the output (SPE) was recorded. Out of the 20 different
combinations, 14 were unique and 6 were repetitive experi-
ments. The repetitive experiments were used for reducing the
errors during the experimentation process.

Using the second-order regression equation [135], empirical
relationships were developed between the technological
input parameters and the output (panel efficiency). The
relationship and closeness between the predicted and
actual output values were studied. Using ANOVA, the
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significance of the developed model was ascertained [136].
In this investigation, a two-way- partial sum of squares-
type III ANOVA technique was used to identify the signifi-
cance of the developed model. It was used for identifying
the significance of the developed model. It signifies the
predictability and accuracy of the developed empirical
relationship between the input technological parameters
and the output SPE. RSM was used for optimizing impor-
tant technological parameters. It was chosen as it is an
easy and economical method to identify the optimized
output, with a minimum number of inputs [137]. Contours
[138] and surface plots [139] were developed to identify
the optimum values of the input technological parameters
for achieving highest possible efficiency. The developed
model was validated by using validation experiments to
identify the predictability of the optimization model. Using
interaction [140] and perturbation [141] plots, ranking of
the technological parameters was done.

3 Results and discussion

3.1 ANN analysis

The performances of the individual technological para-
meters of the solar panel setup were evaluated by using
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the MLP ANN technique. With the Levenberg—Marquardt
feed-forward back-propagation training algorithm, MAPE,
RRMSE, MBE and R? values of SNP, CT, SpD, SP, DD, FT,
ND, MRH, ST, DTmaxs DTmin, SIS, WV, WD, ATmax.mins DPP,
DnaxRH, DyinRH and SAA were calculated. The values of
the performance indicators for the input variables are
shown in Table 1.

From Table 1, the input technological process para-
meters exhibiting higher performance indicator values
were identified. This was used to identify the input tech-
nological process parameters into parameters of primary,
secondary and tertiary importance. Depending upon the
value of R?, MAPE, RRMSE and MBE, SNP, CT, SpD, SP,
MRH and SIS were identified as primary process para-
meters. For identifying the effect of individual technolo-
gical parameters, the inputs were incrementally combined
[142]. Priority was given to the addition and substitution of
primary technological process parameters, as their inclu-
sion and removal affected the values of overall prediction
accuracy indices.

The secondary parameters such as DD, FT, ND, WV
and WD were included in the incremental combination
model if there was an improvement in the overall average
performance indices. Tertiary parameters such as DPp,
DpaxRH, DpinRH, SAA and ATax.min Were removed and
substituted with another technological parameter, as
they did not contribute for improving the performance
indices.

Table 1: Performance indicator values for individual technological parameters

SL. No. Input variables Units Abbreviation Performance indicator values

MAPE (%) RRMSE (%) MBE (%) R? (%)
1 Si0, nanoparticles mg-l™ SNP 41.84 30.47 2.05 89.96
2 Coating thickness nm cT 37.35 28.32 1.98 91.38
3 Spraying distance mm SpD 66.41 43.54 2.46 84.65
4 Spraying pressure psi SP 37.45 29.05 -0.51 86.39
5 Drying duration h DD 29.45 40.21 2.36 73.29
6 Furnace temperature °C FT 32.19 25.96 1.90 82.15
7 Nozzle diameter mm ND 56.14 31.44 2.09 89.21
8 Mean relative humidity % MRH 81.21 32.41 2.12 90.17
9 Square temperature °C ST 43.61 34.61 2.19 89.78
10 Daily maximum temperature °C DTiax 39.34 29.63 -1.03 90.83
1 Daily minimum temperature °C DTmin 62.54 33.65 2.16 81.08
12 Solar irradiation at the panel surface W-h-m~2 SIS 48.59 26.84 1.93 92.17
13 Wind velocity m.s! A% 23.89 28.44 -0.98 79.86
14 Wind direction deg WD 57.32 32.14 2.11 78.42
15 Difference DTpax — DTiin °C AT nax-min 46.22 31.91 2.10 72.86
16 Daily precipitation mm DPp 32.74 43.12 -1.45 76.62
17 Daily maximum relative humidity % DmaxRH 36.45 36.41 2.25 88.43
18 Daily minimum relative humidity % DminRH 38.54 32.66 2.13 87.11
19 Solar altitude angle deg SAA 52.13 41.84 2.41 86.82
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Table 2: Average performance of the progressive incremental combinations

Sl No. Input variables Performance indicator values

MAPE (%) RRMSE (%) MBE (%) R? (%)
1 SNP, CT 32.12 23.64 0.981 93.41
2 SNP, CT, SIS 31.21 23.82 0.9833 92.06
3 SNP, CT, SIS, DyaxRH 27.65 23.14 0.972 92.87
4 SNP, CT, SIS, SAA, DinRH 27.41 24.39 0.996 92.16
5 SNP,CT, SIS, Dmax, RH, DTrax 33.54 25.45 1.016 92.66
6 SNP,CT, SIS, Dmax, SP, DThin 32.84 26.12 1.034 92.93
7 SNP, CT, SIS, Dyax, RH, WV 29.23 25.21 1.013 91.02
8 SNP, CT, SIS, Dyax, RH, WD 28.78 27.23 1.053 90.14
9 SNP, CT, SIS, Dyax, RH, DpT 30.51 26.21 1.033 90.02
10 SNP, CT, SIS, Dpax, RH, MRH 31.12 27.14 1.051 90.21

Progressively, ten combinations of input parameters
were developed and their average performances were
recorded. The performance of the progressive incremental
combination models is shown in Table 2.

From Table 2, it is observed that the individual per-
formance of the input parameters does not improve the
global performance of the model. Increasing the number
of input technological parameters does not contribute to
improving the performance of the developed ANN model
[143]. Comparable performance was observed for a com-
bination with two input parameters in the first model and
a combination with five input parameters in the sixth
model.

Investigations have shown enhanced statistical per-
formance for a combination of input parameters having
lower individual performance [144-146]. Experimental
tests were conducted to explore other combination pos-
sibilities even with input parameters having lower indi-
vidual performances. For test data of ten runs, the average
statistical performance indicator values for different com-
binations of lower individual performance exhibiting para-
meters are shown in Table 3.

The combinations are listed in decreasing order of the
performance indicator values. It was observed that the input
combination of SiO, nanoparticles addition, CT, daily max-
imum surface temperature and solar insolation at the panel

Table 3: Average performance indicators for different input combinations

Sl No. Combinations Performance indicator values

MAPE (%) RRMSE (%) MBE (%) R? (%)
1 SNP, CT, DTrax, SIS 22.31 18.74 0.813 95.78
2 CT, DTrax, MRH 22.42 18.93 0.816 95.61
3 CT, DTax 22.69 19.14 0.823 94.87
4 ND, DPp, SNP 22.93 19.27 0.826 94.59
5 DTmaxs WV, DPp 23.12 19.56 0.831 94.41
6 Dpax, RH, ND, SIS 23.44 19.78 0.836 94.18
7 ST, ND, RH, SP 23.84 19.62 0.833 93.85
8 FT, DTpin, ST 24.12 19.84 0.836 93.63
9 CT, DTax, WV, SAA 24.39 20.12 0.843 93.57
10 SAA, Dpnin, SNP 24.68 20.45 0.851 93.33
11 AT ax-min» MRH, SIS, DD 24.83 20.68 0.853 93.18
12 SIS, SpD, FT 25.12 20.81 0.856 92.89
13 MRH, SAA 25.34 21.12 0.863 92.74
14 FT, DTmin 25.26 20.93 0.862 92.69
15 CT, DPp, SpD 25.37 21.24 0.866 92.58
16 ATmax-min» WD, ND 25.42 21.38 0.874 92.43
17 AT ax-min, SAA 25.63 21.47 0.872 92.34
18 SNP, WV, FT 25.81 21.53 0.873 92.29
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Table 4: Average performance indicators for the best combination
of increasing the number of neurons from 1 to 20

No. of neurons Performance indicator values

MAPE (%) RRMSE (%) MBE (%) R* (%)
1 19.86 23.46 0.786 95.67
2 18.76 22.12 0.763 95.85
3 19.46 23.13 0.781 95.67
4 18.72 21.97 0.764 95.89
5 19.54 23.74 0.795 95.52
6 19.85 22.79 0.773 95.68
7 21.65 23.74 0.794 95.68
8 18.65 21.83 0.756 95.94
9 21.74 23.81 0.793 95.64
10 19.77 23.54 0.786 95.69
1 18.79 22.17 0.763 95.79
12 18.73 21.99 0.764 95.86
13 19.64 23.41 0.768 95.72
14 19.41 22.26 0.775 95.74
15 21.45 23.65 0.772 95.65
16 18.81 22.21 0.781 95.78
17 19.81 22.45 0.784 95.71
18 19.23 22.47 0.778 95.75
19 18.95 22.24 0.776 95.77
20 21.22 23.48 0.774 95.64

surface was the best with MAPE = 22.31%, RRMSE = 18.74%,
MBE = 0.813% and R’ = 95.78%.

The best combination of input parameters was tested
with different numbers of neurons in the hidden layer. By
increasing the number of neurons from 1 to 20, the average
performance indicator values for the best (SNP, CT, DTyax,
SIS) model were evaluated and shown in Table 4. The best
architecture was obtained with eight neurons, with R =
95.94%, MAPE = 18.65%, MBE = 0.756% and RRMSE =
21.83%. The correlation between the predicted and the
actual efficiency of the PV solar panel is shown in Figure 4.

The estimated values of the selected model with eight
neurons in the hidden layer versus the actual efficiency of
the training dataset are shown in Figure 4(a), and that for
the test dataset is shown in Figure 4(b). A good level of
agreement is observed between the predicted and mea-
sured efficiencies. The selected configuration exhibited
average performance indicator values of R? = 96.12%,
RRMSE = 23.17%, MBE = 0.741% and MAPE = 19.71%.

Using ANN, a reliable estimation model was obtained
to predict the efficiency of the solar panel using technolo-
gical parameters such as the SiO, nanoparticle quantity,
thickness of the PFTE-modified silica hydrosols CT, tem-
perature and solar irradiance. The reliability of the present
model has been evaluated with the prediction parameter
values of the models developed in previous investigations.
The present investigation, using the incremental method
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Figure 4: Estimated and actual SPEs of the (a) training dataset and
(b) testing dataset.

for ANN, was compared with the accuracy results of other
solar models of related research works. The comparison is
shown in Table 5. In comparison, the present model was
found to exhibit better performance indicator values for
the ANN models developed [147-156].

3.2 Identification of feasible limits of
technological parameters

Out of the 19 different technological parameters of the solar
panel model, 3 important technological parameters were
selected as the primary parameters for further evaluation.
The experiments were conducted in a clear sky and between
1:30 to 3:00 PM when the solar irradiance was highest. At
peak days, the solar irradiation was around 1,000 W.m™2
(approx., 985-1,015 W-m ). The output of the solar panel
was measured when the solar irradiation was around
1,000 W-m~2. The presence of ARC caused a significant
improvement in the solar panel output efficiency. On
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Table 5: Comparison of the present incremental method with other related research works

Sl. No. Literature reference ANN method Performance indicator values (absolute)
MAPE RRMSE  MBE R?
1 Present research MLP 0.1971 0.2317 0.00741 0.9612
3 Khatib et al. [147] MLP 0.592 7.96 0.0146
4 Salima and Linear regression - 1.72 0.015 0.9
Cahvula [148]
5 Assi et al. [149] MLP and radial basis function — 0.27 0.008 0.9212
6 Yacef et al. [150] Bayesian neural network - 1.318 0.2526 0.8074
7 El-Sebaii et al. [151] Liu and Jordan's isotropic model and Klucher’s — 0.044 0.015 0.92
anisotropic model
7 Poudyal et al. [152] Modified Angstrom model — 0.071 0.055 0.71
8 Tuomiranta et al. [153] Thermal model — 4.8 - 0.958
9 Bimenyimana et al. [154] Nonlinear autoregressive neural network - - - 0.736
10 Yaniktepe and Statistical model 1.5943 0.083 - —
Genc [155]
1 Kumar and Kaur [156] MLP 0.1645 — - 0.8841

To emphasize that the values were calculated in this experimental investigation, it is given in bold.

conducting experimental trials, a 3.1-3.6% increase in the
output efficiency was observed, compared to the uncoated
solar panels. From previous investigations and trial experi-
ments, the other technological parameters were fixed as
constant. For all coating experiments, the distance between
the spraying nozzle and substrate was fixed at 100 mm
[157], the nozzle diameter as 1.25 mm [158], the spraying
pressure as 40psi [159], the drying duration as 10 min
[160] and furnace temperature as 80°C [161]. PFTE-treated
silica sol coating was used to improve the transmissibility of
solar rays. SiO, nanoparticles were added to improve the
hydrophobic nature of the coatings. Temperature also plays
an important role. Even though the ARC improved the effi-
ciency of the solar panel, operating the solar panels at
optimum temperatures caused further improvement in the
SPE. Experimental trials were conducted with different CTs,
quantity of SiO, nanoparticles and surface temperatures.
Using blowers and cooling panels, the temperature was
reduced and readings were taken.
a. Trials conducted using CT lesser than 200 nm did not
help in improving the efficiency of the solar panel.
b. Coatings with thicknesses greater than 800 nm were
costly. Thick coatings created coating surface discre-
pancies and reduced the efficiency of the solar panel.

c. Addition of SiO, nanopowder lesser than 750 mg-1"! to
the coating solution did not improve the water repul-
sion characteristics of the solar panel. Repulsive rolling
of dew drops from the panel did not occur.

d. Addition of SiO, nanopowder of more than 1,500 mg-1™*
caused undesirable surface roughness. The transmit-
tance of solar rays and the efficiency of the solar panel
are reduced.

e. At temperatures lower than 20°C, due to the formation
of mist and dew drops, dust accumulation occurred.
As the temperature in South India would peak to 40°C,
the efficiency of the panels was recorded at 45°C.

f. Operating the solar panel beyond 45°C caused a reduc-
tion in efficiency.

Thus, within a CT of 200-800 nm, the SiO, nano-
powder quantity within 750-1,500 mg-1"! and surface tem-
peratures within 20-45°C were identified to be feasible.

3.3 Central composite matrix development
The feasible parameters, such as the CT in nm, the SiO,

nanoparticle quantity in mg1™ (SNP) and the tempera-
ture at the panel surface in °C (T), were used for further

Table 6: Feasible limits and intermediate values of the technological parameters

No. Parameters Notation Unit Level

-1.682 -1.0 0 +1.0 +1.682
1 Coating thickness CT nm 200 320 500 680 800
2 Si0, nanoparticle quantity SNP mg 17! 750 900 1,125 13,450 1,500
3 Temperature at the panel surface T °C 20 25 32.50 40 45
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evaluation. The feasible limits of the technological para-
meters are shown in Table 6.

A CCD model with three factors and five levels (-1.68,
-1, 0, +1, +1.68) was chosen, as the range of the indivi-
dual factors was large. A second-order quadratic model
can be established with a minimum number of experi-
ments using CCD. In this experimental investigation,
three factors (coating thickness [CT], SiO, nanoparticles
quantity [SNP] and temperature of the solar panel [T])
were chosen to improve one response (SPE). Hence, for
developing the CCD model, six center points and one axial
point were chosen. This was done to improve the accuracy
of the predictions in RSM. The design model was devel-
oped with six stars and center points. Using CCD, 20 sets of
process parameter conditions were developed according to
the procedure developed by Montgomery [162].

A value of +1.682 was coded as the upper limit and
-1.682 was coded as the lower limit. Using the relation-
ship developed by Montgomery [162], the intermediate
values were calculated as follows:

Ji = 1. 682[2] — (UJmax + Jmin)] = Umax + Jmin)-

In equation (14), the coded value of J is J;. ] is made to
take any value from Ji,ax t0 Jimin. The maximum value for a
variable is denoted as J.x and the least value of a vari-
able is denoted as Jnin. The intermediate values are
shown in Table 5. The CCD model developed with 20

(14)

Table 7: CCD model with responses
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different combinations of technological process para-
meters is shown in Table 7.

With the technological parameter values indicated in
the design model, 20 experiments were conducted. With
an appropriate SiO, nanoparticle addition, CT and tem-
perature, the output of the solar panel was measured. The
efficiency was evaluated and their values are indicated in
Table 7. Out of the 20 different experimental combina-
tions developed in the CCD model, 14 experiments were
distinct and 6 experiments (3rd, 9th, 12th, 14th, 17th and
19th) were repetitive. These repetitive experiments were
used for reducing the errors that arise during the experi-
mentation process. The standard error of the design is
shown in Figure 5.

3.4 Establishing empirical relationships
between the technological parameters
and output efficiency

The responses (efficiency of the solar panel) are attrib-
uted to be a function of the three technological para-
meters such as the CT (in nm), SiO, nanoparticle quantity
(SNP in mg-1™) and temperature of the panel surface (T in
°C). As per the methodology developed by Paventhan
et al. [163], the relationship between the input variables
and output responses is shown in the following equation:

Sl. No. Coded factor value Actual factor value Responses (SPE)
CcT SNP T CT (nm) SNP (mg-17%) T (°C) Solar panel n (%)
1 +1 -1 -1 680 900 25.0 15.6048
2 -1.68 0 0 200 1,125 32.5 15.8243
3 0 0 0 500 1,125 32.5 16.5028
4 -1 +1 +1 320 1,350 40.0 16.2633
5 +1 +1 +1 680 1,350 40.0 16.0838
6 -1 -1 +1 320 900 40.0 15.8044
7 0 0 +1.68 500 1,125 45.0 16.4829
8 +1 -1 +1 680 900 40.0 17.1015
9 0 0 0 500 1,125 32.5 16.5627
10 +1 +1 -1 680 1,350 25.0 15.8243
11 0 0 -1.68 500 1,125 20.0 15.3654
12 0 0 0 500 1,125 32.5 16.5826
13 +1.68 0 0 800 1,125 32.5 16.423
14 0 0 0 500 1,125 32.5 16.6225
15 0 -1.68 0 500 750 32.5 15.7046
16 0 +1.68 0 500 1,500 32.5 16.2633
17 0 0 0 500 1,125 32.5 16.5826
18 -1 +1 -1 320 1,350 25.0 16.403
19 0 0 0 500 1,125 32.5 16.6026
20 -1 -1 -1 320 900 25.0 14.627
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Figure 5: Standard error of the design.

SPE = f(CT, SNP, T). (15)

Using a second-order polynomial regression equa-
tion [164], the response surface Q of the solar panel
model is given as

Q=np+ znixi + Znilxiz + Zni]-xix,-.

For the three input variables, such as the CT (nm),
Si0, nanoparticles quantity (SNP) (mg-1") and tempera-
ture (T) of the panel surface (°C), the second-order poly-
nomial equation is represented as follows:

(16)

SPE = {ny + m(CT) + ny(SNP) + ns3(T)
+ np(CT x SNP) + ni3(CT x T)
+ T’l23(SNP X T) + nuCTZ + nBSNP2 + n33T2}.

(17)

In the above equations, n, is the average of the
responses and n;, ny, ns.., are the coefficients of the

Table 8: ANOVA test results of the solar panel model
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regression equations. These depend upon the linear terms,
interaction terms and squared terms of the input techno-
logical parameters [165]. These coefficients were evaluated
by using Design Expert Software. Student’s t-tests were
used for the evaluation of the individual coefficients and
their significance was identified using p values [166].
Using the partial sum of squares-type III ANOVA (ANOVA)
technique, the significance of the developed model was
ascertained. The ANOVA results of the solar panel model
are shown in Table 8. Using ANOVA, the sum of squares,
mean square, F-ratio and p-values for Model, CT, SNP,
T, CT x SNP, CT x T, SNP x T, CT?, SNP? and T? were
evaluated. The F-ratio value of the developed model was
found to be 566.78. From this value of the F-ratio, it was
inferred that the model was significant. The chance for
the occurrence of this large value of F-ratio was only
0.01%. In the developed model, the “lack of fit” value
was 0.39. It indicated that “lack of fit” was not signifi-
cant w.r.t., pure error of the model. The chance for the
occurrence of this large lack of fit value was found to be
84.09%. “Prob > F” values for Model, CT, SNP, T, CT x
SNP, CT x T, SNP x T, CT?, SNP? and T? were found to be
<0.0001. “Prob > F,” lesser than <0.0500, is a clear
indication that the developed model was significant at
the 95% confidence level. When Prob > F values are
greater than 0.10, the model terms were termed insig-
nificant. From ANOVA, as Prob > F values for the model,
individual parameters, product of the two parameters
and square of the parameters were lesser than 0.0500,
the model was attributed to be significant up to a con-
fidence level of 95%.

The developed empirical relationship for the solar
panel model is given as follows:

Source Sum of squares (SS) Degree of freedom (df) Mean square (MS) F-ratio p-value Prob >F Note
Model 6.03 9 0.67 566.78 <0.0001 Significant
cT 0.47 1 0.47 396.39 <0.0001

SNP 0.41 1 0.41 353.21 <0.0001

T 1.60 1 1.6 1356.14 <0.0001

CT x SNP 1.17 1 1.17 977.74 <0.0001

CTxT 0.065 1 0.065 54.76 <0.0001

SNP x T 0.82 1 0.82 693.18 <0.0001

CT? 0.38 1 0.38 324.49 <0.0001

SNP? 0.65 1 0.65 548.49 <0.0001

7 0.78 1 0.78 664.73 <0.0001

Residual  0.012 10 117 x 1073

Lack of fit 3.2 x 1073 5 6.5 x 107% 0.39 0.8409 Not significant
Std. Dev 0.034 R? 0.9981

Mean 16.16 Adj 0.9963

V% 0.21 Pred 0.9936

Press 0.038 Adeq precision 101.002
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SPE = {16.58 + 0.18(CT) + 0.17(SNP) + 0.34(T)
~ 0.38(CT x SNP) + 0.090(CT x T)
~ 0.32(SNP x T) — 0.16CT? — 0.21SNP?
~ 0.23T2.

(18)

The adequacy of the developed solar panel model
was verified from the response surface model of the second
order. R? is the coefficient of determination. The goodness
of fit of the model is identified by using the value of R°.
From Table 8, the R? value (0.9981) indicated that the very
minimal extent of variations was not explained [167]. The
adjusted R? (0.9963) value was found to be very high. It
indicated that the level of significance of the developed
model was high. A good level of agreement was observed
between the adjusted coefficient of determination value
and the predicted R? value. As the value of the determina-
tion coefficient was greater than 0.95, a high level of cor-
relation between the predicted SPE and the measured SPE
was observed. The scatter diagram indicating the correla-
tion between the predicted and actual SPE is shown in
Figure 6. From the scatter diagram, a very close relation
between the predicted and actual efficiency is observed.

3.5 Optimization of the technological
parameters and validation

Using RSM, the three technological parameters were opti-
mized to increase the SPE to the maximum possible extent.
A functional relationship was established between the
independent variables such as the CT (nm), the SiO, nano-
particle quantity (SNP) (mg17™) and temperature (T) of the
panel surface (°C) with SPE according to the following
response surface equation [168]:

T = d(sy,Sy...S) + er. (19)

In the above equation, the response is indicated as T.
The quantitative factors are represented as si, Sy,..., Sk
Using this equation, the response function was devel-
oped. In equation (17), er is the residual error. A character-
istic surface was developed for the independent variables
to predict the output responses. With the three technolo-
gical parameters (SiO, nanoparticle addition, CT and tem-
perature), the objective function was set to maximize the
output (SPE). The response surface was prepared with the
three parameters by varying them from lower (coded value
-1.68) to higher (coded value +1.68).

The developed response surface model was fitted using
multiple regression equations. With circular shapes, the
dependence of SiO, nanoparticle addition (SNP), CT and
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temperature (T) was traced with SPE. Three contours were
developed with one process parameter as constant and
two input parameters on either side. The optimal region
in the contours was identified using visual inspection.
Using first-order equations, simple contours can be devel-
oped. As the order increases, the complexity of the contours
also increases [169].

The response surface was characterized within the
range of the stationary point. The stationary point was
characterized as the maximum, minimum or saddle point.
Using Design Expert Software, contour plots were devel-
oped. The optimal region was identified by evaluating the
shapes of the contours. Circular shapes of contours indi-
cate that the factors are independent, and elliptical shapes
of contours show that interaction occurs between the fac-
tors [170]. The contour plots for the optimization model are
shown in Figure 7. Figure 7(a) shows the contour plots for
CT vs SNP, Figure 7(b) shows the contour plots for CT vs T
and Figure 7(c) shows the contour plots for SNP vs T. All
the three contours are elliptical in shape. This indicated
that interactions were present between the input process
parameters. Three-dimensional surface plots were pre-
pared by taking two of the input parameters in the mid-
level and were plotted in the reference X and Y axes. The
response such as the SPE was plotted on the Z-axis.
The optimal point was identified from the plotted surfaces.
The 3-D surface plots for the optimization model are
shown in Figure 8. Figure 8(a) shows the 3-D surface plots
for CT vs SNP, Figure 8(b) shows the 3-D surface plots for
CT vs T and Figure 8(c) shows the 3-D surface plots for
SNP vs T.

On evaluating the contours and surface plots, max-
imum SPE was predicted to be 17.1%. The optimized

Predicted vs. Actual
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Figure 6: Relationship between the predicted and actual values of
PTFE-modified silica hydrosol-coated SPE.
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Figure 7: Contour plots of the optimization model: (a) CT vs SNP,
(b) CTvs Tand (c) SNPvs T.

process parameter values determined by the prediction
model for achieving the efficiency were as follows: CT,
675 nm; Si0, nanoparticle quantity, 905 mg-1"'; tempera-
ture, 40°C.

For validating the optimization model, validation experi-
ments were conducted by using the optimized process para-
meter values. Using a SiO, quantity of 905mgl™, a CT of
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Figure 8: 3-D Surface plots of the optimization model: (a) CT vs SNP,
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Table 9: Validation experiments and error percentage

Exp No. PTFE-modified silica sol-coated SPE Error%
Predicted Experimental
1 17.1% 16.98% -0.7
17.04% -0.35
16.83% -1.09
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675nm and a temperature of 40°C, the output voltage, cur-
rent and input solar irradiance were recorded and the output
efficiency of the solar panel was calculated. Three validation
experiments were conducted, and the difference between the
predicted and actual efficiency was recorded. The validation
results are shown in Table 9. On observing the validation
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Figure 9: Interaction plots between (a) CT and SNP, (b) CT and T, and
(c)SNPand T.
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results, the difference between the predicted and actual
values was less than 3%, which indicated that the model
was developed with very high predictability.

3.6 Interaction and perturbation plots

For identifying the effect of variations in input technolo-
gical parameters on the output responses, interaction
and perturbation plots were developed. Two input tech-
nological parameters were varied while keeping the third
parameter constant. The interaction plots of the solar
panel model are shown in Figure 9. The interaction
between SNP and CT at constant T of 40°C (40°C approx)
is shown in Figure 9(a), and the interaction between T and
CT at constant SNP of 1,330 mg-1"" is shown in Figure 9(b).
In both, interactions occurred in the lower range of the
input technological parameters. The interaction between
T and SNP at a constant CT of 370 nm is shown in Figure
9(c). In this, the interaction occurred in the upper range of
the technological parameters. The perturbation plot for the
solar panel model is shown in Figure 10.

Perturbation plots were plotted to find the pattern of
fluctuations in SPE, on inducing variations in the tech-
nological parameters. This indicated that variations in
the temperature affected SPE to a greater extent than
the addition of SiO, nanoparticle quantity and variations
in the CT.

4 Conclusions

This investigation was aimed to improve the performance
and efficiency of photovoltaic solar panels. The contribu-
tion of this investigation includes the following.
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i. Anti-reflective and water-repelling coating (silicon
dioxide nanoparticles incorporated PTFE-modified silica
hydrosols) on the solar panel to achieve higher perfor-
mance in dynamic Indian environmental conditions
was developed.

ii. Using a progressive, incremental MLP technique,
with one hidden layer and eight nodes, a highly
accurate ANN model was developed.

iii. The obtained values of performance indicators such
as the MAPE, RRMSE, MBE and the coefficient of
determination (R? indicated that (silicon dioxide
nanoparticle quantity, CT, surface temperature and
solar insolation) the model was better than other
developed models.

iv. Feasibility limits for technological parameters were
formulated, and the relationship between the input
parameters and SPE was developed using the CCD
model.

v. Using ANOVA, the significance of the developed
model was ascertained to a confidence level greater
than 95%.

vi. The input process parameters were optimized using
RSM to achieve maximum SPE. Interactions and per-
turbation plots were developed to study the influence
of the parameters on the output. The CT was found to
affect the efficiency to a greater extent than other
parameters. This helps in identifying parameters of
primary importance, affecting SPE.

vii. This study would be useful for future engineers and
researchers to identify the feasible and optimum con-
ditions for coating, design and installation of solar
panels in South Asian countries like India.
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